Craig F. Barrett
April 07, 2021
Department of Biology
West Virginia University
Morgantown, WV USA 26506

## install packages, load libraries
# install.packages(c("rworldmap","gridExtra"))
library(rworldmap)
package 㤼㸱rworldmap㤼㸲 was built under R version 4.0.3Loading required package: sp
### Welcome to rworldmap ###
For a short introduction type :      vignette('rworldmap')
library(ggplot2)
library(gridExtra)
package 㤼㸱gridExtra㤼㸲 was built under R version 4.0.3
Attaching package: 㤼㸱gridExtra㤼㸲

The following object is masked from 㤼㸱package:dplyr㤼㸲:

    combine
library(RColorBrewer)
package 㤼㸱RColorBrewer㤼㸲 was built under R version 4.0.3
# load US and Asia data -- awn proportions by centroid
setwd(choose.dir())
chjp<-read.csv("chjp.csv")
chjp<-as.data.frame(chjp)
## filter data for Asian specimens  only
asia <- chjp %>% filter(cont == "Asia")
## filter for US data
us <- chjp %>% filter(cont == "USA")
# plot Asian pie charts
asiamap <- mapPies(dF =asia,
        nameX="lon",
        nameY="lat",
        nameZs =c("awnless", "awned"),
        zColours=c("red","blue"),
        ratio=1,
        oceanCol = "gray80",
        landCol = "white",
        symbolSize=2,
        lwd=2,
        borderCol="black",
        addSizeLegend=T,
        addCatLegend=T,
        #mapRegion="asia",
        xlim=c(70,141),
        ylim=c(15,50))
symbolMaxSize= 1.42  maxSumValues= 44  symbolScale= 0.2140731 
List of 2
 $ x: num [1:100] 75.7 75.7 75.7 75.6 75.6 ...
 $ y: num [1:100] 46.2 46.4 46.6 46.7 46.9 ...

# plot US pies
usmap <- mapPies(dF =us,
        nameX="lon",
        nameY="lat",
        nameZs =c("awnless", "awned"),
        zColours=c("red","blue"),
        ratio=1,
        oceanCol = "gray80",
        landCol = "white",
        symbolSize=4,
        lwd=2,
        borderCol="black",
        addSizeLegend=T,
        addCatLegend=T,
        #mapRegion="asia",
        xlim=c(-90,-70),
        ylim=c(26,45))
symbolMaxSize= 0.4  maxSumValues= 100  symbolScale= 0.04 
List of 2
 $ x: num [1:100] -95.5 -95.5 -95.5 -95.5 -95.5 ...
 $ y: num [1:100] 42.6 42.7 42.8 42.9 43 ...

uschinaplot2 <- ggplot(chjp, aes(x=lat, y=prop, col=cont, shape=cont)) + 
  geom_point(aes(size=tot))+
  scale_color_manual(values=c('red','blue'))+
  geom_smooth(method=lm, aes(fill=cont))
uschinaplot2 + scale_size(range = c(10,20)) 
scale_color_gradient(low = "red", high = "blue")
<ScaleContinuous>
 Range:  
 Limits:    0 --    1
LS0tDQp0aXRsZTogIlBsb3QgcGllIGNoYXJ0cyBvbiBtYXA6IHByb3BvcnRpb25zIG9mIGF3bmVkIGFuZCBhd25sZXNzIEphcGFuZXNlIHN0aWx0Z3Jhc3MgcmVjb3JkcyBieSBjZW50cm9pZCINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCkNyYWlnIEYuIEJhcnJldHQ8YnI+DQpBcHJpbCAwNywgMjAyMTxicj4NCkRlcGFydG1lbnQgb2YgQmlvbG9neTxicj4NCldlc3QgVmlyZ2luaWEgVW5pdmVyc2l0eTxicj4NCk1vcmdhbnRvd24sIFdWIFVTQSAyNjUwNjxicj4NCmNmYjAwMDFAbWFpbC53dnUuZWR1PGJyPg0KYGBge3J9DQojIyBpbnN0YWxsIHBhY2thZ2VzLCBsb2FkIGxpYnJhcmllcw0KIyBpbnN0YWxsLnBhY2thZ2VzKGMoInJ3b3JsZG1hcCIsImdyaWRFeHRyYSIpKQ0KbGlicmFyeShyd29ybGRtYXApDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KGdyaWRFeHRyYSkNCmxpYnJhcnkoUkNvbG9yQnJld2VyKQ0KDQpgYGANCmBgYHtyfQ0KIyBsb2FkIFVTIGFuZCBBc2lhIGRhdGEgLS0gYXduIHByb3BvcnRpb25zIGJ5IGNlbnRyb2lkDQpzZXR3ZChjaG9vc2UuZGlyKCkpDQpjaGpwPC1yZWFkLmNzdigiY2hqcC5jc3YiKQ0KY2hqcDwtYXMuZGF0YS5mcmFtZShjaGpwKQ0KYGBgDQoNCmBgYHtyfQ0KIyMgZmlsdGVyIGRhdGEgZm9yIEFzaWFuIHNwZWNpbWVucyAgb25seQ0KYXNpYSA8LSBjaGpwICU+JSBmaWx0ZXIoY29udCA9PSAiQXNpYSIpDQojIyBmaWx0ZXIgZm9yIFVTIGRhdGENCnVzIDwtIGNoanAgJT4lIGZpbHRlcihjb250ID09ICJVU0EiKQ0KDQpgYGANCg0KYGBge3J9DQojIHBsb3QgQXNpYW4gcGllIGNoYXJ0cw0KYXNpYW1hcCA8LSBtYXBQaWVzKGRGID1hc2lhLA0KICAgICAgICBuYW1lWD0ibG9uIiwNCiAgICAgICAgbmFtZVk9ImxhdCIsDQogICAgICAgIG5hbWVacyA9YygiYXdubGVzcyIsICJhd25lZCIpLA0KICAgICAgICB6Q29sb3Vycz1jKCJyZWQiLCJibHVlIiksDQogICAgICAgIHJhdGlvPTEsDQoJCW9jZWFuQ29sID0gImdyYXk4MCIsDQogICAgICAgIGxhbmRDb2wgPSAid2hpdGUiLA0KICAgICAgICBzeW1ib2xTaXplPTIsDQoJCWx3ZD0yLA0KCQlib3JkZXJDb2w9ImJsYWNrIiwNCgkJYWRkU2l6ZUxlZ2VuZD1ULA0KICAgICAgICBhZGRDYXRMZWdlbmQ9VCwNCiAgICAgICAgI21hcFJlZ2lvbj0iYXNpYSIsDQogICAgICAgIHhsaW09Yyg3MCwxNDEpLA0KICAgICAgICB5bGltPWMoMTUsNTApKQ0KDQpgYGANCmBgYHtyfQ0KIyBwbG90IFVTIHBpZXMNCnVzbWFwIDwtIG1hcFBpZXMoZEYgPXVzLA0KICAgICAgICBuYW1lWD0ibG9uIiwNCiAgICAgICAgbmFtZVk9ImxhdCIsDQogICAgICAgIG5hbWVacyA9YygiYXdubGVzcyIsICJhd25lZCIpLA0KICAgICAgICB6Q29sb3Vycz1jKCJyZWQiLCJibHVlIiksDQogICAgICAgIHJhdGlvPTEsDQoJCW9jZWFuQ29sID0gImdyYXk4MCIsDQogICAgICAgIGxhbmRDb2wgPSAid2hpdGUiLA0KICAgICAgICBzeW1ib2xTaXplPTQsDQoJCWx3ZD0yLA0KCQlib3JkZXJDb2w9ImJsYWNrIiwNCgkJYWRkU2l6ZUxlZ2VuZD1ULA0KICAgICAgICBhZGRDYXRMZWdlbmQ9VCwNCiAgICAgICAgI21hcFJlZ2lvbj0iYXNpYSIsDQogICAgICAgIHhsaW09YygtOTAsLTcwKSwNCiAgICAgICAgeWxpbT1jKDI2LDQ1KSkNCg0KYGBgDQoNCmBgYHtyfQ0KdXNjaGluYXBsb3QyIDwtIGdncGxvdChjaGpwLCBhZXMoeD1sYXQsIHk9cHJvcCwgY29sPWNvbnQsIHNoYXBlPWNvbnQpKSArIA0KICBnZW9tX3BvaW50KGFlcyhzaXplPXRvdCkpKw0KICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzPWMoJ3JlZCcsJ2JsdWUnKSkrDQogIGdlb21fc21vb3RoKG1ldGhvZD1sbSwgYWVzKGZpbGw9Y29udCkpDQp1c2NoaW5hcGxvdDIgKyBzY2FsZV9zaXplKHJhbmdlID0gYygxMCwyMCkpIA0Kc2NhbGVfY29sb3JfZ3JhZGllbnQobG93ID0gInJlZCIsIGhpZ2ggPSAiYmx1ZSIpDQpgYGANCg0KDQo=