| Subj | ROI | beta | cond | TRAIT | STATE |
|---|---|---|---|---|---|
| MAX101 | L ACC | 0.845514 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L BLBM Amygdala | 2.732654 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L BST | 3.940520 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L CeMe Amygdala | 2.331533 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L Crus II | 0.611231 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L Hippocampus body | 1.607156 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L Hippocampus tail | 1.549801 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L Hypothalamus | 2.862488 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L IFG-1 | 0.759511 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L IFG-2 | 0.893275 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L IFG-3 | 0.904597 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L IFG-4 | 3.831213 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L IFG-5 | 1.538472 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L IFG-6 | 0.857912 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L Lobule IX | 0.819383 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L PAG | 1.970929 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L PCC | 4.679768 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L PCC/precuneus | 4.341770 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L Ventral striatum | 1.019936 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L ant. Caudate | 0.464388 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L ant. Hippocampus | 1.426054 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L ant. MCC | 0.838646 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L ant. Putamen | 0.889415 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L ant. Thalamus | 0.582706 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L ant. dorsal Insula | 0.657682 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L ant. ventral Insula | 0.666038 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L dlPFC | 0.771227 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L lat. OFC | 1.621197 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L med. OFC | 1.361375 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L mid/post Insula | 0.636562 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L post. Caudate | 0.658339 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L post. Putamen | 1.028448 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L post. Thalamus | 1.203706 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | L pre-SMA | 1.439372 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | M PCC | 2.766386 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | M vmPFC1 | 2.587934 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | M vmPFC2 | 1.636236 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | R ACC | 0.683580 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | R BLBM Amygdala | 3.354218 | -0.5 | -1.164152 | -1.011495 |
| MAX101 | R BST | 5.167851 | -0.5 | -1.164152 | -1.011495 |
Model expressed in lme4 format:
y ~ 1 + cond + state + trait + (1 + cond | SUB) + (1 + cond + state + trait | ROI)
mathematics format:
\[Y_{s,r} \sim \text{Student}(\nu,\mu_{s,r},\sigma^{2}_{s,r})\]
\[\mu_{s,r} = \alpha + \alpha_{\text{SUB}} + \alpha_{\text{ROI}} + (\beta_{\text{cond}} +\beta_{\text{SUB}_{\text{cond}}}+ \beta_{\text{ROI}_{\text{cond}}})*\text{cond} + (\beta_{\text{state}} + \beta_{\text{ROI}_{\text{state}}})*\text{state} + (\beta_{\text{trait}} + \beta_{\text{ROI}_{\text{trait}}})*\text{trait} + \epsilon \]
Where,
\[ \begin{bmatrix} \alpha_{\text{ROI}} \\ \beta_{\text{ROI}_{\text{cond}}} \\ \beta_{\text{ROI}_{\text{state}}} \\ \beta_{\text{ROI}_{\text{trait}}} \end{bmatrix} \sim \text{Multivariate t} \begin{pmatrix} \nu_{\text{ROI}}, \text{ } \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \text{ } \mathbf{S}_{\text{ROI}} \end{pmatrix} \]
\[ \mathbf{S}_{\text{ROI}} = \begin{bmatrix} \sigma_{\alpha_{ROI}} & & & \\ & \sigma_{\beta_{ROI_{cond}}} & & \\ & & \sigma_{\beta_{ROI_{state}}} & \\ & & & \sigma_{\beta_{ROI_{trait}}} \end{bmatrix} R_{\text{ROI}} \begin{bmatrix} \sigma_{\alpha_{ROI}} & & & \\ & \sigma_{\beta_{ROI_{cond}}} & & \\ & & \sigma_{\beta_{ROI_{state}}} & \\ & & & \sigma_{\beta_{ROI_{trait}}} \end{bmatrix} \]
and
\[ \begin{bmatrix} \alpha_{\text{SUB}} \\ \beta_{\text{SUB}_{\text{cond}}} \\ \end{bmatrix} \sim \text{Multivariate t} \begin{pmatrix} \nu_{\text{SUB}}, \text{ } \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ } \mathbf{S}_{\text{SUB}} \end{pmatrix} \]
\[ \mathbf{S}_{\text{ROI}} = \begin{bmatrix} \sigma_{\alpha_{SUB}} & \\ & \sigma_{\beta_{SUB_{cond}}} \end{bmatrix} R_{\text{SUB}} \begin{bmatrix} \sigma_{\alpha_{SUB}} & \\ & \sigma_{\beta_{SUB_{cond}}} \end{bmatrix} \]
\[\alpha \sim \text{Student t}(3, 0, 10)\] \[\beta_{i} \sim \text{Student t}(3, 0, 10)\] \[\sigma^{2}_{s,r} \sim \text{Half Student}(3, 0, 10)\] \[\nu \sim \text{Gamma}(3.325, 0.1)\] \[\sigma_{\alpha_{j}} \sim \text{Half Student}(3,0,10)\] \[\sigma_{\beta_{j_{i}}} \sim \text{Half Student}(3, 0, 10)\] \[\nu_{j} \sim \text{Gamma}(3.325, 0.1)\] \[\mathbf{R}_{j} \sim \text{LKJcorr}(2)\] notice that \(i=\text{cond, state, trait}\), \(j=\text{SUB, ROI}\); and \(\text{SUB}=1,2,...,N\), \(\text{ROI}=1,2,...,M_{n}\). \(N\) is the number of participants; \(M_{n}\) is the number of ROI for \(nth\) participant.
| Subj | Trial | ROI | cond | Rating | Response_early | Response_late |
|---|---|---|---|---|---|---|
| MAX105 | 1 | R_med._OFC | -0.5 | -0.7535452 | 2.405743 | 2.292440 |
| MAX105 | 2 | R_med._OFC | -0.5 | -0.7535452 | 3.470698 | 1.276179 |
| MAX105 | 3 | R_med._OFC | -0.5 | -0.7535452 | 2.928458 | 1.497804 |
| MAX105 | 4 | R_med._OFC | -0.5 | -0.7535452 | 1.691090 | 1.959200 |
| MAX105 | 5 | R_med._OFC | -0.5 | -0.7535452 | 1.086177 | 1.859716 |
| MAX105 | 6 | R_med._OFC | -0.5 | -0.7535452 | 1.247588 | 1.378844 |
| MAX105 | 7 | R_med._OFC | -0.5 | -0.7535452 | 1.712305 | 1.245857 |
| MAX105 | 8 | R_med._OFC | -0.5 | -0.7535452 | 0.954379 | 1.651502 |
| MAX105 | 9 | R_med._OFC | -0.5 | -0.7535452 | 1.849904 | 1.556020 |
| MAX105 | 10 | R_med._OFC | -0.5 | -0.7535452 | 1.410534 | 2.379080 |
| MAX105 | 11 | R_med._OFC | -0.5 | 0.5976393 | 2.748708 | 2.821240 |
| MAX105 | 12 | R_med._OFC | -0.5 | -0.7535452 | 1.819616 | 2.137524 |
| MAX105 | 13 | R_med._OFC | -0.5 | 0.5976393 | 1.262307 | 2.520669 |
| MAX105 | 14 | R_med._OFC | -0.5 | -0.7535452 | 0.752120 | 1.474834 |
| MAX105 | 15 | R_med._OFC | -0.5 | -0.7535452 | 1.110723 | 0.668991 |
| MAX105 | 16 | R_med._OFC | -0.5 | 0.5976393 | 3.917190 | 1.312629 |
| MAX105 | 1 | L_med._OFC | -0.5 | -0.7535452 | 2.628091 | 1.602966 |
| MAX105 | 2 | L_med._OFC | -0.5 | -0.7535452 | 2.652362 | 2.190268 |
| MAX105 | 3 | L_med._OFC | -0.5 | -0.7535452 | 0.918932 | 1.774820 |
| MAX105 | 4 | L_med._OFC | -0.5 | -0.7535452 | 1.777620 | 1.433157 |
| MAX105 | 5 | L_med._OFC | -0.5 | -0.7535452 | 3.077369 | 1.531268 |
| MAX105 | 6 | L_med._OFC | -0.5 | -0.7535452 | 1.049030 | 1.713100 |
| MAX105 | 7 | L_med._OFC | -0.5 | -0.7535452 | 1.375446 | 1.439981 |
| MAX105 | 8 | L_med._OFC | -0.5 | -0.7535452 | 2.980231 | 2.849461 |
| MAX105 | 9 | L_med._OFC | -0.5 | -0.7535452 | 2.084510 | 2.422930 |
| MAX105 | 10 | L_med._OFC | -0.5 | -0.7535452 | 1.593774 | 1.035980 |
| MAX105 | 11 | L_med._OFC | -0.5 | 0.5976393 | 1.040766 | 1.216895 |
| MAX105 | 12 | L_med._OFC | -0.5 | -0.7535452 | 0.928876 | 2.502893 |
| MAX105 | 13 | L_med._OFC | -0.5 | 0.5976393 | 4.460567 | 1.819581 |
| MAX105 | 14 | L_med._OFC | -0.5 | -0.7535452 | 1.198841 | 1.216494 |
| MAX105 | 15 | L_med._OFC | -0.5 | -0.7535452 | 2.293487 | 1.930950 |
| MAX105 | 16 | L_med._OFC | -0.5 | 0.5976393 | 1.298570 | 1.439921 |
| MAX105 | 1 | R_lat._OFC | -0.5 | -0.7535452 | 1.277495 | 4.975390 |
| MAX105 | 2 | R_lat._OFC | -0.5 | -0.7535452 | 6.846640 | 3.396472 |
| MAX105 | 3 | R_lat._OFC | -0.5 | -0.7535452 | 4.198430 | 2.742396 |
| MAX105 | 4 | R_lat._OFC | -0.5 | -0.7535452 | 1.592378 | 1.566960 |
| MAX105 | 5 | R_lat._OFC | -0.5 | -0.7535452 | 3.375294 | 2.968270 |
| MAX105 | 6 | R_lat._OFC | -0.5 | -0.7535452 | 1.299896 | 1.695815 |
| MAX105 | 7 | R_lat._OFC | -0.5 | -0.7535452 | 1.468730 | 4.316290 |
| MAX105 | 8 | R_lat._OFC | -0.5 | -0.7535452 | 3.886243 | 2.386790 |
lme format:
y ~ 1 + cond + rating + ( 1 + cond + rating | gr(Subj, dist = “student”)) + ( 1 + cond + rating | gr(ROI, dist = “student”))
mathematics format:
\[ y \sim \text{LogNormal}(\mu, \sigma) \]
where
\[ \mu = \alpha + \alpha_{[\text{subj}]} + \alpha_{[\text{roi}]} + (\beta_{\text{cond}} + \beta_{\text{cond}, [\text{subj}]} + \beta_{\text{cond}, [\text{roi}]}) \times \text{Cond} + (\beta_{\text{rating}} + \beta_{\text{rating}, [\text{subj}]} + \beta_{\text{rating}, [\text{roi}]}) \times \text{Rating} \]
and
\[ \begin{bmatrix} \alpha_{[j]} \\ \beta_{\text{cond}, [j]} \\ \beta_{\text{rating}, [j]} \end{bmatrix} \sim \text{Multivariate t} \begin{pmatrix} \nu_{[j]}, \text{ } \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ } \mathbf{S}_{[j]} \end{pmatrix} \]
where
\[ \begin{aligned} \mathbf{S}_{[j]} & = \begin{pmatrix} \sigma_{\alpha_{[j]}}^2 & \rho_{1,2}\sigma_{\alpha_{[j]}}\sigma_{\beta_{\text{cond}, [j]}} & \rho_{1,3}\sigma_{\alpha_{[j]}}\sigma_{\beta_{\text{rating}, [j]}} \\ & \sigma_{\beta_{\text{cond}, [j]}}^2 & \rho_{2,3}\sigma_{\beta_{\text{cond}, [j]}}\sigma_{\beta_{\text{rating}, [j]}} \\ & & \sigma_{\beta_{\text{rating}, [j]}}^2 \end{pmatrix} \\ & = \begin{pmatrix} \sigma_{\alpha_{[j]}}^2 & & \\ & \sigma_{\beta_{\text{cond}, [j]}}^2 & \\ & & \sigma_{\beta_{\text{rating}, [j]}}^2 \end{pmatrix} \mathbf{R}_{[j]} \begin{pmatrix} \sigma_{\alpha_{[j]}}^2 & & \\ & \sigma_{\beta_{\text{cond}, [j]}}^2 & \\ & & \sigma_{\beta_{\text{rating}, [j]}}^2 \end{pmatrix} \end{aligned} \]
and
\[\alpha \sim \text{Student t}(3, \mu_{y}, 2.5)\] \[\beta_{i} \sim \text{Student t}(3, 0, 2.5)\] \[\sigma \sim \text{Half Student}(3, 0, 2.5)\] \[\nu_{[j]} \sim \text{Gamma}(3.325, 1)\] \[\sigma_{\alpha_{[j]}} \sim \text{Half Student}(3, 0, 2.5)\] \[\sigma_{\beta_{i, [j]}} \sim \text{Half Student}(3, 0, 2.5)\] \[\mathbf{R}_{[j]} \sim \text{LKJcorr}(2)\]
notice that \(\mu_{y}\) is the sample mean of response; \(i=\text{cond, rating}\), \(j=\text{subj, roi}\); and \(\text{subj}=1,2,...,N\), \(\text{roi}=1,2,...,M_{n}\). \(N\) is the number of participants; \(M_{n}\) is the number of ROI for \(nth\) participant.