library(readr)
library(stringr)
spamData2 <- read_csv("spamData.csv")
Clean_String <- function(string){
# Remover caracteres no UTF-8
temp<- iconv(enc2utf8(string),sub="byte")
temp<- str_replace_all(temp,"[^[:graph:]]", " ")
# Remover todo lo que no sea número o letra
temp <- stringr::str_replace_all(temp,"[^a-zA-Z\\s]", " ")
# remover espacios extra
temp <- stringr::str_replace_all(temp,"[\\s]+", " ")
# minúscula
temp <- tolower(temp)
return(temp)
}
# Aplicar la función a los comentarios
spamData2$message <- Clean_String(spamData2$message)
library(tidymodels)
set.seed(1234)
#Realizar la partición de las muestras
spamData2_split <- initial_split(spamData2, prop = .7)
spamData2_train <- training(spamData2_split)
spamData2_test <- testing(spamData2_split)
dim(spamData2_train) ; dim(spamData2_test)
## [1] 3901 2
## [1] 1671 2
library(textrecipes)
library(stopwords)
# Setear la receta del modelo a utilizar
spamData2_recipe <- recipe(class ~ message,
data = spamData2_train)
#Aplicar los pasos de procesamiento de datos
library(wordcloud)
library(textrecipes)
library(stopwords)
library(readr)
library(dplyr)
library(recipes)
library(tidyverse)
library(GGally)
library(mlbench)
library(themis)
# install.packages("tidymodels")
library(tidymodels)
spamData2_recipeProcessed <- spamData2_recipe %>%
step_text_normalization(message) %>% # elimina caracteres extraños
step_tokenize(message) %>%
step_stopwords(message, keep = FALSE) %>%
step_untokenize(message) %>%
step_tokenize(message, token = "ngrams",
options = list(n = 2, n_min = 1)) %>%
step_tokenfilter(message, max_tokens = 200) %>%
step_tfidf(message) %>%
step_upsample(class) #alternativa a step_smote
#Ejecutar la receta del paso anterior
spamData2_recipeProcessedF <- prep(spamData2_recipeProcessed)
spamData2_recipeProcessedF
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 1
##
## Training data contained 3901 data points and no missing data.
##
## Operations:
##
## text_normalizationming for message [trained]
## Tokenization for message [trained]
## Stop word removal for message [trained]
## Untokenization for message [trained]
## Tokenization for message [trained]
## Text filtering for message [trained]
## Term frequency-inverse document frequency with message [trained]
## Up-sampling based on class [trained]
#Setear el workflow para trabajar el modelo de Machine Learning
library(glmnet)
spamData2_wf <- workflow() %>%
add_recipe(spamData2_recipeProcessed)
# Especificación del modelo
spamData2_spec <- logistic_reg(penalty = tune(), mixture = 1) %>% # Mixture=1 se requiere para indicar que es LASSO
set_engine("glmnet")
spamData2_spec
## Logistic Regression Model Specification (classification)
##
## Main Arguments:
## penalty = tune()
## mixture = 1
##
## Computational engine: glmnet
#Ajustar el modelo con los datos
spamData2_wf <- workflow() %>%
add_recipe(spamData2_recipeProcessed) %>%
add_model(spamData2_spec)
spamData2_wf
## == Workflow ====================================================================
## Preprocessor: Recipe
## Model: logistic_reg()
##
## -- Preprocessor ----------------------------------------------------------------
## 8 Recipe Steps
##
## * step_text_normalization()
## * step_tokenize()
## * step_stopwords()
## * step_untokenize()
## * step_tokenize()
## * step_tokenfilter()
## * step_tfidf()
## * step_upsample()
##
## -- Model -----------------------------------------------------------------------
## Logistic Regression Model Specification (classification)
##
## Main Arguments:
## penalty = tune()
## mixture = 1
##
## Computational engine: glmnet
# Creamos un grid para entrenar los parametros adicionales del modelo
spamData2_grid <- grid_random(penalty(), size = 25)
spamData2_grid
## # A tibble: 25 x 1
## penalty
## <dbl>
## 1 0.00000285
## 2 0.000000934
## 3 0.265
## 4 0.0000176
## 5 0.000000140
## 6 0.00173
## 7 0.000000406
## 8 0.391
## 9 0.00196
## 10 0.00000000344
## # ... with 15 more rows
#Seteamos semilla aleatoria y creamos los subsets de la validación cruzada
set.seed(123)
messages_folds <- vfold_cv(spamData2_train,v=5)
messages_folds
## # 5-fold cross-validation
## # A tibble: 5 x 2
## splits id
## <list> <chr>
## 1 <split [3120/781]> Fold1
## 2 <split [3121/780]> Fold2
## 3 <split [3121/780]> Fold3
## 4 <split [3121/780]> Fold4
## 5 <split [3121/780]> Fold5
# Entrenamos el modelo con los diferentes valores del grid para que escoja los mejores valores de los parametros
set.seed(2020)
spamData2_grid <- tune_grid(spamData2_wf,
resamples = messages_folds,
grid = spamData2_grid,
control = control_resamples(save_pred = TRUE),
metrics = metric_set(f_meas, recall, precision)
)
spamData2_grid
## # Tuning results
## # 5-fold cross-validation
## # A tibble: 5 x 5
## splits id .metrics .notes .predictions
## <list> <chr> <list> <list> <list>
## 1 <split [3120/781]> Fold1 <tibble [75 x 5~ <tibble [0 x 1~ <tibble [19,525 x 5~
## 2 <split [3121/780]> Fold2 <tibble [75 x 5~ <tibble [0 x 1~ <tibble [19,500 x 5~
## 3 <split [3121/780]> Fold3 <tibble [75 x 5~ <tibble [1 x 1~ <tibble [19,500 x 5~
## 4 <split [3121/780]> Fold4 <tibble [75 x 5~ <tibble [0 x 1~ <tibble [19,500 x 5~
## 5 <split [3121/780]> Fold5 <tibble [75 x 5~ <tibble [1 x 1~ <tibble [19,500 x 5~
#Visualizamos las métricas del modelo resultante
spamData2_grid %>%
collect_metrics()
## # A tibble: 75 x 7
## penalty .metric .estimator mean n std_err .config
## <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 3.61e-10 f_meas binary 0.970 5 0.00232 Preprocessor1_Model01
## 2 3.61e-10 precision binary 0.987 5 0.00196 Preprocessor1_Model01
## 3 3.61e-10 recall binary 0.955 5 0.00501 Preprocessor1_Model01
## 4 3.44e- 9 f_meas binary 0.970 5 0.00232 Preprocessor1_Model02
## 5 3.44e- 9 precision binary 0.987 5 0.00196 Preprocessor1_Model02
## 6 3.44e- 9 recall binary 0.955 5 0.00501 Preprocessor1_Model02
## 7 7.52e- 9 f_meas binary 0.970 5 0.00232 Preprocessor1_Model03
## 8 7.52e- 9 precision binary 0.987 5 0.00196 Preprocessor1_Model03
## 9 7.52e- 9 recall binary 0.955 5 0.00501 Preprocessor1_Model03
## 10 3.94e- 8 f_meas binary 0.970 5 0.00232 Preprocessor1_Model04
## # ... with 65 more rows
#Visualizamos los cambios de las métricas en función de los valores de penalidad
library(ggplot2)
spamData2_grid %>%
collect_metrics() %>%
ggplot(aes(penalty, mean, color = .metric)) +
geom_line(size = 1.5, show.legend = FALSE) +
facet_wrap(~.metric) +
scale_x_log10() +
theme_minimal()

#seleccionamos el mejor modelo según métrica F1 Score
best_f <- spamData2_grid %>%
select_best("f_meas")
best_f
## # A tibble: 1 x 2
## penalty .config
## <dbl> <chr>
## 1 0.00337 Preprocessor1_Model20
#Entrenamos el modelo final con los valores del mejor modelo de entrenamiento
final_spamData2 <- finalize_workflow(spamData2_wf, best_f) %>%
fit(spamData2_train)
final_spamData2
## == Workflow [trained] ==========================================================
## Preprocessor: Recipe
## Model: logistic_reg()
##
## -- Preprocessor ----------------------------------------------------------------
## 8 Recipe Steps
##
## * step_text_normalization()
## * step_tokenize()
## * step_stopwords()
## * step_untokenize()
## * step_tokenize()
## * step_tokenfilter()
## * step_tfidf()
## * step_upsample()
##
## -- Model -----------------------------------------------------------------------
##
## Call: glmnet::glmnet(x = maybe_matrix(x), y = y, family = "binomial", alpha = ~1)
##
## Df %Dev Lambda
## 1 0 0.00 0.173900
## 2 1 1.49 0.158500
## 3 2 3.73 0.144400
## 4 4 6.41 0.131600
## 5 4 9.70 0.119900
## 6 5 13.17 0.109200
## 7 5 16.36 0.099520
## 8 7 19.44 0.090680
## 9 13 23.21 0.082620
## 10 14 27.23 0.075280
## 11 15 30.92 0.068590
## 12 19 34.42 0.062500
## 13 20 37.77 0.056950
## 14 21 40.87 0.051890
## 15 25 43.91 0.047280
## 16 29 46.85 0.043080
## 17 30 49.56 0.039250
## 18 32 52.09 0.035760
## 19 36 54.42 0.032590
## 20 37 56.63 0.029690
## 21 38 58.59 0.027050
## 22 38 60.35 0.024650
## 23 41 61.96 0.022460
## 24 43 63.44 0.020470
## 25 47 64.89 0.018650
## 26 51 66.22 0.016990
## 27 55 67.47 0.015480
## 28 58 68.69 0.014110
## 29 59 69.80 0.012850
## 30 63 70.81 0.011710
## 31 69 71.79 0.010670
## 32 75 72.77 0.009723
## 33 75 73.67 0.008859
## 34 77 74.49 0.008072
## 35 82 75.24 0.007355
## 36 88 75.94 0.006702
## 37 92 76.60 0.006106
## 38 101 77.24 0.005564
## 39 110 77.84 0.005070
## 40 117 78.42 0.004619
## 41 121 78.96 0.004209
## 42 123 79.46 0.003835
## 43 125 79.92 0.003494
## 44 130 80.34 0.003184
## 45 137 80.74 0.002901
## 46 140 81.11 0.002643
##
## ...
## and 54 more lines.
#Evaluamos el modelo con los datos de prueba
review_final <- last_fit(final_spamData2,
split=spamData2_split,
metrics = metric_set(f_meas, recall, precision)
)
# Observamos métricas del modelo evaluado en datos de prueba
review_final %>%
collect_metrics()
## # A tibble: 3 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 f_meas binary 0.969 Preprocessor1_Model1
## 2 recall binary 0.949 Preprocessor1_Model1
## 3 precision binary 0.990 Preprocessor1_Model1
# Visualizar las predicciones del dataframe de prueba
review_final %>%
collect_predictions %>%
head()
## # A tibble: 6 x 5
## id .pred_class .row class .config
## <chr> <fct> <int> <fct> <chr>
## 1 train/test split ham 7 ham Preprocessor1_Model1
## 2 train/test split ham 11 ham Preprocessor1_Model1
## 3 train/test split spam 13 spam Preprocessor1_Model1
## 4 train/test split ham 15 ham Preprocessor1_Model1
## 5 train/test split spam 16 spam Preprocessor1_Model1
## 6 train/test split ham 17 ham Preprocessor1_Model1
#Predicciones
comment<- "the book was good."
len<- str_length(comment)
new_comment <- tribble(~message,~len,comment,len)
comment
## [1] "the book was good."
prediction<-predict(final_spamData2, new_data = new_comment)
paste0("el resultado para el comentario ","'",new_comment$message,"'","es: ",
prediction$.pred_class)
## [1] "el resultado para el comentario 'the book was good.'es: ham"
prediction
## # A tibble: 1 x 1
## .pred_class
## <fct>
## 1 ham
prediction
## # A tibble: 1 x 1
## .pred_class
## <fct>
## 1 ham