Load saved CHILDES .csv corpus for a language (here French and Italian).

Rbind different corpora.

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3     ✓ purrr   0.3.4
## ✓ tibble  3.1.0     ✓ dplyr   1.0.5
## ✓ tidyr   1.1.3     ✓ stringr 1.4.0
## ✓ readr   1.4.0     ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(ggeffects)
library(wordbankr)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(ggpubr)
## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
## 
##     filter
library(data.table)
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:reshape2':
## 
##     dcast, melt
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
## The following object is masked from 'package:purrr':
## 
##     transpose
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
library(here)
## here() starts at /Users/lscpuser/Documents/fyssen-project
library(langcog)
## 
## Attaching package: 'langcog'
## The following object is masked from 'package:base':
## 
##     scale
library(modelr)
#theme_set(theme_mikabr())
#font <- theme_mikabr()$text$family

source("get_wordbank.R")

Load data and clean CHILDES utterances by removing puctuation, incomplete sentences and target-child speech.

#add this function to aoa
clean_childes <- function(corpus_) {
  annot <- c("xxx", "yyy", "www", "-", "'") 
  annotUtt <- filter(corpus_, lemma %in% annot) 
  annotUttID<- unique(annotUtt$utterance_id) 
  corpus_ <- filter(corpus_, !(utterance_id  %in% annotUttID))  #remove utterances with annotations - incomplete info
  corpus_<-corpus_ %>% filter (speaker_code != "CHI") #remove target child utterances
  corpus_<-corpus_ %>% filter (pos != "PUNCT")  #remove punctuation 
  corpus_ %>% mutate(lemma = tolower(lemma))
}

load_data <- function(language_list) {
  for (lang in language_list){
    if (lang == "english")     { 
      english=read_csv(here("data/Providence_spacy.csv"))
      english=clean_childes(english)
      english <- english %>% 
            mutate(language = "english")
    }
    if (lang == "italian")     { 
      italian=read_csv(here("data/italian_1403.csv"))
      italian=clean_childes(italian)
      italian <- italian %>% 
            mutate(language = "italian")
    }
    if (lang == "french")     { 
      french=read_csv(here("data/french_1403.csv"))
      french=clean_childes(french)
      french <- french %>% 
            mutate(language = "french")
    }
  }
  return(list(english = data.table(english), italian = data.table(italian), french = data.table(french)))
  #return(list(english = data.table(english), italian = data.table(italian)))

  }
corpus<-load_data(language_list) 
## Warning: Missing column names filled in: 'X1' [1]

## Warning: Missing column names filled in: 'X1' [1]
#corpus <- lapply(corpus, clean_childes)

lapply(corpus, function(x) {
  summary(x)
})
## $english
##      text              lemma               lex                pos           
##  Length:601140      Length:601140      Length:601140      Length:601140     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##      tag             dependency           morph               prefix         
##  Length:601140      Length:601140      Length:601140      Min.   :1.010e+02  
##  Class :character   Class :character   Class :character   1st Qu.:5.100e+18  
##  Mode  :character   Mode  :character   Mode  :character   Median :1.190e+19  
##                                                           Mean   :1.016e+19  
##                                                           3rd Qu.:1.540e+19  
##                                                           Max.   :1.800e+19  
##    prefix_              suffix            suffix_            sentiment
##  Length:601140      Min.   :1.010e+02   Length:601140      Min.   :0  
##  Class :character   1st Qu.:5.010e+18   Class :character   1st Qu.:0  
##  Mode  :character   Median :9.600e+18   Mode  :character   Median :0  
##                     Mean   :9.701e+18                      Mean   :0  
##                     3rd Qu.:1.490e+19                      3rd Qu.:0  
##                     Max.   :1.840e+19                      Max.   :0  
##   utterance_id      target_child_id speaker_code       corpus_name       
##  Min.   :16759250   Min.   :22704   Length:601140      Length:601140     
##  1st Qu.:16824040   1st Qu.:22704   Class :character   Class :character  
##  Median :16880697   Median :22720   Mode  :character   Mode  :character  
##  Mean   :16875975   Mean   :22719                                        
##  3rd Qu.:16929977   3rd Qu.:22728                                        
##  Max.   :16974451   Max.   :22728                                        
##  transcript_id     language        
##  Min.   :42204   Length:601140     
##  1st Qu.:42251   Class :character  
##  Median :42296   Mode  :character  
##  Mean   :42290                     
##  3rd Qu.:42329                     
##  Max.   :42374                     
## 
## $italian
##        X1             text              lemma               lex           
##  Min.   :     4   Length:191701      Length:191701      Length:191701     
##  1st Qu.:116248   Class :character   Class :character   Class :character  
##  Median :228267   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :226863                                                           
##  3rd Qu.:338982                                                           
##  Max.   :437481                                                           
##      pos                tag             dependency           morph          
##  Length:191701      Length:191701      Length:191701      Length:191701     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##      prefix            prefix_              suffix            suffix_         
##  Min.   :7.187e+15   Length:191701      Min.   :1.675e+16   Length:191701     
##  1st Qu.:3.209e+18   Class :character   1st Qu.:5.304e+18   Class :character  
##  Median :1.190e+19   Mode  :character   Median :9.840e+18   Mode  :character  
##  Mean   :1.023e+19                      Mean   :9.961e+18                     
##  3rd Qu.:1.560e+19                      3rd Qu.:1.405e+19                     
##  Max.   :1.800e+19                      Max.   :1.845e+19                     
##    sentiment  utterance_id     target_child_id speaker_code      
##  Min.   :0   Min.   :7388853   Min.   :14314   Length:191701     
##  1st Qu.:0   1st Qu.:7425645   1st Qu.:14341   Class :character  
##  Median :0   Median :7452333   Median :14377   Mode  :character  
##  Mean   :0   Mean   :7453658   Mean   :14374                     
##  3rd Qu.:0   3rd Qu.:7482842   3rd Qu.:14412                     
##  Max.   :0   Max.   :7514844   Max.   :14421                     
##  corpus_name        transcript_id     language        
##  Length:191701      Min.   :22462   Length:191701     
##  Class :character   1st Qu.:22497   Class :character  
##  Mode  :character   Median :22532   Mode  :character  
##                     Mean   :22539                     
##                     3rd Qu.:22584                     
##                     Max.   :22616                     
## 
## $french
##        X1              text              lemma               lex           
##  Min.   :     11   Length:1550282     Length:1550282     Length:1550282    
##  1st Qu.: 760646   Class :character   Class :character   Class :character  
##  Median :1456100   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :1444290                                                           
##  3rd Qu.:2108927                                                           
##  Max.   :2970632                                                           
##      pos                tag             dependency           morph          
##  Length:1550282     Length:1550282     Length:1550282     Length:1550282    
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##      prefix            prefix_              suffix            suffix_         
##  Min.   :7.187e+15   Length:1550282     Min.   :4.050e+02   Length:1550282    
##  1st Qu.:2.985e+18   Class :character   1st Qu.:5.902e+18   Class :character  
##  Median :9.149e+18   Mode  :character   Median :1.126e+19   Mode  :character  
##  Mean   :9.195e+18                      Mean   :1.050e+19                     
##  3rd Qu.:1.537e+19                      3rd Qu.:1.462e+19                     
##  Max.   :1.800e+19                      Max.   :1.844e+19                     
##    sentiment  utterance_id      target_child_id speaker_code      
##  Min.   :0   Min.   :17476553   Min.   :23235   Length:1550282    
##  1st Qu.:0   1st Qu.:17655732   1st Qu.:23275   Class :character  
##  Median :0   Median :17800624   Median :23312   Mode  :character  
##  Mean   :0   Mean   :17788687   Mean   :23319                     
##  3rd Qu.:0   3rd Qu.:17922106   3rd Qu.:23381                     
##  Max.   :0   Max.   :18149594   Max.   :23412                     
##  corpus_name        transcript_id     language        
##  Length:1550282     Min.   :44628   Length:1550282    
##  Class :character   1st Qu.:44900   Class :character  
##  Mode  :character   Median :45108   Mode  :character  
##                     Mean   :45033                     
##                     3rd Qu.:45176                     
##                     Max.   :45263

Measure frequency

source("measure_frequency.R") # add interecept function to aoa-pipeline

frequencies <- lapply(corpus, frequency_model) %>%
  bind_rows()
## `summarise()` has grouped output by 'lemma', 'target_child_id'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'target_child_id'. You can override using the `.groups` argument.
## Joining, by = c("target_child_id", "language")
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## Joining, by = c("lemma", "language")
## Joining, by = c("lemma", "language")
## `summarise()` has grouped output by 'lemma', 'target_child_id'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'target_child_id'. You can override using the `.groups` argument.
## Joining, by = c("target_child_id", "language")
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## Joining, by = c("lemma", "language")
## Joining, by = c("lemma", "language")
## `summarise()` has grouped output by 'lemma', 'target_child_id'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'target_child_id'. You can override using the `.groups` argument.
## Joining, by = c("target_child_id", "language")
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## Joining, by = c("lemma", "language")
## Joining, by = c("lemma", "language")
# TEST1 frequency metric:
#frequencies %>% 
 # group_by(target_child_id) %>% 
  #summarize (sum(rawFrequency)) #Test frequence: should be 1 for each child

# TEST2 frequency metric:   
#frequencies %>% 
 # arrange(desc(FrequencyLog))#: maximum values

Measure aoas

language_list_=c("Italian", "English (American)", "French (French)")  

aoas <- lapply(language_list_, load_wordbank) %>%
  bind_rows()
## Joining, by = c("num_item_id", "item_id", "type", "category", "lexical_category", "lexical_class", "uni_lemma", "complexity_category")
## Joining, by = c("num_item_id", "item_id", "type", "category", "lexical_category", "lexical_class", "uni_lemma", "complexity_category")
## Joining, by = c("num_item_id", "item_id", "type", "category", "lexical_category", "lexical_class", "uni_lemma", "complexity_category")

Merge all

d <- aoas %>%
  group_by(language, lemma, lexical_class) %>%
  summarise(aoa = aoa[1]) %>%
  filter(!is.na(aoa)) %>%
  mutate(language = ifelse(language == "French (French)", "french", language)) %>%
  mutate(language = ifelse(language == "English (American)", "english", language)) %>%
  mutate(language = ifelse(language == "Italian", "italian", language)) %>%
  left_join(frequencies %>% 
              group_by(language, lemma) %>%
              summarise(log_freq = FrequencyLogMean[1], 
                        intercept_freq = interceptmodel[1])   )
## `summarise()` has grouped output by 'language', 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'language'. You can override using the `.groups` argument.
## Joining, by = c("language", "lemma")

Plot frequency and aoa using log frequency and model intercept frequency

d<-d %>% 
  filter(!is.na(log_freq)) 


plot_frequency1<-function(db, language){
  ggplot(db, 
         aes(log_freq, aoa, label=lemma)) + 
    geom_point()  +
    geom_smooth() + 
    geom_point(alpha=.1)+
    ggrepel::geom_label_repel()+
    geom_text(aes(label=lemma),hjust=0, vjust=0)  +
    xlim(0,0.6) + 
    facet_wrap(~lexical_class, nrow=2) +
    ggtitle(paste(language)) 
    
}

plot_frequency2<-function(db){
  ggplot(db, 
         aes(intercept_freq, aoa, label=lemma)) + 
    geom_point()  +
    geom_text(aes(label=lemma),hjust=0, vjust=0) + facet_wrap(~lexical_class, nrow=2)
}

plot_frequency3<-function(db){
  ggplot(db, 
         aes(x = intercept_freq, y = log_freq, label = lemma)) + 
    geom_point() + 
    geom_smooth(method = "lm") +   facet_wrap(~lexical_class, nrow=2)
}
plot_frequency1(filter(d, language == "english"), "english")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (stat_smooth).
## Warning: Removed 15 rows containing missing values (geom_point).

## Warning: Removed 15 rows containing missing values (geom_point).
## Warning: Removed 15 rows containing missing values (geom_label_repel).
## Warning: Removed 15 rows containing missing values (geom_text).
## Warning: ggrepel: 50 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 49 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 30 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 83 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 247 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

plot_frequency1(filter(d, language == "italian"), "italian")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 12 rows containing non-finite values (stat_smooth).
## Warning: Removed 12 rows containing missing values (geom_point).

## Warning: Removed 12 rows containing missing values (geom_point).
## Warning: Removed 12 rows containing missing values (geom_label_repel).
## Warning: Removed 12 rows containing missing values (geom_text).
## Warning: ggrepel: 50 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 37 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 25 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 88 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 196 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

plot_frequency1(filter(d, language == "french"), "french")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 13 rows containing non-finite values (stat_smooth).
## Warning: Removed 13 rows containing missing values (geom_point).

## Warning: Removed 13 rows containing missing values (geom_point).
## Warning: Removed 13 rows containing missing values (geom_label_repel).
## Warning: Removed 13 rows containing missing values (geom_text).
## Warning: ggrepel: 17 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 38 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 20 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 62 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 202 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

ggplot(d, aes(x = log_freq, y = aoa, col = lexical_class)) + 
  geom_point(alpha = .1) + 
  geom_smooth(method = "lm") + 
  facet_grid(rows = vars(language)) +
 # facet_grid(language ~ lexical_class, scales = "free_x") + 
 # langcog::theme_mikabr() + 
 # langcog::scale_color_solarized() + 
  theme(legend.position = "bottom") + 
  xlab("Frequency (log)") + 
  ylab("Age of Acquisition (months)")
## `geom_smooth()` using formula 'y ~ x'


### Reliability_frequency: half-split and Spearman-Brown


```r
# add lemmas of the first half not existing at the second half, with 1 
same_size_df <- function(df1, df2) { 
  firstlistlemma<-(df1$name)
  secondlistlemma<-(df2$name)
  diff1<-setdiff(firstlistlemma,secondlistlemma) 
  df<-as.data.frame(diff1)
  df[,2] <- NA
  df[,3] <- 1
  colnames(df)<- c("lemma","pos","CountLemma")
  df$name = df$lemma
  secondhalf<- rbind(df2, df)
  return(secondhalf)
}


split_half_cor <-function(dataAoa, corpus){
  n<-nrow(corpus) #corpus size in word tokens
  
  wblemmas<-unique(dataAoa$lemma) #unique wordbank lemmas
  
  ind <- sample(c(TRUE, FALSE), n, replace=TRUE, prob=c(0.5, 0.5)) #randomly split word tokens
  firsthalf <- corpus[ind, ] #split in two
  secondhalf <- corpus[!ind, ]
  
  firsthalf <- firsthalf %>%  
    group_by(lemma, pos) %>% 
    summarize(CountLemma=n()) #group by lemma and pos and count raw frequency
  
  secondhalf <- secondhalf %>%  
    group_by(lemma, pos) %>% 
    summarize(CountLemma=n()) 
  
  secondhalf <- secondhalf[secondhalf$lemma %in% wblemmas, ] #keep only lemmas existing in wordbank
  firsthalf <- firsthalf[firsthalf$lemma %in% wblemmas, ]
  
  firsthalf$name <- paste(firsthalf$lemma, "-", firsthalf$pos) #merge lemma and pos to a new name, just in case
  secondhalf$name <- paste(secondhalf$lemma, "-", secondhalf$pos)
  
  firsthalf<-firsthalf[order(firsthalf$name),] #order vector alphabetically
  secondhalf<-secondhalf[order(secondhalf$name),]
  
  secondhalf<- same_size_df(firsthalf, secondhalf)
  firsthalf<-same_size_df(secondhalf, firsthalf)
  
  firsthalf<-firsthalf[order(firsthalf$name),] #order again
  secondhalf<-secondhalf[order(secondhalf$name),]
  
  r<-cor(firsthalf$CountLemma, secondhalf$CountLemma, method="kendall") #measure r
  return(r)
}

sbformula <- function(r){  #adjust with spearman-brown formula
  r1<-(2*r)/(1+r)
  return(r1)
}

Reliability_frequency: cronbach alpha

cronbach_alpha <-function(dataAoa, corpus_frequency_){
  corpus_frequency_reliability <- corpus_frequency_ %>% 
    ungroup() %>% 
    select(lemma, rawFrequency, target_child_id)
  
  wblemmas<-unique(dataAoa$lemma) #unique wordbank lemmas
  corpus_frequency_reliability  <- corpus_frequency_reliability [corpus_frequency_reliability $lemma %in% wblemmas, ] #keep only lemmas with corresponding items in wordbank
  
  lemma_<-corpus_frequency_reliability$lemma  #restructure dataframe
  target_child_id_<-corpus_frequency_reliability$target_child_id
  freq_<-corpus_frequency_reliability$rawFrequency
  
  df<-data.frame(lemma_, target_child_id_, freq_)
  corpus_frequency_reliability_<-tidyr::spread(df, target_child_id_, freq_)
  
  child_ids_<- unique(as.character(colnames(corpus_frequency_reliability_)[3:ncol(corpus_frequency_reliability_)]))
  
  child<-select(corpus_frequency_reliability_, child_ids_ )
  a<-alpha(child) 
#  return(a$raw_)
 return(a$total[1,1]) 
}

Measure reliabilities

reliabilities <- expand_grid(language = c( "english", "italian", "french"), 
                            word_class = c("all", "nouns","adjectives","verbs",
                                           "function_words","other")) %>% 
  rowwise %>%
  mutate(split_half_tau = ifelse(word_class == "all", 
                             split_half_cor(aoas, corpus[[language]]),
                             split_half_cor(filter(aoas, 
                                                   lexical_class == word_class),
                                            corpus[[language]])),
         split_half_tau_sb = sbformula(split_half_tau) )#,
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'lemma'. You can override using the `.groups` argument.
    #  cronbach_alpha = ifelse(word_class == "all", 
     #             cronbach_alpha(aoas, 
      #                           filter(frequencies, 
       #                                 language == language)),
        #          cronbach_alpha(filter(aoas, 
         #                               lexical_class == word_class),
          #                       filter(frequencies, 
           #                             language == language))))

reliabilities %>%
  knitr::kable(digits = 2)
language word_class split_half_tau split_half_tau_sb
english all 0.90 0.95
english nouns 0.87 0.93
english adjectives 0.90 0.94
english verbs 0.89 0.94
english function_words 0.93 0.96
english other 0.87 0.93
italian all 0.81 0.90
italian nouns 0.77 0.87
italian adjectives 0.77 0.87
italian verbs 0.84 0.91
italian function_words 0.88 0.93
italian other 0.83 0.91
french all 0.89 0.94
french nouns 0.89 0.94
french adjectives 0.86 0.93
french verbs 0.91 0.95
french function_words 0.83 0.91
french other 0.86 0.93
reliabilities <- reliabilities %>%
    mutate(language = sub("english", "English (American)", language)) %>%
    mutate(language = sub("italian", "Italian", language)) %>%
    mutate(language = sub("french", "French (French)", language))

Reliability_AoA

split_half_cor_aoa <-function(lang_, clas_){
  
  i<-get_item_data(language = lang_,form="WS")
  i<-i %>% filter(type=="word") #get item data and filter by lexical class
  if (clas_ != ""){
    i<-i %>% filter(lexical_class==clas_)  
    }
  if (lang_ == "French (French)") {
   i <- filter(i, item_id !="item_514")
   i <- filter(i, item_id !="item_628")
   i <- filter(i, item_id !="item_601")
   i <- filter(i, item_id !="item_627")
   i <- filter(i, item_id !="item_452")
   i <- filter(i, item_id !="item_599")
    }  
  ids<-unique(i$item_id)
  ids<-lapply(X = ids, FUN = function(t) gsub(pattern = "item_", replacement = "", x = t, fixed = TRUE))
  
  items<-get_instrument_data(language = lang_,form="WS", administrations = TRUE) #get instrument data and filter by item
  items<-items %>% filter(num_item_id %in% ids)
  
  admin<-as.data.frame(unique(items$data_id))
  n<-nrow(admin) #corpus size in word tokens
  ind <- sample(c(TRUE, FALSE), n, replace=TRUE, prob=c(0.5, 0.5)) #randomly split administrations
  
  adminfirstnum <- admin[ind, ]
  adminsecondnum <- admin[!ind, ] #create two groups of administrations
  
  adminfirst<-items %>% filter(data_id %in% adminfirstnum) #filter items in administrations
  adminsecond<-items %>% filter(data_id %in% adminsecondnum)
  
  aoafirst<- fit_aoa(adminfirst, method = "glmrob", proportion = 0.5) # get aoa for each group
  aoasecond<- fit_aoa(adminsecond, method = "glmrob", proportion = 0.5) # 
  
  r<-cor(aoafirst$aoa, aoasecond$aoa, use="complete.obs", method="kendall") #measure r
  return(r)
}
reliabilities_aoa <- expand_grid(language = c("French (French)","English (American)", "Italian"),
                            word_class = c("all", "nouns","adjectives","verbs",
                                           "function_words","other")) %>% 
  rowwise %>%
  mutate(split_half_aoa = ifelse(word_class == "all", 
                             split_half_cor_aoa(language, ""),
                             split_half_cor_aoa(language, word_class)),
         split_half_aoa_sb = sbformula(split_half_aoa))
## Warning in glmrobMqle(X = X, y = Y, weights = weights, start = start, offset =
## offset, : Algorithm did not converge
## Warning in glmrobMqle(X = X, y = Y, weights = weights, start = start, offset =
## offset, : fitted probabilities numerically 0 or 1 occurred
reliabilities_aoa %>%
  knitr::kable(digits = 2)
language word_class split_half_aoa split_half_aoa_sb
French (French) all 0.88 0.94
French (French) nouns 0.90 0.95
French (French) adjectives 0.88 0.94
French (French) verbs 0.82 0.90
French (French) function_words 0.73 0.84
French (French) other 0.92 0.96
English (American) all 0.97 0.98
English (American) nouns 0.97 0.98
English (American) adjectives 0.96 0.98
English (American) verbs 0.94 0.97
English (American) function_words 0.95 0.98
English (American) other 0.97 0.99
Italian all 0.93 0.96
Italian nouns 0.92 0.96
Italian adjectives 0.91 0.95
Italian verbs 0.89 0.94
Italian function_words 0.92 0.96
Italian other 0.88 0.94

Regression

regression_option1<-function(db){
  db <- db[!is.na(db$log_freq),]
  option1<-lm(aoa~ log_freq, data=db) 
  return(summary(option1)$adj.r.squared)
}

r2 <- expand_grid(lang = c("english", "italian", "french"), 
                            class = c("all", "nouns","adjectives","verbs",
                                           "function_words","other")) %>% 
  rowwise %>%
   mutate(r2 = ifelse(class == "all", 
                             regression_option1(filter(d, 
                                                   language == lang)),
                             regression_option1(filter(d, 
                                                   language == lang, lexical_class == class)))) %>%
  rename( language = lang,lexical_class = class) %>%
  left_join(d)
## Joining, by = c("language", "lexical_class")
r2 %>%
  knitr::kable(digits = 2)
language lexical_class r2 lemma aoa log_freq intercept_freq
english all 0.00 NA NA NA NA
english nouns 0.35 airplane 20 0.01 0.00
english nouns 0.35 alligator 25 0.01 0.00
english nouns 0.35 animal 24 0.04 0.00
english nouns 0.35 ankle 30 0.00 0.00
english nouns 0.35 ant 25 0.01 0.00
english nouns 0.35 apple 18 0.06 0.00
english nouns 0.35 applesauce 25 0.00 0.00
english nouns 0.35 arm 22 0.02 0.00
english nouns 0.35 backyard 27 0.00 0.00
english nouns 0.35 balloon 17 0.03 0.00
english nouns 0.35 basket 25 0.01 0.00
english nouns 0.35 bat 26 0.02 0.00
english nouns 0.35 bathroom 23 0.01 0.00
english nouns 0.35 bathtub 22 0.00 0.00
english nouns 0.35 bear 19 0.10 0.00
english nouns 0.35 bed 20 0.04 0.00
english nouns 0.35 bedroom 25 0.00 0.00
english nouns 0.35 bee 21 0.02 0.00
english nouns 0.35 belt 26 0.00 0.00
english nouns 0.35 bench 30 0.00 0.00
english nouns 0.35 bib 24 0.00 0.00
english nouns 0.35 bicycle 22 0.01 0.00
english nouns 0.35 bird 17 0.06 0.00
english nouns 0.35 blanket 21 0.01 0.00
english nouns 0.35 block 22 0.06 0.00
english nouns 0.35 boat 21 0.02 0.00
english nouns 0.35 boots 22 0.00 0.00
english nouns 0.35 bottle 19 0.03 0.00
english nouns 0.35 bowl 23 0.03 0.00
english nouns 0.35 box 22 0.07 0.00
english nouns 0.35 bread 22 0.01 0.00
english nouns 0.35 broom 24 0.00 0.00
english nouns 0.35 brush 22 0.02 0.00
english nouns 0.35 bucket 26 0.01 0.00
english nouns 0.35 bug 21 0.01 0.00
english nouns 0.35 bunny 20 0.04 0.00
english nouns 0.35 bus 21 0.03 0.00
english nouns 0.35 butter 24 0.01 0.00
english nouns 0.35 butterfly 23 0.02 0.00
english nouns 0.35 button 22 0.02 0.00
english nouns 0.35 cake 22 0.02 0.00
english nouns 0.35 camera 25 0.06 0.00
english nouns 0.35 candy 22 0.01 0.00
english nouns 0.35 car 18 0.13 0.00
english nouns 0.35 cat 18 0.07 0.00
english nouns 0.35 cereal 22 0.01 0.00
english nouns 0.35 chair 21 0.05 0.00
english nouns 0.35 chalk 27 0.00 0.00
english nouns 0.35 cheek 23 0.00 0.00
english nouns 0.35 cheerios 24 0.00 0.00
english nouns 0.35 cheese 18 0.03 0.00
english nouns 0.35 chin 24 0.01 0.00
english nouns 0.35 chocolate 25 0.02 0.00
english nouns 0.35 clock 23 0.01 0.00
english nouns 0.35 closet 26 0.01 0.00
english nouns 0.35 cloud 25 0.01 0.00
english nouns 0.35 coat 23 0.01 0.00
english nouns 0.35 coffee 25 0.01 0.00
english nouns 0.35 coke 28 0.00 0.00
english nouns 0.35 comb 25 0.00 0.00
english nouns 0.35 cookie 18 0.04 0.00
english nouns 0.35 corn 24 0.01 0.00
english nouns 0.35 couch 24 0.01 0.00
english nouns 0.35 cow 20 0.03 0.00
english nouns 0.35 cracker 19 0.01 0.00
english nouns 0.35 crayon 23 0.03 0.00
english nouns 0.35 crib 25 0.01 0.00
english nouns 0.35 cup 20 0.03 0.00
english nouns 0.35 deer 26 0.00 0.00
english nouns 0.35 diaper 19 0.01 0.00
english nouns 0.35 dish 27 0.01 0.00
english nouns 0.35 doll 22 0.01 0.00
english nouns 0.35 donkey 28 0.00 0.00
english nouns 0.35 donut 26 0.00 0.00
english nouns 0.35 door 20 0.04 0.00
english nouns 0.35 drawer 27 0.01 0.00
english nouns 0.35 dryer 28 0.00 0.00
english nouns 0.35 duck 17 0.03 0.00
english nouns 0.35 ear 18 0.03 0.00
english nouns 0.35 egg 22 0.05 0.00
english nouns 0.35 elephant 23 0.03 0.00
english nouns 0.35 eye 17 0.06 0.00
english nouns 0.35 face 24 0.06 0.00
english nouns 0.35 finger 22 0.03 0.00
english nouns 0.35 firetruck 24 0.01 0.00
english nouns 0.35 flag 26 0.00 0.00
english nouns 0.35 flower 21 0.04 0.00
english nouns 0.35 food 23 0.02 0.00
english nouns 0.35 foot 21 0.04 0.00
english nouns 0.35 fork 22 0.01 0.00
english nouns 0.35 frog 22 0.03 0.00
english nouns 0.35 game 26 0.02 0.00
english nouns 0.35 garage 26 0.00 0.00
english nouns 0.35 garbage 26 0.01 0.00
english nouns 0.35 garden 29 0.01 0.00
english nouns 0.35 giraffe 24 0.01 0.00
english nouns 0.35 glass 25 0.02 0.00
english nouns 0.35 glue 29 0.01 0.00
english nouns 0.35 goose 27 0.01 0.00
english nouns 0.35 grass 23 0.00 0.00
english nouns 0.35 gum 27 0.00 0.00
english nouns 0.35 hair 20 0.03 0.00
english nouns 0.35 hamburger 25 0.00 0.00
english nouns 0.35 hammer 26 0.02 0.00
english nouns 0.35 hand 21 0.09 0.00
english nouns 0.35 hat 19 0.08 0.00
english nouns 0.35 head 22 0.06 0.00
english nouns 0.35 helicopter 25 0.01 0.00
english nouns 0.35 hen 29 0.00 0.00
english nouns 0.35 horse 21 0.02 0.00
english nouns 0.35 hose 27 0.00 0.00
english nouns 0.35 ice 23 0.02 0.00
english nouns 0.35 jacket 24 0.00 0.00
english nouns 0.35 jar 29 0.00 0.00
english nouns 0.35 jeans 27 0.00 0.00
english nouns 0.35 jello 28 0.00 0.00
english nouns 0.35 jelly 26 0.01 0.00
english nouns 0.35 juice 17 0.03 0.00
english nouns 0.35 kitchen 24 0.02 0.00
english nouns 0.35 kitty 17 0.03 0.00
english nouns 0.35 knee 22 0.01 0.00
english nouns 0.35 knife 25 0.01 0.00
english nouns 0.35 ladder 27 0.01 0.00
english nouns 0.35 lamb 26 0.01 0.00
english nouns 0.35 lamp 28 0.00 0.00
english nouns 0.35 leg 23 0.02 0.00
english nouns 0.35 light 20 0.04 0.00
english nouns 0.35 lion 23 0.02 0.00
english nouns 0.35 lollipop 27 0.00 0.00
english nouns 0.35 meat 26 0.00 0.00
english nouns 0.35 medicine 24 0.00 0.00
english nouns 0.35 melon 28 0.00 0.00
english nouns 0.35 milk 18 0.03 0.00
english nouns 0.35 money 23 0.01 0.00
english nouns 0.35 monkey 21 0.02 0.00
english nouns 0.35 moon 21 0.04 0.00
english nouns 0.35 moose 29 0.00 0.00
english nouns 0.35 mop 29 0.00 0.00
english nouns 0.35 motorcycle 25 0.00 0.00
english nouns 0.35 mouse 23 0.03 0.00
english nouns 0.35 mouth 20 0.05 0.00
english nouns 0.35 muffin 26 0.00 0.00
english nouns 0.35 nail 28 0.00 0.00
english nouns 0.35 napkin 24 0.01 0.00
english nouns 0.35 necklace 26 0.01 0.00
english nouns 0.35 nose 17 0.05 0.00
english nouns 0.35 nuts 27 0.00 0.00
english nouns 0.35 oven 27 0.00 0.00
english nouns 0.35 owl 24 0.01 0.00
english nouns 0.35 pancake 24 0.00 0.00
english nouns 0.35 paper 23 0.03 0.00
english nouns 0.35 pen 24 0.02 0.00
english nouns 0.35 pencil 25 0.01 0.00
english nouns 0.35 penguin 27 0.00 0.00
english nouns 0.35 penny 26 0.00 0.00
english nouns 0.35 pickle 26 0.00 0.00
english nouns 0.35 picture 24 0.07 0.00
english nouns 0.35 pig 21 0.03 0.00
english nouns 0.35 pillow 22 0.01 0.00
english nouns 0.35 pizza 21 0.01 0.00
english nouns 0.35 plant 26 0.01 0.00
english nouns 0.35 plate 24 0.01 0.00
english nouns 0.35 pony 28 0.00 0.00
english nouns 0.35 pool 24 0.00 0.00
english nouns 0.35 popcorn 24 0.01 0.00
english nouns 0.35 popsicle 25 0.00 0.00
english nouns 0.35 porch 30 0.00 0.00
english nouns 0.35 potato 25 0.03 0.00
english nouns 0.35 potty 21 0.03 0.00
english nouns 0.35 present 25 0.01 0.00
english nouns 0.35 pretzel 26 0.01 0.00
english nouns 0.35 pudding 29 0.00 0.00
english nouns 0.35 pumpkin 25 0.03 0.00
english nouns 0.35 puppy 21 0.05 0.00
english nouns 0.35 purse 25 0.00 0.00
english nouns 0.35 puzzle 24 0.02 0.00
english nouns 0.35 radio 27 0.00 0.00
english nouns 0.35 rain 22 0.01 0.00
english nouns 0.35 raisin 24 0.01 0.00
english nouns 0.35 refrigerator 26 0.01 0.00
english nouns 0.35 rock 22 0.03 0.00
english nouns 0.35 roof 29 0.01 0.00
english nouns 0.35 room 25 0.04 0.00
english nouns 0.35 rooster 27 0.01 0.00
english nouns 0.35 salt 28 0.00 0.00
english nouns 0.35 sandbox 27 0.00 0.00
english nouns 0.35 sandwich 25 0.00 0.00
english nouns 0.35 sauce 28 0.00 0.00
english nouns 0.35 sheep 23 0.02 0.00
english nouns 0.35 shirt 22 0.04 0.00
english nouns 0.35 shoulder 27 0.00 0.00
english nouns 0.35 shovel 26 0.01 0.00
english nouns 0.35 shower 24 0.00 0.00
english nouns 0.35 sidewalk 27 0.00 0.00
english nouns 0.35 sink 25 0.01 0.00
english nouns 0.35 sky 24 0.02 0.00
english nouns 0.35 sled 30 0.00 0.00
english nouns 0.35 slipper 27 0.01 0.00
english nouns 0.35 sneaker 29 0.00 0.00
english nouns 0.35 snow 25 0.03 0.00
english nouns 0.35 snowman 27 0.01 0.00
english nouns 0.35 soap 22 0.00 0.00
english nouns 0.35 sock 21 0.02 0.00
english nouns 0.35 sofa 30 0.00 0.00
english nouns 0.35 soup 25 0.01 0.00
english nouns 0.35 spaghetti 24 0.00 0.00
english nouns 0.35 spoon 20 0.03 0.00
english nouns 0.35 sprinkler 29 0.00 0.00
english nouns 0.35 squirrel 25 0.01 0.00
english nouns 0.35 star 22 0.05 0.00
english nouns 0.35 stick 24 0.06 0.00
english nouns 0.35 stone 30 0.01 0.00
english nouns 0.35 story 25 0.05 0.00
english nouns 0.35 stove 26 0.00 0.00
english nouns 0.35 strawberry 24 0.02 0.00
english nouns 0.35 street 25 0.01 0.00
english nouns 0.35 stroller 25 0.01 0.00
english nouns 0.35 sun 23 0.03 0.00
english nouns 0.35 sweater 24 0.01 0.00
english nouns 0.35 table 23 0.03 0.00
english nouns 0.35 tape 26 0.01 0.00
english nouns 0.35 teddybear 23 0.00 0.00
english nouns 0.35 telephone 21 0.00 0.00
english nouns 0.35 tiger 24 0.01 0.00
english nouns 0.35 toast 23 0.01 0.00
english nouns 0.35 toe 21 0.03 0.00
english nouns 0.35 tongue 23 0.01 0.00
english nouns 0.35 tooth 22 0.02 0.00
english nouns 0.35 toothbrush 22 0.01 0.00
english nouns 0.35 towel 23 0.01 0.00
english nouns 0.35 tractor 25 0.01 0.00
english nouns 0.35 train 21 0.11 0.00
english nouns 0.35 trash 24 0.01 0.00
english nouns 0.35 tree 20 0.07 0.00
english nouns 0.35 tricycle 29 0.00 0.00
english nouns 0.35 truck 19 0.08 0.00
english nouns 0.35 tummy 21 0.01 0.00
english nouns 0.35 tuna 30 0.01 0.00
english nouns 0.35 turkey 26 0.01 0.00
english nouns 0.35 turtle 23 0.02 0.00
english nouns 0.35 vacuum 24 0.00 0.00
english nouns 0.35 wind 26 0.01 0.00
english nouns 0.35 window 25 0.02 0.00
english nouns 0.35 wolf 28 0.00 0.00
english nouns 0.35 yogurt 23 0.00 0.00
english nouns 0.35 zebra 25 0.01 0.00
english nouns 0.35 zipper 25 0.01 0.00
english adjectives 0.04 asleep 25 0.01 0.00
english adjectives 0.04 awake 26 0.00 0.00
english adjectives 0.04 bad 25 0.01 0.00
english adjectives 0.04 big 22 0.21 0.00
english adjectives 0.04 black 26 0.03 0.00
english adjectives 0.04 blue 23 0.13 0.00
english adjectives 0.04 broken 23 0.00 0.00
english adjectives 0.04 brown 27 0.04 0.00
english adjectives 0.04 careful 26 0.07 0.00
english adjectives 0.04 cold 21 0.02 0.00
english adjectives 0.04 cute 27 0.04 0.00
english adjectives 0.04 dark 26 0.02 0.00
english adjectives 0.04 dirty 22 0.04 0.00
english adjectives 0.04 empty 26 0.01 0.00
english adjectives 0.04 fast 26 0.04 0.00
english adjectives 0.04 fine 30 0.01 0.00
english adjectives 0.04 first 28 0.06 0.00
english adjectives 0.04 full 27 0.01 0.00
english adjectives 0.04 gentle 28 0.02 0.00
english adjectives 0.04 good 24 0.30 0.00
english adjectives 0.04 green 24 0.12 0.00
english adjectives 0.04 happy 24 0.04 0.00
english adjectives 0.04 hard 27 0.04 0.00
english adjectives 0.04 heavy 25 0.01 0.00
english adjectives 0.04 high 26 0.02 0.00
english adjectives 0.04 hot 17 0.02 0.00
english adjectives 0.04 hungry 24 0.02 0.00
english adjectives 0.04 hurt 24 0.03 0.00
english adjectives 0.04 long 29 0.04 0.00
english adjectives 0.04 loud 26 0.01 0.00
english adjectives 0.04 mad 28 0.00 0.00
english adjectives 0.04 new 28 0.09 0.00
english adjectives 0.04 nice 25 0.12 0.00
english adjectives 0.04 noisy 28 0.00 0.00
english adjectives 0.04 old 29 0.03 0.00
english adjectives 0.04 pretty 25 0.05 0.00
english adjectives 0.04 quiet 26 0.01 0.00
english adjectives 0.04 red 24 0.11 0.00
english adjectives 0.04 sad 26 0.02 0.00
english adjectives 0.04 scared 26 0.01 0.00
english adjectives 0.04 sick 26 0.01 0.00
english adjectives 0.04 sleepy 25 0.02 0.00
english adjectives 0.04 slow 28 0.01 0.00
english adjectives 0.04 soft 26 0.01 0.00
english adjectives 0.04 sticky 26 0.03 0.00
english adjectives 0.04 stuck 26 0.03 0.00
english adjectives 0.04 thirsty 26 0.01 0.00
english adjectives 0.04 tiny 30 0.01 0.00
english adjectives 0.04 tired 26 0.02 0.00
english adjectives 0.04 wet 22 0.02 0.00
english adjectives 0.04 white 27 0.05 0.00
english adjectives 0.04 windy 27 0.00 0.00
english adjectives 0.04 yellow 24 0.09 0.00
english adjectives 0.04 yucky 22 0.01 0.00
english verbs 0.03 bite 22 0.01 0.00
english verbs 0.03 blow 24 0.02 0.00
english verbs 0.03 break 25 0.06 0.00
english verbs 0.03 bring 27 0.04 0.00
english verbs 0.03 build 27 0.02 0.00
english verbs 0.03 bump 26 0.03 0.00
english verbs 0.03 buy 27 0.02 0.00
english verbs 0.03 carry 25 0.02 0.00
english verbs 0.03 catch 25 0.03 0.00
english verbs 0.03 chase 28 0.00 0.00
english verbs 0.03 clap 23 0.02 0.00
english verbs 0.03 climb 25 0.02 0.00
english verbs 0.03 close 24 0.04 0.00
english verbs 0.03 cook 25 0.01 0.00
english verbs 0.03 cover 27 0.01 0.00
english verbs 0.03 cry 23 0.02 0.00
english verbs 0.03 cut 26 0.02 0.00
english verbs 0.03 dance 23 0.02 0.00
english verbs 0.03 draw 25 0.04 0.00
english verbs 0.03 drive 25 0.02 0.00
english verbs 0.03 drop 26 0.02 0.00
english verbs 0.03 dump 29 0.02 0.00
english verbs 0.03 eat 20 0.12 0.00
english verbs 0.03 fall 23 0.09 0.00
english verbs 0.03 feed 26 0.01 0.00
english verbs 0.03 find 25 0.14 0.00
english verbs 0.03 finish 28 0.02 0.00
english verbs 0.03 fit 28 0.02 0.00
english verbs 0.03 fix 25 0.07 0.00
english verbs 0.03 get 24 0.45 0.01
english verbs 0.03 give 25 0.11 0.00
english verbs 0.03 go 19 0.65 0.02
english verbs 0.03 have 26 0.62 0.01
english verbs 0.03 hear 27 0.04 0.00
english verbs 0.03 help 23 0.11 0.00
english verbs 0.03 hide 25 0.02 0.00
english verbs 0.03 hit 24 0.02 0.00
english verbs 0.03 hold 25 0.06 0.00
english verbs 0.03 hug 22 0.02 0.00
english verbs 0.03 hurry 27 0.01 0.00
english verbs 0.03 jump 23 0.03 0.00
english verbs 0.03 kick 24 0.01 0.00
english verbs 0.03 kiss 21 0.06 0.00
english verbs 0.03 knock 25 0.02 0.00
english verbs 0.03 lick 27 0.00 0.00
english verbs 0.03 like 26 0.52 0.01
english verbs 0.03 listen 28 0.01 0.00
english verbs 0.03 look 24 0.41 0.00
english verbs 0.03 love 23 0.09 0.00
english verbs 0.03 make 26 0.27 0.01
english verbs 0.03 open 22 0.09 0.00
english verbs 0.03 paint 26 0.03 0.00
english verbs 0.03 pick 28 0.07 0.00
english verbs 0.03 play 23 0.14 0.00
english verbs 0.03 pour 28 0.01 0.00
english verbs 0.03 pretend 30 0.02 0.00
english verbs 0.03 pull 26 0.07 0.00
english verbs 0.03 push 24 0.09 0.00
english verbs 0.03 put 26 0.34 0.01
english verbs 0.03 read 22 0.11 0.00
english verbs 0.03 ride 24 0.03 0.00
english verbs 0.03 rip 30 0.00 0.00
english verbs 0.03 run 23 0.04 0.00
english verbs 0.03 say 27 0.40 0.00
english verbs 0.03 see 23 0.50 0.01
english verbs 0.03 shake 27 0.05 0.00
english verbs 0.03 share 26 0.01 0.00
english verbs 0.03 show 27 0.08 0.00
english verbs 0.03 sing 24 0.04 0.00
english verbs 0.03 sit 22 0.11 0.00
english verbs 0.03 skate 30 0.00 0.00
english verbs 0.03 sleep 23 0.05 0.00
english verbs 0.03 smile 27 0.01 0.00
english verbs 0.03 spill 26 0.01 0.00
english verbs 0.03 splash 25 0.01 0.00
english verbs 0.03 stand 26 0.03 0.00
english verbs 0.03 stay 26 0.06 0.00
english verbs 0.03 stop 23 0.06 0.00
english verbs 0.03 sweep 26 0.00 0.00
english verbs 0.03 swim 24 0.02 0.00
english verbs 0.03 take 27 0.16 0.00
english verbs 0.03 talk 26 0.03 0.00
english verbs 0.03 taste 28 0.01 0.00
english verbs 0.03 tear 29 0.01 0.00
english verbs 0.03 think 30 0.27 0.00
english verbs 0.03 throw 24 0.06 0.00
english verbs 0.03 tickle 23 0.05 0.00
english verbs 0.03 touch 26 0.03 0.00
english verbs 0.03 wait 26 0.09 0.00
english verbs 0.03 wake 26 0.01 0.00
english verbs 0.03 walk 22 0.06 0.00
english verbs 0.03 wash 23 0.02 0.00
english verbs 0.03 wipe 26 0.01 0.00
english verbs 0.03 write 27 0.02 0.00
english function_words -0.01 a 27 1.27 0.02
english function_words -0.01 all 27 0.29 0.00
english function_words -0.01 and 27 0.97 0.00
english function_words -0.01 another 28 0.11 0.00
english function_words -0.01 any 29 0.05 0.00
english function_words -0.01 around 29 0.07 0.00
english function_words -0.01 at 28 0.25 0.00
english function_words -0.01 away 27 0.07 0.00
english function_words -0.01 back 26 0.17 0.00
english function_words -0.01 be 30 1.98 0.06
english function_words -0.01 because 30 0.11 0.00
english function_words -0.01 behind 29 0.02 0.00
english function_words -0.01 by 29 0.04 0.00
english function_words -0.01 do 25 1.04 0.02
english function_words -0.01 down 20 0.22 0.01
english function_words -0.01 for 28 0.34 0.00
english function_words -0.01 he 28 0.59 0.01
english function_words -0.01 her 29 0.10 0.00
english function_words -0.01 here 25 0.51 0.02
english function_words -0.01 his 30 0.21 0.00
english function_words -0.01 how 29 0.27 0.01
english function_words -0.01 is 28 0.00 0.00
english function_words -0.01 it 26 1.18 0.04
english function_words -0.01 mine 20 0.02 0.00
english function_words -0.01 more 20 0.16 0.00
english function_words -0.01 my 25 0.24 0.00
english function_words -0.01 myself 30 0.00 0.00
english function_words -0.01 not 27 0.26 0.01
english function_words -0.01 off 22 0.13 0.00
english function_words -0.01 on 22 0.59 0.01
english function_words -0.01 other 28 0.12 0.00
english function_words -0.01 out 22 0.24 0.00
english function_words -0.01 over 27 0.22 0.01
english function_words -0.01 same 30 0.03 0.00
english function_words -0.01 she 29 0.32 -0.01
english function_words -0.01 some 26 0.22 0.00
english function_words -0.01 that 24 1.20 0.02
english function_words -0.01 the 27 1.48 0.03
english function_words -0.01 there 26 0.62 0.01
english function_words -0.01 these 29 0.10 0.00
english function_words -0.01 they 30 0.44 0.00
english function_words -0.01 this 25 0.58 0.02
english function_words -0.01 those 30 0.11 0.00
english function_words -0.01 to 27 0.87 0.01
english function_words -0.01 too 26 0.21 0.00
english function_words -0.01 under 26 0.04 0.00
english function_words -0.01 up 19 0.39 0.01
english function_words -0.01 we 29 0.61 0.01
english function_words -0.01 what 24 0.90 0.02
english function_words -0.01 where 25 0.37 0.01
english function_words -0.01 who 28 0.24 0.00
english function_words -0.01 why 28 0.08 0.00
english function_words -0.01 will 30 0.09 0.00
english function_words -0.01 with 28 0.32 0.00
english function_words -0.01 you 24 1.58 0.05
english function_words -0.01 your 29 0.64 0.01
english other 0.10 after 29 0.05 0.00
english other 0.10 aunt 25 0.01 0.00
english other 0.10 bath 18 0.01 0.00
english other 0.10 beach 26 0.01 0.00
english other 0.10 boy 23 0.09 0.00
english other 0.10 breakfast 24 0.01 0.00
english other 0.10 brother 27 0.01 0.00
english other 0.10 circus 30 0.01 0.00
english other 0.10 clown 27 0.01 0.00
english other 0.10 cockadoodledoo 25 0.00 0.00
english other 0.10 cowboy 30 0.00 0.00
english other 0.10 day 28 0.06 0.00
english other 0.10 dinner 24 0.01 0.00
english other 0.10 doctor 25 0.01 0.00
english other 0.10 farm 28 0.01 0.00
english other 0.10 fireman 28 0.00 0.00
english other 0.10 friend 27 0.04 0.00
english other 0.10 girl 24 0.04 0.00
english other 0.10 hello 18 0.08 0.00
english other 0.10 home 22 0.04 0.00
english other 0.10 house 23 0.07 0.00
english other 0.10 lady 27 0.01 0.00
english other 0.10 later 28 0.03 0.00
english other 0.10 lunch 24 0.01 0.00
english other 0.10 mailman 28 0.00 0.00
english other 0.10 man 25 0.03 0.00
english other 0.10 morning 27 0.03 0.00
english other 0.10 movie 27 0.01 0.00
english other 0.10 nap 23 0.01 0.00
english other 0.10 night 24 0.04 0.00
english other 0.10 now 25 0.24 0.01
english other 0.10 ouch 17 0.01 0.00
english other 0.10 outside 20 0.03 0.00
english other 0.10 park 23 0.01 0.00
english other 0.10 party 26 0.01 0.00
english other 0.10 pattycake 25 0.00 0.00
english other 0.10 peekaboo 19 0.01 0.00
english other 0.10 people 27 0.03 0.00
english other 0.10 picnic 28 0.01 0.00
english other 0.10 playground 28 0.00 0.00
english other 0.10 please 19 0.12 0.00
english other 0.10 police 28 0.02 0.00
english other 0.10 school 23 0.04 0.00
english other 0.10 shopping 26 0.00 0.00
english other 0.10 sister 27 0.01 0.00
english other 0.10 snack 24 0.01 0.00
english other 0.10 store 24 0.02 0.00
english other 0.10 teacher 28 0.01 0.00
english other 0.10 today 29 0.06 0.00
english other 0.10 tomorrow 29 0.01 0.00
english other 0.10 tonight 30 0.01 0.00
english other 0.10 uncle 26 0.01 0.00
english other 0.10 yard 27 0.00 0.00
english other 0.10 yes 18 0.17 0.00
english other 0.10 zoo 26 0.02 0.00
italian all 0.00 NA NA NA NA
italian nouns 0.17 aereo 22 0.01 0.00
italian nouns 0.17 agnello 36 0.01 0.00
italian nouns 0.17 albero 23 0.03 0.00
italian nouns 0.17 altalena 25 0.04 0.00
italian nouns 0.17 animale 27 0.07 0.00
italian nouns 0.17 ape 25 0.01 0.00
italian nouns 0.17 armadio 27 0.01 0.00
italian nouns 0.17 asciugamano 26 0.02 0.00
italian nouns 0.17 asino 29 0.01 0.00
italian nouns 0.17 automobile 24 0.00 0.00
italian nouns 0.17 bagno 22 0.01 0.00
italian nouns 0.17 bambola 22 0.10 0.00
italian nouns 0.17 banana 20 0.01 0.00
italian nouns 0.17 bandiera 30 0.00 0.00
italian nouns 0.17 barca 24 0.02 0.00
italian nouns 0.17 bavaglino 23 0.00 0.00
italian nouns 0.17 benzina 30 0.01 0.00
italian nouns 0.17 biberon 21 0.01 0.00
italian nouns 0.17 bicchiere 22 0.05 0.00
italian nouns 0.17 bicicletta 22 0.04 0.00
italian nouns 0.17 bocca 20 0.06 0.00
italian nouns 0.17 borsa 23 0.05 0.00
italian nouns 0.17 bottiglia 24 0.01 0.00
italian nouns 0.17 bottone 25 0.02 0.00
italian nouns 0.17 braccio 24 0.04 0.00
italian nouns 0.17 budino 33 0.01 0.00
italian nouns 0.17 burro 30 0.00 0.00
italian nouns 0.17 camera 25 0.03 0.00
italian nouns 0.17 camicia 25 0.01 0.00
italian nouns 0.17 camion 24 0.03 0.00
italian nouns 0.17 camomilla 28 0.04 0.00
italian nouns 0.17 cane 20 0.08 0.00
italian nouns 0.17 cappello 22 0.02 0.00
italian nouns 0.17 capra 30 0.02 0.00
italian nouns 0.17 caramella 20 0.02 0.00
italian nouns 0.17 carne 19 0.02 0.00
italian nouns 0.17 casetta 24 0.02 0.00
italian nouns 0.17 cassetto 26 0.01 0.00
italian nouns 0.17 cavallo 21 0.12 0.00
italian nouns 0.17 chiave 21 0.07 0.00
italian nouns 0.17 cielo 24 0.02 0.00
italian nouns 0.17 cioccolata 24 0.06 0.00
italian nouns 0.17 coccodrillo 26 0.03 0.00
italian nouns 0.17 collana 25 0.01 0.00
italian nouns 0.17 coltello 23 0.02 0.00
italian nouns 0.17 coniglio 26 0.02 0.00
italian nouns 0.17 coperchio 29 0.03 0.00
italian nouns 0.17 cracker 25 0.02 0.00
italian nouns 0.17 cucchiaio 21 0.04 0.00
italian nouns 0.17 cucciolo 29 0.04 0.00
italian nouns 0.17 cuscino 24 0.01 0.00
italian nouns 0.17 dentifricio 26 0.03 0.00
italian nouns 0.17 disegno 27 0.02 0.00
italian nouns 0.17 dito 21 0.05 0.00
italian nouns 0.17 divano 25 0.03 0.00
italian nouns 0.17 elefante 24 0.02 0.00
italian nouns 0.17 elicottero 26 0.01 0.00
italian nouns 0.17 erba 25 0.01 0.00
italian nouns 0.17 faccia 25 0.00 0.00
italian nouns 0.17 farfalla 24 0.01 0.00
italian nouns 0.17 fazzoletto 26 0.01 0.00
italian nouns 0.17 finestra 25 0.02 0.00
italian nouns 0.17 fiore 22 0.03 0.00
italian nouns 0.17 foca 29 0.01 0.00
italian nouns 0.17 foglia 25 0.01 0.00
italian nouns 0.17 fon 25 0.00 0.00
italian nouns 0.17 forchetta 22 0.02 0.00
italian nouns 0.17 formaggio 22 0.02 0.00
italian nouns 0.17 forno 26 0.04 0.00
italian nouns 0.17 fotografia 27 0.02 0.00
italian nouns 0.17 fragola 27 0.02 0.00
italian nouns 0.17 frigorifero 26 0.03 0.00
italian nouns 0.17 fumo 26 0.01 0.00
italian nouns 0.17 gallina 24 0.06 0.00
italian nouns 0.17 gallo 25 0.01 0.00
italian nouns 0.17 garage 29 0.01 0.00
italian nouns 0.17 gatto 20 0.08 0.00
italian nouns 0.17 giacca 26 0.00 0.00
italian nouns 0.17 giocattolo 25 0.04 0.00
italian nouns 0.17 giornale 26 0.03 0.00
italian nouns 0.17 giraffa 26 0.04 0.00
italian nouns 0.17 gola 27 0.02 -0.01
italian nouns 0.17 grembiule 33 0.01 0.00
italian nouns 0.17 gru 30 0.00 0.00
italian nouns 0.17 ippopotamo 29 0.02 0.00
italian nouns 0.17 lavandino 27 0.01 0.00
italian nouns 0.17 lavatrice 26 0.00 0.00
italian nouns 0.17 leone 24 0.05 0.00
italian nouns 0.17 letto 21 0.00 0.00
italian nouns 0.17 libro 22 0.02 0.00
italian nouns 0.17 lingua 24 0.01 0.00
italian nouns 0.17 luce 20 0.00 0.00
italian nouns 0.17 lupo 23 0.06 0.00
italian nouns 0.17 maglione 27 0.02 0.00
italian nouns 0.17 maiale 26 0.03 0.00
italian nouns 0.17 mano 19 0.11 0.00
italian nouns 0.17 marmellata 28 0.04 0.00
italian nouns 0.17 martello 27 0.00 0.00
italian nouns 0.17 medicina 26 0.04 0.00
italian nouns 0.17 mela 19 0.02 0.00
italian nouns 0.17 melone 31 0.00 0.00
italian nouns 0.17 miele 28 0.03 0.00
italian nouns 0.17 mosca 25 0.04 0.00
italian nouns 0.17 motocicletta 26 0.00 0.00
italian nouns 0.17 mucca 22 0.09 0.00
italian nouns 0.17 muro 26 0.01 0.00
italian nouns 0.17 naso 20 0.03 0.00
italian nouns 0.17 nebbia 34 0.00 0.00
italian nouns 0.17 neve 26 0.04 0.00
italian nouns 0.17 oca 27 0.02 0.00
italian nouns 0.17 occhio 20 0.06 0.00
italian nouns 0.17 ombrello 24 0.01 0.00
italian nouns 0.17 orecchio 22 0.02 0.00
italian nouns 0.17 orso 24 0.02 0.00
italian nouns 0.17 paletta 25 0.01 0.00
italian nouns 0.17 palloncino 25 0.06 0.00
italian nouns 0.17 pancia 21 0.04 0.00
italian nouns 0.17 panino 28 0.03 0.00
italian nouns 0.17 panna 30 0.00 0.00
italian nouns 0.17 pannolino 22 0.02 0.00
italian nouns 0.17 papera 26 0.05 0.00
italian nouns 0.17 pasta 21 0.02 0.00
italian nouns 0.17 pecora 24 0.05 0.00
italian nouns 0.17 pentola 27 0.04 0.00
italian nouns 0.17 pera 21 0.01 0.00
italian nouns 0.17 pesca 28 0.00 0.00
italian nouns 0.17 pesciolino 22 0.03 0.00
italian nouns 0.17 pettine 24 0.02 0.00
italian nouns 0.17 piatto 22 0.07 0.00
italian nouns 0.17 piede 20 0.07 0.00
italian nouns 0.17 pigiama 24 0.02 0.00
italian nouns 0.17 pinguino 30 0.01 0.00
italian nouns 0.17 pioggia 24 0.05 0.00
italian nouns 0.17 piscina 27 0.01 0.00
italian nouns 0.17 pistola 27 0.03 0.00
italian nouns 0.17 pizza 20 0.19 0.00
italian nouns 0.17 pollo 22 0.01 0.00
italian nouns 0.17 poltrona 30 0.02 0.00
italian nouns 0.17 prato 28 0.01 0.00
italian nouns 0.17 pulcino 26 0.02 0.00
italian nouns 0.17 rana 26 0.02 0.00
italian nouns 0.17 registratore 33 0.02 0.00
italian nouns 0.17 sacchetto 32 0.02 0.00
italian nouns 0.17 salotto 32 0.01 0.00
italian nouns 0.17 sapone 23 0.03 0.00
italian nouns 0.17 sasso 23 0.02 0.00
italian nouns 0.17 scala 24 0.02 0.00
italian nouns 0.17 scatola 27 0.01 0.00
italian nouns 0.17 sciarpa 27 0.01 0.00
italian nouns 0.17 scimmia 26 0.04 0.00
italian nouns 0.17 scivolo 25 0.02 0.00
italian nouns 0.17 scoiattolo 31 0.01 0.00
italian nouns 0.17 secchiello 26 0.02 0.00
italian nouns 0.17 secchio 28 0.01 0.00
italian nouns 0.17 sederino 23 0.01 0.00
italian nouns 0.17 sedia 22 0.02 0.00
italian nouns 0.17 seggiolone 26 0.02 0.00
italian nouns 0.17 seno 26 0.00 0.00
italian nouns 0.17 shampoo 30 0.02 0.00
italian nouns 0.17 spalla 29 0.01 0.00
italian nouns 0.17 spinaci 31 0.00 0.00
italian nouns 0.17 stella 24 0.00 0.00
italian nouns 0.17 straccio 30 0.00 0.00
italian nouns 0.17 strada 26 0.02 0.00
italian nouns 0.17 sugo 27 0.00 0.00
italian nouns 0.17 tacchino 32 0.01 0.00
italian nouns 0.17 tappeto 28 0.03 0.00
italian nouns 0.17 tappo 23 0.02 0.00
italian nouns 0.17 tartaruga 25 0.03 0.00
italian nouns 0.17 tavolo 24 0.04 0.00
italian nouns 0.17 tazza 25 0.02 0.00
italian nouns 0.17 telefono 22 0.02 0.00
italian nouns 0.17 termometro 28 0.01 0.00
italian nouns 0.17 termosifone 30 0.00 0.00
italian nouns 0.17 terra 24 0.06 0.00
italian nouns 0.17 testa 22 0.00 0.00
italian nouns 0.17 tetto 28 0.01 0.00
italian nouns 0.17 tigre 27 0.02 0.00
italian nouns 0.17 topo 25 0.03 0.00
italian nouns 0.17 torre 29 0.05 0.00
italian nouns 0.17 trattore 26 0.03 0.00
italian nouns 0.17 treno 22 0.09 0.00
italian nouns 0.17 tromba 29 0.01 0.00
italian nouns 0.17 trottola 30 0.01 0.00
italian nouns 0.17 tubo 30 0.00 0.00
italian nouns 0.17 tuta 25 0.02 0.00
italian nouns 0.17 uccellino 24 0.02 0.00
italian nouns 0.17 uovo 21 0.02 0.00
italian nouns 0.17 uva 22 0.01 0.00
italian nouns 0.17 vasino 26 0.01 0.00
italian nouns 0.17 vento 25 0.02 0.00
italian nouns 0.17 verdura 31 0.01 0.00
italian nouns 0.17 vestito 26 0.02 0.00
italian nouns 0.17 vino 24 0.02 0.00
italian nouns 0.17 yogurt 24 0.01 0.00
italian nouns 0.17 zanzara 26 0.01 0.00
italian nouns 0.17 zebra 29 0.02 0.00
italian adjectives 0.20 addormentato 29 0.01 0.00
italian adjectives 0.20 alto 25 0.03 0.00
italian adjectives 0.20 amaro 31 0.02 0.00
italian adjectives 0.20 arancione 30 0.04 0.00
italian adjectives 0.20 arrabbiato 27 0.01 0.00
italian adjectives 0.20 asciutto 27 0.01 0.00
italian adjectives 0.20 attento 29 0.06 0.00
italian adjectives 0.20 bagnato 24 0.03 0.00
italian adjectives 0.20 bello 20 0.22 0.00
italian adjectives 0.20 bianco 26 0.05 0.00
italian adjectives 0.20 blu 25 0.03 0.00
italian adjectives 0.20 brutto 21 0.04 0.00
italian adjectives 0.20 buio 22 0.02 0.00
italian adjectives 0.20 buono 22 0.07 0.00
italian adjectives 0.20 caldo 22 0.02 0.00
italian adjectives 0.20 carino 31 0.01 0.00
italian adjectives 0.20 cattivo 24 0.04 0.00
italian adjectives 0.20 contento 32 0.02 0.00
italian adjectives 0.20 corto 32 0.01 0.00
italian adjectives 0.20 dolce 27 0.02 0.00
italian adjectives 0.20 duro 28 0.01 0.00
italian adjectives 0.20 felice 32 0.01 0.00
italian adjectives 0.20 ferito 34 0.00 0.00
italian adjectives 0.20 finito 26 0.03 0.00
italian adjectives 0.20 forte 28 0.06 0.00
italian adjectives 0.20 freddo 23 0.01 0.00
italian adjectives 0.20 gentile 34 0.01 0.00
italian adjectives 0.20 giallo 25 0.06 0.00
italian adjectives 0.20 leggero 33 0.02 0.00
italian adjectives 0.20 lungo 28 0.06 0.00
italian adjectives 0.20 malato 28 0.03 0.00
italian adjectives 0.20 marrone 31 0.03 0.00
italian adjectives 0.20 morbido 30 0.03 0.00
italian adjectives 0.20 nero 28 0.05 0.00
italian adjectives 0.20 nuovo 28 0.05 0.00
italian adjectives 0.20 piano 26 0.01 0.00
italian adjectives 0.20 piccolo 23 0.08 0.00
italian adjectives 0.20 pieno 29 0.02 0.00
italian adjectives 0.20 povero 33 0.04 0.00
italian adjectives 0.20 pulito 25 0.01 0.00
italian adjectives 0.20 rosso 24 0.08 0.00
italian adjectives 0.20 rotto 21 0.05 0.00
italian adjectives 0.20 sbagliato 31 0.00 0.00
italian adjectives 0.20 spaventato 33 0.01 0.00
italian adjectives 0.20 sporco 22 0.02 0.00
italian adjectives 0.20 stanco 26 0.02 0.00
italian adjectives 0.20 sveglio 28 0.03 0.00
italian adjectives 0.20 ultimo 34 0.00 0.00
italian adjectives 0.20 vecchio 31 0.02 0.00
italian adjectives 0.20 verde 26 0.04 0.00
italian adjectives 0.20 vuoto 28 0.01 0.00
italian verbs 0.06 abbracciare 27 0.01 0.00
italian verbs 0.06 accendere 26 0.07 0.00
italian verbs 0.06 acchiappare 31 0.01 0.00
italian verbs 0.06 aggiustare 28 0.01 0.00
italian verbs 0.06 aiutare 25 0.07 0.00
italian verbs 0.06 alzarsi 26 0.02 0.00
italian verbs 0.06 andare 23 0.56 0.01
italian verbs 0.06 aprire 20 0.16 0.00
italian verbs 0.06 arrampicarsi 33 0.00 0.00
italian verbs 0.06 asciugare 25 0.02 0.00
italian verbs 0.06 aspettare 25 0.13 0.00
italian verbs 0.06 baciare 25 0.04 0.00
italian verbs 0.06 ballare 25 0.02 0.00
italian verbs 0.06 bere 22 0.07 0.00
italian verbs 0.06 bussare 28 0.02 0.00
italian verbs 0.06 buttare 25 0.05 0.00
italian verbs 0.06 cadere 23 0.07 0.00
italian verbs 0.06 camminare 26 0.03 0.00
italian verbs 0.06 cantare 25 0.06 0.00
italian verbs 0.06 cercare 28 0.07 0.00
italian verbs 0.06 chiudere 23 0.09 0.00
italian verbs 0.06 colorare 27 0.01 0.00
italian verbs 0.06 comprare 27 0.05 0.00
italian verbs 0.06 conoscere 32 0.05 0.00
italian verbs 0.06 coprire 27 0.01 0.00
italian verbs 0.06 correre 24 0.04 0.00
italian verbs 0.06 costruire 30 0.02 0.00
italian verbs 0.06 cucinare 28 0.02 0.00
italian verbs 0.06 cullare 32 0.01 0.00
italian verbs 0.06 dare 24 0.48 0.01
italian verbs 0.06 dire 27 0.40 0.01
italian verbs 0.06 disegnare 27 0.07 0.00
italian verbs 0.06 dondolare 31 0.01 0.00
italian verbs 0.06 dormire 24 0.07 0.00
italian verbs 0.06 entrare 27 0.04 0.00
italian verbs 0.06 fare 26 1.29 0.03
italian verbs 0.06 fermarsi 29 0.00 0.00
italian verbs 0.06 finire 28 0.07 0.00
italian verbs 0.06 giocare 24 0.22 0.00
italian verbs 0.06 girare 27 0.09 0.00
italian verbs 0.06 guardare 26 0.74 0.01
italian verbs 0.06 guidare 28 0.02 0.00
italian verbs 0.06 lanciare 32 0.01 0.00
italian verbs 0.06 lavare 24 0.08 0.00
italian verbs 0.06 lavorare 27 0.04 0.00
italian verbs 0.06 leccare 29 0.02 0.00
italian verbs 0.06 leggere 25 0.09 0.00
italian verbs 0.06 litigare 32 0.01 0.00
italian verbs 0.06 mangiare 23 0.36 0.01
italian verbs 0.06 mettere 26 0.56 0.01
italian verbs 0.06 mordere 29 0.03 0.00
italian verbs 0.06 nuotare 29 0.01 0.00
italian verbs 0.06 parlare 27 0.06 0.00
italian verbs 0.06 passeggiare 31 0.01 0.00
italian verbs 0.06 pettinare 26 0.02 0.00
italian verbs 0.06 piacere 30 0.15 0.00
italian verbs 0.06 piangere 24 0.08 0.00
italian verbs 0.06 portare 27 0.09 0.00
italian verbs 0.06 prendere 25 0.26 0.00
italian verbs 0.06 provare 32 0.05 0.00
italian verbs 0.06 pulire 25 0.03 0.00
italian verbs 0.06 raccontare 29 0.03 0.00
italian verbs 0.06 regalare 29 0.03 0.00
italian verbs 0.06 restare 32 0.01 0.00
italian verbs 0.06 ridere 27 0.02 0.00
italian verbs 0.06 rispondere 30 0.02 0.00
italian verbs 0.06 rompere 26 0.12 0.00
italian verbs 0.06 rovesciare 34 0.02 0.00
italian verbs 0.06 saltare 26 0.03 0.00
italian verbs 0.06 salutare 27 0.02 0.00
italian verbs 0.06 scappare 29 0.06 0.00
italian verbs 0.06 scendere 25 0.03 0.00
italian verbs 0.06 scrivere 25 0.06 0.00
italian verbs 0.06 sedersi 25 0.02 0.00
italian verbs 0.06 sentire 28 0.22 0.00
italian verbs 0.06 soffiare 27 0.03 0.00
italian verbs 0.06 spazzare 32 0.02 0.00
italian verbs 0.06 spegnere 26 0.01 0.00
italian verbs 0.06 spingere 28 0.02 0.00
italian verbs 0.06 sporcarsi 27 0.02 0.00
italian verbs 0.06 sputare 30 0.02 0.00
italian verbs 0.06 stare 29 0.44 0.01
italian verbs 0.06 strappare 31 0.01 0.00
italian verbs 0.06 svegliarsi 28 0.00 0.00
italian verbs 0.06 tagliare 27 0.03 0.00
italian verbs 0.06 telefonare 26 0.05 0.00
italian verbs 0.06 tenere 28 0.17 0.00
italian verbs 0.06 tirare 27 0.08 0.00
italian verbs 0.06 toccare 27 0.04 0.00
italian verbs 0.06 trovare 29 0.09 0.00
italian verbs 0.06 uscire 25 0.04 0.00
italian verbs 0.06 vedere 26 0.61 0.01
italian verbs 0.06 venire 26 0.37 0.00
italian verbs 0.06 versare 33 0.02 0.00
italian verbs 0.06 volare 27 0.03 0.00
italian function_words -0.02 a 26 0.96 0.02
italian function_words -0.02 che 30 1.04 0.02
italian function_words -0.02 chi 27 0.53 0.01
italian function_words -0.02 ci 33 0.59 0.01
italian function_words -0.02 come 31 0.70 0.01
italian function_words -0.02 con 28 0.42 0.00
italian function_words -0.02 così 29 0.30 0.00
italian function_words -0.02 da 27 0.24 0.00
italian function_words -0.02 davanti 30 0.02 0.00
italian function_words -0.02 dentro 27 0.21 0.00
italian function_words -0.02 di 25 0.63 0.01
italian function_words -0.02 dietro 29 0.03 0.00
italian function_words -0.02 dove 27 0.47 0.01
italian function_words -0.02 e 26 1.11 0.02
italian function_words -0.02 ecco 23 0.30 0.00
italian function_words -0.02 fuori 25 0.10 0.00
italian function_words -0.02 giù 23 0.08 0.00
italian function_words -0.02 il 28 1.70 0.05
italian function_words -0.02 in 31 0.37 0.00
italian function_words -0.02 io 21 0.34 0.00
italian function_words -0.02 la 26 1.51 0.04
italian function_words -0.02 lei 32 0.09 0.00
italian function_words -0.02 lo 29 0.08 0.00
italian function_words -0.02 lontano 29 0.01 0.00
italian function_words -0.02 loro 35 0.07 0.00
italian function_words -0.02 lui 30 0.11 0.00
italian function_words -0.02 ma 31 0.67 0.01
italian function_words -0.02 molto 30 0.20 0.00
italian function_words -0.02 nessuno 30 0.01 0.00
italian function_words -0.02 niente 27 0.08 0.00
italian function_words -0.02 noi 31 0.04 0.00
italian function_words -0.02 per 30 0.30 0.00
italian function_words -0.02 poco 24 0.03 0.00
italian function_words -0.02 quale 31 0.11 0.00
italian function_words -0.02 quando 31 0.19 0.00
italian function_words -0.02 se 34 0.30 0.00
italian function_words -0.02 si 29 0.85 0.01
italian function_words -0.02 sopra 26 0.07 0.00
italian function_words -0.02 sotto 25 0.07 0.00
italian function_words -0.02 su 26 0.18 0.00
italian function_words -0.02 tanto 24 0.08 0.00
italian function_words -0.02 troppo 31 0.06 0.00
italian function_words -0.02 tu 24 0.20 0.00
italian function_words -0.02 tutto 25 0.49 0.01
italian function_words -0.02 vicino 29 0.04 0.00
italian other 0.41 asilo 24 0.02 0.00
italian other 0.41 bar 29 0.03 0.00
italian other 0.41 bosco 29 0.01 0.00
italian other 0.41 bravo 21 0.19 0.00
italian other 0.41 campagna 32 0.02 0.00
italian other 0.41 casa 21 0.12 0.00
italian other 0.41 chiesa 30 0.01 0.00
italian other 0.41 città 32 0.02 0.00
italian other 0.41 coccodè 21 0.01 0.00
italian other 0.41 domani 26 0.03 0.00
italian other 0.41 donna 33 0.01 0.00
italian other 0.41 dottore 24 0.03 0.00
italian other 0.41 festa 27 0.01 0.00
italian other 0.41 fratello 31 0.01 0.00
italian other 0.41 giardino 27 0.02 0.00
italian other 0.41 giorno 29 0.03 0.00
italian other 0.41 giostra 26 0.00 0.00
italian other 0.41 ieri 31 0.04 0.00
italian other 0.41 lavoro 25 0.01 0.00
italian other 0.41 mare 21 0.09 0.00
italian other 0.41 mattina 30 0.02 0.00
italian other 0.41 mercato 30 0.01 0.00
italian other 0.41 montagna 29 0.03 0.00
italian other 0.41 negozio 29 0.00 0.00
italian other 0.41 notte 26 0.01 0.00
italian other 0.41 oggi 29 0.05 0.00
italian other 0.41 ospedale 31 0.00 0.00
italian other 0.41 poliziotto 31 0.01 0.00
italian other 0.41 presto 30 0.01 0.00
italian other 0.41 scuola 24 0.06 0.00
italian other 0.41 sera 30 0.02 0.00
italian other 0.41 soldato 36 0.02 0.00
italian other 0.41 sorella 32 0.01 0.00
italian other 0.41 spiaggia 29 0.01 0.00
italian other 0.41 supermercato 30 0.00 0.00
italian other 0.41 uomo 31 0.01 0.00
italian other 0.41 via 19 0.27 0.00
italian other 0.41 vigile 31 0.01 0.00
italian other 0.41 zio 19 0.08 0.00
italian other 0.41 zoo 32 0.02 0.00
french all 0.00 NA NA NA NA
french nouns 0.33 abeille 28 0.01 0.00
french nouns 0.33 âne 30 0.01 0.00
french nouns 0.33 arbre 26 0.01 0.00
french nouns 0.33 arrosoir 27 0.00 0.00
french nouns 0.33 aspirateur 26 0.00 0.00
french nouns 0.33 assiette 24 0.01 0.00
french nouns 0.33 avion 22 0.02 0.00
french nouns 0.33 baignoire 26 0.01 0.00
french nouns 0.33 balai 25 0.01 0.00
french nouns 0.33 balançoire 26 0.00 0.00
french nouns 0.33 balle 23 0.02 0.00
french nouns 0.33 ballon 20 0.04 0.00
french nouns 0.33 banane 22 0.02 0.00
french nouns 0.33 basket 29 0.01 0.00
french nouns 0.33 bateau 22 0.03 0.00
french nouns 0.33 beurre 25 0.01 0.00
french nouns 0.33 biberon 22 0.02 0.00
french nouns 0.33 body 27 0.00 0.00
french nouns 0.33 boîte 26 0.02 0.00
french nouns 0.33 bol 26 0.00 0.00
french nouns 0.33 bouche 23 0.05 0.00
french nouns 0.33 bouteille 26 0.01 0.00
french nouns 0.33 bras 24 0.03 0.00
french nouns 0.33 brosse 27 0.01 0.00
french nouns 0.33 bus 29 0.00 0.00
french nouns 0.33 cadeau 24 0.03 0.00
french nouns 0.33 café 25 0.01 0.00
french nouns 0.33 caillou 24 0.00 0.00
french nouns 0.33 camion 23 0.02 0.00
french nouns 0.33 canapé 26 0.01 0.00
french nouns 0.33 canard 22 0.02 0.00
french nouns 0.33 cassette 26 0.01 0.00
french nouns 0.33 chaise 23 0.02 0.00
french nouns 0.33 chambre 25 0.04 0.00
french nouns 0.33 chapeau 21 0.02 0.00
french nouns 0.33 chat 19 0.04 0.00
french nouns 0.33 chaussure 19 0.03 0.00
french nouns 0.33 chemise 28 0.00 0.00
french nouns 0.33 cheval 23 0.04 0.00
french nouns 0.33 chèvre 29 0.00 0.00
french nouns 0.33 chien 20 0.05 0.00
french nouns 0.33 chips 29 0.00 0.00
french nouns 0.33 chocolat 22 0.03 0.00
french nouns 0.33 ciel 27 0.01 0.00
french nouns 0.33 coca 30 0.00 0.00
french nouns 0.33 cochon 23 0.03 0.00
french nouns 0.33 collier 28 0.01 0.00
french nouns 0.33 compote 25 0.03 0.00
french nouns 0.33 confiture 28 0.00 0.00
french nouns 0.33 coq 26 0.01 0.00
french nouns 0.33 couche 21 0.02 0.00
french nouns 0.33 couteau 24 0.01 0.00
french nouns 0.33 couverture 27 0.01 0.00
french nouns 0.33 crayon 23 0.01 0.00
french nouns 0.33 crêpe 29 0.01 0.00
french nouns 0.33 crocodile 26 0.02 0.00
french nouns 0.33 cube 30 0.02 0.00
french nouns 0.33 cuillère 22 0.02 0.00
french nouns 0.33 cuisine 25 0.02 0.00
french nouns 0.33 dent 23 0.03 0.00
french nouns 0.33 doigt 24 0.04 0.00
french nouns 0.33 douche 25 0.01 0.00
french nouns 0.33 eau 21 0.09 0.00
french nouns 0.33 écharpe 28 0.00 0.00
french nouns 0.33 échelle 29 0.00 0.00
french nouns 0.33 écureuil 29 0.01 0.00
french nouns 0.33 éléphant 24 0.02 0.00
french nouns 0.33 escalier 26 0.01 0.00
french nouns 0.33 étoile 26 0.01 0.00
french nouns 0.33 fauteuil 28 0.01 0.00
french nouns 0.33 fenêtre 27 0.01 0.00
french nouns 0.33 feuille 27 0.03 0.00
french nouns 0.33 feutre 30 0.01 0.00
french nouns 0.33 fleur 22 0.03 0.00
french nouns 0.33 four 28 0.01 0.00
french nouns 0.33 fourchette 23 0.01 0.00
french nouns 0.33 fourmi 27 0.01 0.00
french nouns 0.33 fraise 26 0.01 0.00
french nouns 0.33 frigo 27 0.01 0.00
french nouns 0.33 fromage 24 0.01 0.00
french nouns 0.33 garage 27 0.02 0.00
french nouns 0.33 gâteau 19 0.05 0.00
french nouns 0.33 genou 26 0.01 0.00
french nouns 0.33 girafe 25 0.02 0.00
french nouns 0.33 glace 26 0.01 0.00
french nouns 0.33 glaçon 30 0.00 0.00
french nouns 0.33 grenouille 26 0.02 0.00
french nouns 0.33 haricot 27 0.00 0.00
french nouns 0.33 hélicoptère 28 0.01 0.00
french nouns 0.33 herbe 27 0.01 0.00
french nouns 0.33 hibou 29 0.01 0.00
french nouns 0.33 histoire 27 0.04 0.00
french nouns 0.33 jambe 25 0.01 0.00
french nouns 0.33 jardin 27 0.01 0.00
french nouns 0.33 jeu 28 0.04 0.00
french nouns 0.33 joue 25 0.06 0.00
french nouns 0.33 jouet 25 0.02 0.00
french nouns 0.33 lait 22 0.02 0.00
french nouns 0.33 lampe 28 0.01 0.00
french nouns 0.33 langue 26 0.01 0.00
french nouns 0.33 lapin 21 0.05 0.00
french nouns 0.33 lavabo 29 0.00 0.00
french nouns 0.33 lèvre 30 0.00 0.00
french nouns 0.33 lion 25 0.02 0.00
french nouns 0.33 lit 22 0.04 0.00
french nouns 0.33 livre 23 0.08 0.00
french nouns 0.33 loup 25 0.03 0.00
french nouns 0.33 lumière 24 0.01 0.00
french nouns 0.33 lune 24 0.01 0.00
french nouns 0.33 main 21 0.09 0.00
french nouns 0.33 manteau 25 0.01 0.00
french nouns 0.33 marteau 28 0.01 0.00
french nouns 0.33 melon 30 0.00 0.00
french nouns 0.33 menton 28 0.00 0.00
french nouns 0.33 montre 27 0.08 0.00
french nouns 0.33 moto 22 0.01 0.00
french nouns 0.33 mouchoir 25 0.01 0.00
french nouns 0.33 mouton 24 0.02 0.00
french nouns 0.33 musique 24 0.02 0.00
french nouns 0.33 neige 25 0.01 0.00
french nouns 0.33 nez 20 0.05 0.00
french nouns 0.33 nombril 29 0.00 0.00
french nouns 0.33 nounours 22 0.01 0.00
french nouns 0.33 nuage 26 0.01 0.00
french nouns 0.33 œuf 26 0.02 0.00
french nouns 0.33 oiseau 21 0.03 0.00
french nouns 0.33 orange 26 0.02 0.00
french nouns 0.33 oreille 22 0.03 0.00
french nouns 0.33 oreiller 30 0.00 0.00
french nouns 0.33 ours 25 0.03 0.00
french nouns 0.33 pain 18 0.02 0.00
french nouns 0.33 panier 29 0.01 0.00
french nouns 0.33 pantalon 23 0.02 0.00
french nouns 0.33 papier 25 0.01 0.00
french nouns 0.33 papillon 25 0.02 0.00
french nouns 0.33 peigne 27 0.00 0.00
french nouns 0.33 pelle 26 0.01 0.00
french nouns 0.33 photo 24 0.02 0.00
french nouns 0.33 pied 21 0.08 0.00
french nouns 0.33 pierre 29 0.01 0.00
french nouns 0.33 piscine 25 0.01 0.00
french nouns 0.33 pizza 28 0.00 0.00
french nouns 0.33 pluie 24 0.01 0.00
french nouns 0.33 poisson 22 0.06 0.00
french nouns 0.33 pomme 21 0.03 0.00
french nouns 0.33 porte 22 0.03 0.00
french nouns 0.33 pot 22 0.02 0.00
french nouns 0.33 poubelle 24 0.02 0.00
french nouns 0.33 pouce 26 0.01 0.00
french nouns 0.33 poule 23 0.02 0.00
french nouns 0.33 poulet 26 0.01 0.00
french nouns 0.33 poupée 24 0.02 0.00
french nouns 0.33 poussette 23 0.01 0.00
french nouns 0.33 pull 25 0.01 0.00
french nouns 0.33 purée 26 0.01 0.00
french nouns 0.33 puzzle 30 0.04 0.00
french nouns 0.33 pyjama 23 0.02 0.00
french nouns 0.33 raisin 29 0.00 0.00
french nouns 0.33 robe 27 0.01 0.00
french nouns 0.33 salon 30 0.01 0.00
french nouns 0.33 salopette 28 0.00 0.00
french nouns 0.33 sauce 30 0.00 0.00
french nouns 0.33 savon 25 0.01 0.00
french nouns 0.33 seau 27 0.01 0.00
french nouns 0.33 sel 26 0.00 0.00
french nouns 0.33 serviette 25 0.01 0.00
french nouns 0.33 short 28 0.01 0.00
french nouns 0.33 singe 26 0.01 0.00
french nouns 0.33 sirop 28 0.00 0.00
french nouns 0.33 soleil 24 0.02 0.00
french nouns 0.33 soupe 25 0.01 0.00
french nouns 0.33 souris 26 0.03 0.00
french nouns 0.33 stylo 29 0.01 0.00
french nouns 0.33 sucette 24 0.01 0.00
french nouns 0.33 sucre 25 0.01 0.00
french nouns 0.33 table 24 0.04 0.00
french nouns 0.33 tartine 28 0.01 0.00
french nouns 0.33 tasse 28 0.01 0.00
french nouns 0.33 télé 23 0.01 0.00
french nouns 0.33 télécommande 30 0.00 0.00
french nouns 0.33 téléphone 24 0.02 0.00
french nouns 0.33 tête 22 0.07 0.00
french nouns 0.33 tigre 28 0.01 0.00
french nouns 0.33 tiroir 28 0.01 0.00
french nouns 0.33 toboggan 25 0.01 0.00
french nouns 0.33 toit 30 0.01 0.00
french nouns 0.33 tortue 24 0.02 0.00
french nouns 0.33 tracteur 24 0.02 0.00
french nouns 0.33 train 24 0.04 0.00
french nouns 0.33 trottoir 29 0.00 0.00
french nouns 0.33 vache 23 0.03 0.00
french nouns 0.33 vanille 30 0.00 0.00
french nouns 0.33 vélo 22 0.02 0.00
french nouns 0.33 vent 25 0.01 0.00
french nouns 0.33 ventre 24 0.02 0.00
french nouns 0.33 verre 23 0.02 0.00
french nouns 0.33 veste 28 0.01 0.00
french nouns 0.33 viande 25 0.01 0.00
french nouns 0.33 voiture 21 0.09 0.00
french nouns 0.33 wc 28 0.00 0.00
french nouns 0.33 yaourt 23 0.01 0.00
french nouns 0.33 zèbre 30 0.01 0.00
french adjectives -0.06 attention 25 0.14 0.00
french adjectives -0.06 bien 27 0.43 0.01
french adjectives -0.06 bleu 26 0.06 0.00
french adjectives -0.06 cassé 22 0.03 0.00
french adjectives -0.06 dur 26 0.03 0.00
french adjectives -0.06 fatigué 27 0.00 0.00
french adjectives -0.06 froid 23 0.03 0.00
french adjectives -0.06 jaune 27 0.05 0.00
french adjectives -0.06 joli 26 0.05 0.00
french adjectives -0.06 malade 27 0.02 0.00
french adjectives -0.06 noir 29 0.02 0.00
french adjectives -0.06 orange 29 0.02 0.00
french adjectives -0.06 parti 22 0.00 0.00
french adjectives -0.06 propre 27 0.02 0.00
french adjectives -0.06 rouge 26 0.07 0.00
french adjectives -0.06 sale 23 0.02 0.00
french adjectives -0.06 triste 30 0.01 0.00
french adjectives -0.06 vite 27 0.05 0.00
french verbs -0.01 acheter 29 0.02 0.00
french verbs -0.01 aider 28 0.03 0.00
french verbs -0.01 aimer 27 0.05 0.00
french verbs -0.01 aller 26 1.01 0.02
french verbs -0.01 apporter 28 0.01 0.00
french verbs -0.01 arrêter 26 0.02 0.00
french verbs -0.01 attendre 28 0.27 0.00
french verbs -0.01 attraper 29 0.02 0.00
french verbs -0.01 avoir 29 1.22 0.02
french verbs -0.01 balancer 30 0.00 0.00
french verbs -0.01 balayer 28 0.00 0.00
french verbs -0.01 boire 21 0.04 0.00
french verbs -0.01 cacher 24 0.04 0.00
french verbs -0.01 casser 23 0.04 0.00
french verbs -0.01 chanter 26 0.02 0.00
french verbs -0.01 chatouiller 30 0.00 0.00
french verbs -0.01 conduire 29 0.00 0.00
french verbs -0.01 couper 27 0.02 0.00
french verbs -0.01 courir 25 0.01 0.00
french verbs -0.01 danser 25 0.01 0.00
french verbs -0.01 déchirer 29 0.01 0.00
french verbs -0.01 dessiner 26 0.03 0.00
french verbs -0.01 dire 29 0.34 0.00
french verbs -0.01 donner 25 0.10 0.00
french verbs -0.01 dormir 25 0.04 0.00
french verbs -0.01 écouter 26 0.01 0.00
french verbs -0.01 écrire 26 0.04 0.00
french verbs -0.01 entendre 29 0.05 0.00
french verbs -0.01 essuyer 27 0.01 0.00
french verbs -0.01 faire 27 0.88 0.01
french verbs -0.01 fermer 24 0.02 0.00
french verbs -0.01 finir 27 0.09 0.00
french verbs -0.01 glisser 29 0.01 0.00
french verbs -0.01 goûter 28 0.03 0.00
french verbs -0.01 goutter 29 0.00 0.00
french verbs -0.01 jeter 27 0.03 0.00
french verbs -0.01 jouer 25 0.11 0.00
french verbs -0.01 laver 26 0.03 0.00
french verbs -0.01 lire 26 0.06 0.00
french verbs -0.01 manger 23 0.18 0.00
french verbs -0.01 marcher 26 0.02 0.00
french verbs -0.01 mettre 28 0.48 0.01
french verbs -0.01 montrer 29 0.05 0.00
french verbs -0.01 mordre 27 0.01 0.00
french verbs -0.01 nager 28 0.01 0.00
french verbs -0.01 nettoyer 28 0.01 0.00
french verbs -0.01 ouvrir 25 0.05 0.00
french verbs -0.01 parler 28 0.03 0.00
french verbs -0.01 pleurer 24 0.01 0.00
french verbs -0.01 porter 26 0.00 0.00
french verbs -0.01 pousser 26 0.01 0.00
french verbs -0.01 prendre 28 0.17 0.00
french verbs -0.01 ramasser 28 0.02 0.00
french verbs -0.01 regarder 25 0.08 0.00
french verbs -0.01 renverser 30 0.01 0.00
french verbs -0.01 réparer 29 0.01 0.00
french verbs -0.01 rester 29 0.02 0.00
french verbs -0.01 sauter 25 0.01 0.00
french verbs -0.01 sécher 30 0.00 0.00
french verbs -0.01 souffler 27 0.01 0.00
french verbs -0.01 taper 26 0.01 0.00
french verbs -0.01 tenir 28 0.23 0.00
french verbs -0.01 tirer 30 0.01 0.00
french verbs -0.01 tomber 23 0.08 0.00
french verbs -0.01 toucher 28 0.02 0.00
french verbs -0.01 travailler 28 0.01 0.00
french verbs -0.01 trouver 29 0.06 0.00
french verbs -0.01 voir 28 0.45 0.01
french function_words -0.03 à 26 0.60 0.01
french function_words -0.03 aller 27 1.01 0.02
french function_words -0.03 aussi 28 0.19 0.00
french function_words -0.03 autre 30 0.19 0.00
french function_words -0.03 avec 28 0.33 0.00
french function_words -0.03 ça 25 0.04 0.00
french function_words -0.03 chez 28 0.04 0.00
french function_words -0.03 dans 26 0.41 0.01
french function_words -0.03 de 29 1.14 0.02
french function_words -0.03 dehors 25 0.02 0.00
french function_words -0.03 derrière 28 0.03 0.00
french function_words -0.03 elle 30 0.00 0.00
french function_words -0.03 encore 20 0.21 0.00
french function_words -0.03 et 28 0.88 0.02
french function_words -0.03 fait 28 0.07 0.00
french function_words -0.03 ici 26 0.08 0.00
french function_words -0.03 il 29 1.13 0.02
french function_words -0.03 je 30 0.90 0.01
french function_words -0.03 21 0.80 0.01
french function_words -0.03 loin 28 0.02 0.00
french function_words -0.03 lui 30 0.72 0.01
french function_words -0.03 moi 25 0.36 0.00
french function_words -0.03 25 0.35 0.00
french function_words -0.03 pas 22 0.95 0.02
french function_words -0.03 pour 28 0.34 0.00
french function_words -0.03 pourquoi 28 0.10 0.00
french function_words -0.03 qui 28 0.49 0.01
french function_words -0.03 quoi 26 0.39 0.01
french function_words -0.03 sous 29 0.03 0.00
french function_words -0.03 sur 27 0.25 0.00
french function_words -0.03 vouloir 30 0.56 0.01
french other 0.05 aie 19 0.00 0.00
french other 0.05 après 27 0.15 0.00
french other 0.05 bain 19 0.04 0.00
french other 0.05 bébé 18 0.09 0.00
french other 0.05 bonjour 22 0.03 0.00
french other 0.05 bravo 19 0.09 0.00
french other 0.05 chut 21 0.02 0.00
french other 0.05 clown 26 0.02 0.00
french other 0.05 cocorico 30 0.00 0.00
french other 0.05 coucou 18 0.06 0.00
french other 0.05 crèche 29 0.02 0.00
french other 0.05 dame 25 0.01 0.00
french other 0.05 dehors 23 0.02 0.00
french other 0.05 demain 28 0.02 0.00
french other 0.05 docteur 26 0.02 0.00
french other 0.05 école 25 0.05 0.00
french other 0.05 enfant 28 0.03 0.00
french other 0.05 fille 25 0.04 0.00
french other 0.05 forêt 30 0.00 0.00
french other 0.05 frère 30 0.02 0.00
french other 0.05 garçon 25 0.04 0.00
french other 0.05 goûter 26 0.03 0.00
french other 0.05 grrrr 25 0.00 0.00
french other 0.05 jour 30 0.03 0.00
french other 0.05 magasin 28 0.00 0.00
french other 0.05 maison 23 0.06 0.00
french other 0.05 matin 30 0.03 0.00
french other 0.05 merci 18 0.10 0.00
french other 0.05 meuh 18 0.01 0.00
french other 0.05 miaou 19 0.01 0.00
french other 0.05 monsieur 24 0.06 0.00
french other 0.05 nuit 26 0.02 0.00
french other 0.05 oui 20 0.81 0.01
french other 0.05 parc 28 0.01 0.00
french other 0.05 plage 29 0.00 0.00
french other 0.05 pompier 28 0.01 0.00
french other 0.05 salut 28 0.01 0.00
french other 0.05 sieste 27 0.01 0.00
french other 0.05 travail 26 0.01 0.00
#divide into training and test set
### (1)Use this formula after freezing all coefficients: 1 - (sum of squared errors) / (sum of squares total). The denominator is (𝑛−1)× the observed variance of 𝑌 in the holdout sample.
### (2)1- sum squared differences between the predicted and observed value / sum of squared differences between the observed and overall mean value
### (3)Calculate mean square error and variance of each group 

xvalr2 <- function(d){
n<-nrow(d) #df size
ind <- sample(c(TRUE, FALSE), n, replace=TRUE, prob=c(0.9, 0.1)) #randomly split lines
train <- d[ind, ] 
test <- d[!ind, ]
model <- lm(aoa~ log_freq, data=train) 
predictions <- predict(model, test)
#crossvalr2 <- 1-(sum((test$aoa - predictions)^2)/(n-1)*var(test$aoa))  (1)
#crossvalr2 <- 1-(sum((predictions - test$aoa)^2)/sum((test$aoa - mean(test$aoa))^2) ) (2)
#crossvalr2 <- 1-(sum((test$aoa - predictions)^2)/var(test$aoa))   (3) 
crossvalr2 <- rsquare(model, test)
return(crossvalr2)
}

crossvalr2 <- expand_grid(lang = c("english", "italian", "french"), 
                            class = c("all", "nouns","adjectives","verbs",
                                           "function_words","other")) %>% 
  rowwise %>%
   mutate(crossvalr2 = ifelse(class == "all", 
                             xvalr2(filter(d, 
                                                   language == lang)),
                             xvalr2(filter(d, 
                                                   language == lang, lexical_class == class)))) %>%
  rename( language = lang,lexical_class = class) 

crossvalr2 %>%
  knitr::kable(digits = 2)
language lexical_class crossvalr2
english all -0.01
english nouns 0.55
english adjectives -0.82
english verbs 0.00
english function_words 0.00
english other -1.73
italian all 0.00
italian nouns 0.04
italian adjectives 0.05
italian verbs -0.06
italian function_words 0.00
italian other -0.06
french all 0.02
french nouns 0.25
french adjectives -0.57
french verbs 0.02
french function_words -0.20
french other -0.15
all_r2 <- r2 %>%
  left_join(crossvalr2) %>%
  select(language, lexical_class, r2, crossvalr2) %>%
  distinct() %>%
  rename(word_class = lexical_class) %>%
  mutate(language = sub("english", "English (American)", language)) %>%
  mutate(language = sub("italian", "Italian", language)) %>%
  mutate(language = sub("french", "French (French)", language))
## Joining, by = c("language", "lexical_class")
all_r2 %>%
  knitr::kable(digits = 2)
language word_class r2 crossvalr2
English (American) all 0.00 -0.01
English (American) nouns 0.35 0.55
English (American) adjectives 0.04 -0.82
English (American) verbs 0.03 0.00
English (American) function_words -0.01 0.00
English (American) other 0.10 -1.73
Italian all 0.00 0.00
Italian nouns 0.17 0.04
Italian adjectives 0.20 0.05
Italian verbs 0.06 -0.06
Italian function_words -0.02 0.00
Italian other 0.41 -0.06
French (French) all 0.00 0.02
French (French) nouns 0.33 0.25
French (French) adjectives -0.06 -0.57
French (French) verbs -0.01 0.02
French (French) function_words -0.03 -0.20
French (French) other 0.05 -0.15
all_reliabilities <- reliabilities %>%
  left_join(reliabilities_aoa) %>%
    mutate(threshold_half = split_half_tau_sb * split_half_aoa_sb) 
## Joining, by = c("language", "word_class")
    # %>%
    # mutate(threshold_alpha = cronbach_alpha * split_half_aoa_sb) 

all_reliabilities %>%
  knitr::kable(digits = 2)
language word_class split_half_tau split_half_tau_sb split_half_aoa split_half_aoa_sb threshold_half
English (American) all 0.90 0.95 0.97 0.98 0.93
English (American) nouns 0.87 0.93 0.97 0.98 0.92
English (American) adjectives 0.90 0.94 0.96 0.98 0.93
English (American) verbs 0.89 0.94 0.94 0.97 0.91
English (American) function_words 0.93 0.96 0.95 0.98 0.94
English (American) other 0.87 0.93 0.97 0.99 0.92
Italian all 0.81 0.90 0.93 0.96 0.86
Italian nouns 0.77 0.87 0.92 0.96 0.83
Italian adjectives 0.77 0.87 0.91 0.95 0.83
Italian verbs 0.84 0.91 0.89 0.94 0.86
Italian function_words 0.88 0.93 0.92 0.96 0.89
Italian other 0.83 0.91 0.88 0.94 0.85
French (French) all 0.89 0.94 0.88 0.94 0.89
French (French) nouns 0.89 0.94 0.90 0.95 0.89
French (French) adjectives 0.86 0.93 0.88 0.94 0.87
French (French) verbs 0.91 0.95 0.82 0.90 0.86
French (French) function_words 0.83 0.91 0.73 0.84 0.77
French (French) other 0.86 0.93 0.92 0.96 0.89
dr<- all_reliabilities %>% 
  left_join(unique(all_r2)) 
## Joining, by = c("language", "word_class")
dr %>%
  knitr::kable(digits = 2)
language word_class split_half_tau split_half_tau_sb split_half_aoa split_half_aoa_sb threshold_half r2 crossvalr2
English (American) all 0.90 0.95 0.97 0.98 0.93 0.00 -0.01
English (American) nouns 0.87 0.93 0.97 0.98 0.92 0.35 0.55
English (American) adjectives 0.90 0.94 0.96 0.98 0.93 0.04 -0.82
English (American) verbs 0.89 0.94 0.94 0.97 0.91 0.03 0.00
English (American) function_words 0.93 0.96 0.95 0.98 0.94 -0.01 0.00
English (American) other 0.87 0.93 0.97 0.99 0.92 0.10 -1.73
Italian all 0.81 0.90 0.93 0.96 0.86 0.00 0.00
Italian nouns 0.77 0.87 0.92 0.96 0.83 0.17 0.04
Italian adjectives 0.77 0.87 0.91 0.95 0.83 0.20 0.05
Italian verbs 0.84 0.91 0.89 0.94 0.86 0.06 -0.06
Italian function_words 0.88 0.93 0.92 0.96 0.89 -0.02 0.00
Italian other 0.83 0.91 0.88 0.94 0.85 0.41 -0.06
French (French) all 0.89 0.94 0.88 0.94 0.89 0.00 0.02
French (French) nouns 0.89 0.94 0.90 0.95 0.89 0.33 0.25
French (French) adjectives 0.86 0.93 0.88 0.94 0.87 -0.06 -0.57
French (French) verbs 0.91 0.95 0.82 0.90 0.86 -0.01 0.02
French (French) function_words 0.83 0.91 0.73 0.84 0.77 -0.03 -0.20
French (French) other 0.86 0.93 0.92 0.96 0.89 0.05 -0.15
ggplot(dr, aes(x = word_class, y=r2, fill=word_class)) + 
  geom_bar(stat="identity") + 
  facet_grid(rows = vars(language)) +
  geom_errorbar(data  = dr, aes(y=threshold_half, ymax=threshold_half, ymin=threshold_half, col=word_class)) + 
  theme(legend.position = "bottom") + 
  xlab("Lexical class") + 
  ylab("R2") + 
  theme(legend.title = element_blank())