Example 1 - A simple A/B test

You can also perform this analysis using Excel

#Please install the following package if the package "readr" is not installed.
#install.packages("readr")
library(readr)
data <- read_csv("ab_testing1.csv")
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   Ads = col_double(),
##   Purchase = col_double()
## )
ls(data) # list the variables in the dataset
## [1] "Ads"      "Purchase"
head(data) #list the first 6 rows of the dataset
## # A tibble: 6 x 2
##     Ads Purchase
##   <dbl>    <dbl>
## 1     1      152
## 2     0       21
## 3     2       77
## 4     0       65
## 5     1      183
## 6     1       87
# creating the factor variable
data$Ads <- factor(data$Ads)
is.factor(data$Ads)
## [1] TRUE
# showing the first 15 rows of the variable "Ads"
data$Ads[1:15]
##  [1] 1 0 2 0 1 1 2 2 2 0 2 2 0 2 2
## Levels: 0 1 2
#now we do the regression analysis and examine the results
summary(lm(Purchase~Ads, data = data))
## 
## Call:
## lm(formula = Purchase ~ Ads, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -59.75 -22.75  -3.75  30.25  64.29 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    49.00      10.21   4.800 5.69e-05 ***
## Ads1           69.71      15.91   4.383 0.000171 ***
## Ads2           24.75      13.82   1.791 0.084982 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32.28 on 26 degrees of freedom
## Multiple R-squared:  0.4262, Adjusted R-squared:  0.3821 
## F-statistic: 9.656 on 2 and 26 DF,  p-value: 0.0007308