WEB Scrpaing Tutorial: Data fields to be scrapped

library(rvest)
#Loading the rvest package
library('rvest')

#Specifying the url for desired website to be scraped
url <- 'http://www.imdb.com/search/title?count=100&release_date=2016,2016&title_type=feature'

#Reading the HTML code from the website
webpage <- read_html(url)

Data fields to be scrapped

Title: The title of the feature film.

#Using CSS selectors to scrape the title section
title_data_html <- html_nodes(webpage,'.lister-item-header a')

#Converting the title data to text
title_data <- html_text(title_data_html)

#Let's have a look at the title
head(title_data)
## [1] "Suicide Squad"                      "Batman v Superman: Dawn of Justice"
## [3] "Captain America: Civil War"         "Captain Fantastic"                 
## [5] "Deadpool"                           "The Accountant"

Description: The description of the feature film.

#Using CSS selectors to scrape the description section
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted')

#Converting the description data to text
description_data <- html_text(description_data_html)

#Converting the description data to text
description_data <- html_text(description_data_html)

#Data-Preprocessing: removing '\n'
description_data<-gsub("\n","",description_data)

#Cleaned description data 
head(description_data)
## [1] "    A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."                                                             
## [2] "    Fearing that the actions of Superman are left unchecked, Batman takes on the Man of Steel, while the world wrestles with what kind of a hero it really needs."                                                                                   
## [3] "    Political involvement in the Avengers' affairs causes a rift between Captain America and Iron Man."                                                                                                                                              
## [4] "    In the forests of the Pacific Northwest, a father devoted to raising his six kids with a rigorous physical and intellectual education is forced to leave his paradise and enter the world, challenging his idea of what it means to be a parent."
## [5] "    A wisecracking mercenary gets experimented on and becomes immortal but ugly, and sets out to track down the man who ruined his looks."                                                                                                           
## [6] "    As a math savant uncooks the books for a new client, the Treasury Department closes in on his activities, and the body count starts to rise."

Runtime: The duration of the feature film.

#Using CSS selectors to scrape the Movie runtime section
runtime_data_html <- html_nodes(webpage,'.runtime')

#Converting the runtime data to text
runtime_data <- html_text(runtime_data_html)

#Data-Preprocessing: removing text "mins" from mins and converting it to numerical

runtime_data<-gsub(" min","",runtime_data)
runtime_data<-as.numeric(runtime_data)

#Let's have a look at the runtime data
head(runtime_data)
## [1] 123 152 147 118 108 128

- Genre: The genre of the feature film,

#Using CSS selectors to scrape the Movie genre section
genre_data_html <- html_nodes(webpage,'.genre')

#Converting the genre data to text
genre_data <- html_text(genre_data_html)

#Data-Preprocessing: removing \n
genre_data<-gsub("\n","",genre_data)

#Data-Preprocessing: removing excess spaces
genre_data<-gsub(" ","",genre_data)

#taking only the first genre of each movie
genre_data<-gsub(",.*","",genre_data)

#Convering each genre from text to factor
genre_data<-as.factor(genre_data)

#Let's have a look at the genre data
head(genre_data)
## [1] Action Action Action Comedy Action Action
## Levels: Action Adventure Animation Biography Comedy Crime Drama Horror

Rating: The IMDb rating of the feature film.

#Using CSS selectors to scrape the IMDB rating section
rating_data_html <- html_nodes(webpage,'.ratings-imdb-rating strong')

#Converting the ratings data to text
rating_data <- html_text(rating_data_html)

#Let's have a look at the ratings
head(rating_data)
## [1] "6.0" "6.4" "7.8" "7.9" "8.0" "7.3"
#Data-Preprocessing: converting ratings to numerical
rating_data<-as.numeric(rating_data)

#Let's have another look at the ratings data
head(rating_data)
## [1] 6.0 6.4 7.8 7.9 8.0 7.3

Metascore: The metascore on IMDb website for the feature film.

NOTE: 3 movies do not have a metascore - so we’ll add a place holder
- The Invisible Guest #18
- Dangal #57
- Terrifier #100
#Using CSS selectors to scrape the metascore section
metascore_data_html <- html_nodes(webpage,'.metascore')

#Converting the runtime data to text
metascore_data <- html_text(metascore_data_html)

#Let's have a look at the metascore 
head(metascore_data)
## [1] "40        " "44        " "75        " "72        " "65        "
## [6] "51        "
#Data-Preprocessing: removing extra space in metascore
metascore_data<-gsub(" ","",metascore_data)

#Lets check the length of metascore data
length(metascore_data)
## [1] 97
for (i in c(18,57,10)){
  a<-metascore_data[1:(i-1)]
  b<-metascore_data[i:length(metascore_data)]
  metascore_data<-append(a,list(0))
  metascore_data<-append(metascore_data,b)
  }
#Data-Preprocessing: converting metascore to numerical
metascore_data<-as.numeric(metascore_data)

#Let's have another look at the length of gross data
length(metascore_data)
## [1] 100
summary(metascore_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   47.00   60.00   58.63   72.00   99.00

Votes: Votes cast in favor of the feature film.

#Using CSS selectors to scrape the votes section
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)')
#Converting the votes data to text
votes_data <- html_text(votes_data_html)
#Let's have a look at the votes data
head(votes_data)
## [1] "612,558" "643,522" "676,385" "194,644" "913,982" "264,460"
#Data-Preprocessing: removing commas
votes_data<-gsub(",","",votes_data)
#Data-Preprocessing: converting votes to numerical
votes_data<-as.numeric(votes_data)
#Let's have another look at the votes data
head(votes_data)
## [1] 612558 643522 676385 194644 913982 264460

Gross_Earning_in_Mil: The gross earnings of the feature film in millions.

#Using CSS selectors to scrape the gross revenue section
gross_data_html <- html_nodes(webpage,'.ghost~ .text-muted+ span')

#Converting the gross revenue data to text
gross_data <- html_text(gross_data_html)

#Let's have a look at the votes data
head(gross_data)
## [1] "$325.10M" "$330.36M" "$408.08M" "$5.88M"   "$363.07M" "$86.26M"
#Data-Preprocessing: removing '$' and 'M' signs
gross_data<-gsub("M","",gross_data)

gross_data<-substring(gross_data,2,6)

#Let's check the length of gross data
length(gross_data)
## [1] 92
head(gross_data)
## [1] "325.1" "330.3" "408.0" "5.88"  "363.0" "86.26"
#Filling missing entries with NA
for (i in c(18,67,73,75,83,87,98,10)){
a<-gross_data[1:(i-1)]
b<-gross_data[i:length(gross_data)]
gross_data<-append(a,list("0"))
gross_data<-append(gross_data,b)
}
length(gross_data)
## [1] 100
#Data-Preprocessing: converting gross to numerical
gross_data<-as.numeric(gross_data)

#Let's have another look at the length of gross data
length(gross_data)
## [1] 100
summary(gross_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    9.93   46.69   84.02  102.58  532.10

Director: The main director of the feature film. Note, in case of multiple directors, I’ll take only the first.

#Using CSS selectors to scrape the directors section
directors_data_html <- html_nodes(webpage,'.text-muted+ p a:nth-child(1)')

#Converting the directors data to text
directors_data <- html_text(directors_data_html)

#Let's have a look at the directors data
head(directors_data)
## [1] "David Ayer"     "Zack Snyder"    "Anthony Russo"  "Matt Ross"     
## [5] "Tim Miller"     "Gavin O'Connor"
#Data-Preprocessing: converting directors data into factors
directors_data<-as.factor(directors_data)

Actor: The main actor in the feature film. Note, in case of multiple actors, I’ll take only the first.

#Using CSS selectors to scrape the actors section
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a')

#Converting the gross actors data to text
actors_data <- html_text(actors_data_html)

#Let's have a look at the actors data
head(actors_data)
## [1] "Will Smith"      "Ben Affleck"     "Chris Evans"     "Viggo Mortensen"
## [5] "Ryan Reynolds"   "Ben Affleck"
#Data-Preprocessing: converting actors data into factors
actors_data<-as.factor(actors_data)

Data Frame

#Combining all the lists to form a data frame
movies_df <- data.frame(Rank = rank_data, Title = title_data, 
                        Description = description_data, Runtime = runtime_data, 
                        Genre = genre_data, Rating = rating_data, 
                        Metascore = metascore_data, Votes = votes_data, 
                        Gross_Earning_in_Mil = gross_data, 
                        Director = directors_data, 
                        Actor = actors_data)
str(movies_df)
## 'data.frame':    100 obs. of  11 variables:
##  $ Rank                : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ Title               : chr  "Suicide Squad" "Batman v Superman: Dawn of Justice" "Captain America: Civil War" "Captain Fantastic" ...
##  $ Description         : chr  "    A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defens"| __truncated__ "    Fearing that the actions of Superman are left unchecked, Batman takes on the Man of Steel, while the world "| __truncated__ "    Political involvement in the Avengers' affairs causes a rift between Captain America and Iron Man." "    In the forests of the Pacific Northwest, a father devoted to raising his six kids with a rigorous physical "| __truncated__ ...
##  $ Runtime             : num  123 152 147 118 108 128 120 116 107 116 ...
##  $ Genre               : Factor w/ 8 levels "Action","Adventure",..: 1 1 1 5 1 1 1 1 3 7 ...
##  $ Rating              : num  6 6.4 7.8 7.9 8 7.3 6.8 7.4 7.6 7.9 ...
##  $ Metascore           : num  40 44 75 72 65 51 67 70 81 0 ...
##  $ Votes               : num  612558 643522 676385 194644 913982 ...
##  $ Gross_Earning_in_Mil: num  325.1 330.3 408 5.88 363 ...
##  $ Director            : Factor w/ 98 levels "Adam Wingard",..: 23 98 6 61 93 36 40 86 82 27 ...
##  $ Actor               : Factor w/ 91 levels "Aamir Khan","Alexander Skarsgård",..: 89 8 19 88 75 8 39 73 7 3 ...

Scraped data analysis

library(ggplot2)
Movie Genre’s runtime: Top runtime goes to Action movies.
qplot(data = movies_df,Runtime,fill = Genre,bins = 30)

Highest votes for Action movies in the 130-160 mins movie Runtime
ggplot(movies_df,aes(x=Runtime,y=Rating))+
geom_point(aes(size=Votes,col=Genre))

Highest avg gross earnings for movie runtime 100-120 mins -> Crime Movies
ggplot(movies_df,aes(x=Runtime,y=Gross_Earning_in_Mil))+
geom_point(aes(size=Rating,col=Genre))