Summaries

Times

TTC Stats by Time Type

## 
##  Descriptive statistics by group 
## group: ttc_Start
##    vars    n mean     sd median trimmed  mad min   max range  skew kurtosis
## X1    1 3014 52.7 757.36      4    7.51 5.93   0 30114 30114 34.57  1273.98
##      se
## X1 13.8
## ------------------------------------------------------------ 
## group: ttc_End
##    vars    n  mean     sd median trimmed  mad min   max range  skew kurtosis se
## X1    1 3014 56.51 768.83      5    8.84 5.93   0 30115 30115 33.32   1201.7 14
## ------------------------------------------------------------ 
## group: TimetoComplete
##    vars    n mean     sd median trimmed  mad min  max range  skew kurtosis   se
## X1    1 3014 3.81 108.71      1    0.61 1.48   0 5884  5884 52.69  2838.52 1.98


TTC_Start by Exam


## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean    sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 820 24.3 91.07      4    7.54 5.93   0 1248  1248 9.11   101.91 3.18
## ------------------------------------------------------------ 
## group: 2
##    vars   n  mean     sd median trimmed  mad min   max range  skew kurtosis
## X1    1 898 71.89 1058.3      3     6.9 4.45   0 30114 30114 26.23   726.57
##       se
## X1 35.32
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean     sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 853   32 141.44      5     8.3 7.41   0 1918  1918 9.13    92.64 4.84
## ------------------------------------------------------------ 
## group: 4
##    vars   n   mean      sd median trimmed  mad min   max range  skew kurtosis
## X1    1 443 106.26 1255.87      3    7.65 4.45   0 25833 25833 19.54      395
##       se
## X1 59.67

Symptom Measures

PTQ Scores

## df$PTQscore 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2978       36       58    0.999    20.41    14.88        1        3 
##      .25      .50      .75      .90      .95 
##       10       20       29       38       43 
## 
## lowest :  0  1  2  3  4, highest: 53 54 55 56 60

PTQ by Cohort

## 
##  Descriptive statistics by group 
## group: 3000
##    vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 620 20.11 12.07     19    19.7 13.34   0  60    60 0.26    -0.71 0.48
## ------------------------------------------------------------ 
## group: 4000
##    vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 924 20.78 12.99     21   20.22 14.83   0  60    60 0.31    -0.52 0.43
## ------------------------------------------------------------ 
## group: 5000
##    vars    n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 1434 20.29 13.49     19   19.67 14.83   0  60    60 0.34    -0.58 0.36

PTQ by Exam

## 
##  Descriptive statistics by group 
## group: 3000
##    vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 620 20.11 12.07     19    19.7 13.34   0  60    60 0.26    -0.71 0.48
## ------------------------------------------------------------ 
## group: 4000
##    vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 924 20.78 12.99     21   20.22 14.83   0  60    60 0.31    -0.52 0.43
## ------------------------------------------------------------ 
## group: 5000
##    vars    n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 1434 20.29 13.49     19   19.67 14.83   0  60    60 0.34    -0.58 0.36

GAD_i by Cohort

## 
##  Descriptive statistics by group 
## group: 3000
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 475 4.61 4.75      4    3.87 4.45   0  21    21 1.25     1.31 0.22
## ------------------------------------------------------------ 
## group: 4000
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 458 5.57 5.26      4    4.82 4.45   0  21    21 1.08      0.5 0.25
## ------------------------------------------------------------ 
## group: 5000
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 985 6.29 5.39      5    5.66 5.93   0  21    21 0.89     0.08 0.17

GAD_i by Exam

## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean sd median trimmed  mad min max range skew kurtosis   se
## X1    1 580 6.02  5      5    5.45 4.45   0  21    21 0.93     0.39 0.21
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 528  5.8 5.31      4    5.12 4.45   0  21    21 0.99     0.23 0.23
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 508 5.61 5.35      5    4.84 5.93   0  21    21 1.07     0.48 0.24
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 302 5.05 5.39      4    4.18 5.93   0  21    21 1.18     0.77 0.31

DEP_i by Cohort

## 
##  Descriptive statistics by group 
## group: 3000
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 475 4.92 5.04      4    4.17 5.93   0  24    24 1.11     0.79 0.23
## ------------------------------------------------------------ 
## group: 4000
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 456 5.46 5.47      4    4.64 5.93   0  27    27 1.19     1.12 0.26
## ------------------------------------------------------------ 
## group: 5000
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 975    6 5.27      5    5.38 5.93   0  25    25 0.88     0.08 0.17

DEP_i by Exam

## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 580 5.84 5.12      5    5.24 5.93   0  27    27 0.94     0.59 0.21
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 524 5.84 5.5      4    5.08 4.45   0  25    25 1.06      0.5 0.24
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 500 5.49 5.2      4    4.78 4.45   0  24    24 1.04      0.5 0.23
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 302 4.91 5.26      3    4.12 4.45   0  21    21 1.02     0.25 0.3

Predictions

Prediction 1

## df$Prediction_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2538      476       69    0.988    72.51    17.69       40       50 
##      .25      .50      .75      .90      .95 
##       65       75       85       90       92 
## 
## lowest :   0   2   3   5   6, highest:  95  96  97  98 100

Prediction 2

## df$Prediction_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2773      241       80    0.989    69.29    18.61       34       50 
##      .25      .50      .75      .90      .95 
##       60       70       80       90       90 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  98 100

Are Predictions 1 and 2 different?

## 
##  Paired t-test
## 
## data:  df$Prediction_1 and df$Prediction_2
## t = 17.642, df = 2536, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  2.441838 3.052526
## sample estimates:
## mean of the differences 
##                2.747182

All observations

TTC Start

## df$ttc_Start 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3014        0      226    0.982     52.7    97.33        0        0 
##      .25      .50      .75      .90      .95 
##        0        4       12       51      114 
## 
## lowest :     0     1     2     3     4, highest:  1998  4852  9298 25833 30114
##                                                                 
## Value          0   500  1000  1500  2000  5000  9500 26000 30000
## Frequency   2948    40    10    10     2     1     1     1     1
## Proportion 0.978 0.013 0.003 0.003 0.001 0.000 0.000 0.000 0.000
## 
## For the frequency table, variable is rounded to the nearest 500

Cut off 1 (< 1,440 mins)

TTC Start

## ttcmod$ttc_Start 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3002        0      214    0.982    25.16    42.65      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      4.0     12.0     48.0    106.9 
## 
## lowest :    0    1    2    3    4, highest: 1248 1256 1284 1354 1387

TTC Start and PTQ

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ PTQscore + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 46485.9
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.221 -0.092 -0.049 -0.005 50.485 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)      0     0.0   
##  Residual             353379   594.5   
## Number of obs: 2978, groups:  ID, 919
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)   -5.234     20.225 2976.000  -0.259  0.79580   
## PTQscore       2.298      0.835 2976.000   2.752  0.00595 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## PTQscore -0.843
## convergence code: 0
## boundary (singular) fit: see ?isSingular

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ PTQ_C + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 10760.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7269 -0.6128 -0.1572  0.4601  6.0826 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7294   0.854   
##  Residual             1.6510   1.285   
## Number of obs: 2978, groups:  ID, 919
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.732e+00  3.711e-02 8.790e+02  46.665   <2e-16 ***
## PTQ_C       5.144e-03  2.821e-03 9.062e+02   1.823   0.0686 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## PTQ_C -0.004

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ PTQ_C + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 35073.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0107 -0.2050 -0.1620 -0.0985 13.5779 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1080     32.87   
##  Residual             6991     83.61   
## Number of obs: 2969, groups:  ID, 918
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  23.6786     1.8959 899.2271  12.490   <2e-16 ***
## PTQ_C         0.2575     0.1449 934.2009   1.777   0.0759 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## PTQ_C 0.001

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ PTQ_C + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 10548.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8641 -0.6176 -0.1580  0.4774  3.8414 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.729    0.8538  
##  Residual             1.533    1.2381  
## Number of obs: 2969, groups:  ID, 918
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.712e+00  3.659e-02 8.847e+02  46.776   <2e-16 ***
## PTQ_C       4.201e-03  2.784e-03 9.112e+02   1.509    0.132    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## PTQ_C -0.003

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ PTQ_C + (1 | ID)
##    Data: ttcmodz
## 
## REML criterion at convergence: 36056.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4152 -0.1841 -0.1484 -0.0958 13.8797 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1646     40.57   
##  Residual             9461     97.27   
## Number of obs: 2973, groups:  ID, 918
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  25.7162     2.2510 903.2912  11.424   <2e-16 ***
## PTQ_C         0.2204     0.1720 937.3858   1.281      0.2    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## PTQ_C 0.001

TTC Start and GAD_i (recorded at each exam)

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ GAD_i + exam_num + cohort + (1 | ID)
##    Data: df_g
## 
## REML criterion at convergence: 26955.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4481 -0.0684 -0.0027  0.0418 14.3765 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 903640   950.60  
##  Residual               9974    99.87  
## Number of obs: 1918, groups:  ID, 728
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)  219.9535    79.0922  724.4299   2.781  0.00556 **
## GAD_i         -0.4416     0.9587 1219.1223  -0.461  0.64517   
## exam_num2      0.2502     6.6852 1182.1331   0.037  0.97015   
## exam_num3      8.7295     6.8010 1182.3764   1.284  0.19955   
## exam_num4     10.1107     7.9778 1181.0175   1.267  0.20527   
## cohort4000  -193.6228   101.4845  717.2259  -1.908  0.05680 . 
## cohort5000  -200.2065    93.5285  715.9339  -2.141  0.03264 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) GAD_i  exm_n2 exm_n3 exm_n4 ch4000
## GAD_i      -0.064                                   
## exam_num2  -0.044  0.068                            
## exam_num3  -0.047  0.129  0.522                     
## exam_num4  -0.049  0.129  0.422  0.437              
## cohort4000 -0.775 -0.007  0.008  0.009  0.019       
## cohort5000 -0.839 -0.019 -0.006 -0.008  0.000  0.655

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ GAD_i + exam_num + cohort + (1 | ID)
##    Data: df_g
## 
## REML criterion at convergence: 6792.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1662 -0.6147 -0.2444  0.4695  4.6938 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.5376   0.7332  
##  Residual             1.5803   1.2571  
## Number of obs: 1918, groups:  ID, 728
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  2.359e+00  1.042e-01  9.419e+02  22.645  < 2e-16 ***
## GAD_i        1.085e-02  7.039e-03  1.388e+03   1.541  0.12342    
## exam_num2   -1.512e-01  7.869e-02  1.432e+03  -1.922  0.05486 .  
## exam_num3    6.869e-02  7.993e-02  1.438e+03   0.859  0.39030    
## exam_num4    6.273e-02  9.565e-02  1.378e+03   0.656  0.51202    
## cohort4000  -3.787e-01  1.182e-01  6.948e+02  -3.205  0.00141 ** 
## cohort5000  -1.226e+00  1.032e-01  5.686e+02 -11.880  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) GAD_i  exm_n2 exm_n3 exm_n4 ch4000
## GAD_i      -0.349                                   
## exam_num2  -0.375  0.035                            
## exam_num3  -0.381  0.062  0.494                     
## exam_num4  -0.397  0.078  0.415  0.421              
## cohort4000 -0.639 -0.044  0.066  0.077  0.186       
## cohort5000 -0.620 -0.118 -0.041 -0.051  0.012  0.602

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ GAD_i + exam_num + cohort + (1 | ID)
##    Data: ttcmod_g
## 
## REML criterion at convergence: 23033.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9383 -0.2105 -0.1359 -0.0500 12.1830 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1801     42.44   
##  Residual             8420     91.76   
## Number of obs: 1916, groups:  ID, 727
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   35.4916     7.0194  801.2941   5.056  5.3e-07 ***
## GAD_i          1.0175     0.4814 1110.6958   2.114  0.03477 *  
## exam_num2     -6.3421     5.6937 1327.6859  -1.114  0.26553    
## exam_num3      1.3914     5.7854 1338.3075   0.240  0.80998    
## exam_num4      6.8152     6.9404 1264.9399   0.982  0.32631    
## cohort4000   -15.2818     7.8413  544.6101  -1.949  0.05182 .  
## cohort5000   -21.9029     6.7796  420.1642  -3.231  0.00133 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) GAD_i  exm_n2 exm_n3 exm_n4 ch4000
## GAD_i      -0.354                                   
## exam_num2  -0.403  0.032                            
## exam_num3  -0.407  0.055  0.490                     
## exam_num4  -0.423  0.073  0.415  0.420              
## cohort4000 -0.625 -0.045  0.069  0.081  0.200       
## cohort5000 -0.597 -0.121 -0.042 -0.052  0.012  0.593

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ GAD_i + exam_num + cohort + (1 | ID)
##    Data: ttcmod_g
## 
## REML criterion at convergence: 6732.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2076 -0.6179 -0.2436  0.4795  4.0473 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.5322   0.7295  
##  Residual             1.5314   1.2375  
## Number of obs: 1916, groups:  ID, 727
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  2.336e+00  1.031e-01  9.498e+02  22.656  < 2e-16 ***
## GAD_i        1.171e-02  6.953e-03  1.404e+03   1.685  0.09228 .  
## exam_num2   -1.503e-01  7.750e-02  1.440e+03  -1.939  0.05264 .  
## exam_num3    5.539e-02  7.877e-02  1.447e+03   0.703  0.48207    
## exam_num4    4.612e-02  9.426e-02  1.385e+03   0.489  0.62475    
## cohort4000  -3.578e-01  1.170e-01  7.063e+02  -3.059  0.00231 ** 
## cohort5000  -1.208e+00  1.023e-01  5.804e+02 -11.811  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) GAD_i  exm_n2 exm_n3 exm_n4 ch4000
## GAD_i      -0.349                                   
## exam_num2  -0.374  0.035                            
## exam_num3  -0.379  0.062  0.493                     
## exam_num4  -0.393  0.078  0.415  0.421              
## cohort4000 -0.641 -0.044  0.065  0.077  0.184       
## cohort5000 -0.622 -0.117 -0.041 -0.051  0.010  0.603

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ GAD_i + (1 | ID)
##    Data: ttcmodz_g
## 
## REML criterion at convergence: 23075.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0277 -0.1975 -0.1489 -0.0928 12.0529 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1876     43.32   
##  Residual             8418     91.75   
## Number of obs: 1916, groups:  ID, 727
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   21.3794     3.8677  703.2155   5.528 4.57e-08 ***
## GAD_i          0.7808     0.4788 1121.4465   1.631    0.103    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## GAD_i -0.716
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ GAD_i + cohort + exam_num + (1 | ID)
##    Data: ttcmodz_g
## 
## REML criterion at convergence: 23033.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9383 -0.2105 -0.1359 -0.0500 12.1830 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1801     42.44   
##  Residual             8420     91.76   
## Number of obs: 1916, groups:  ID, 727
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   35.4916     7.0194  801.2941   5.056  5.3e-07 ***
## GAD_i          1.0175     0.4814 1110.6958   2.114  0.03477 *  
## cohort4000   -15.2818     7.8413  544.6101  -1.949  0.05182 .  
## cohort5000   -21.9029     6.7796  420.1642  -3.231  0.00133 ** 
## exam_num2     -6.3421     5.6937 1327.6859  -1.114  0.26553    
## exam_num3      1.3914     5.7854 1338.3075   0.240  0.80998    
## exam_num4      6.8152     6.9404 1264.9399   0.982  0.32631    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) GAD_i  ch4000 ch5000 exm_n2 exm_n3
## GAD_i      -0.354                                   
## cohort4000 -0.625 -0.045                            
## cohort5000 -0.597 -0.121  0.593                     
## exam_num2  -0.403  0.032  0.069 -0.042              
## exam_num3  -0.407  0.055  0.081 -0.052  0.490       
## exam_num4  -0.423  0.073  0.200  0.012  0.415  0.420

AICs

AIC(mod_all)
## [1] 26973.94
AIC(mod_all_log)
## [1] 6810.401
AIC(mod_cut1)
## [1] 23051.14
AIC(mod_cut1_log)
## [1] 6750.401
AIC(mod_cut2_simple)
## [1] 23083.09
AIC(mod_cut2)
## [1] 23051.14

TTC Start and DEP_i (PHQ recorded at each exam)

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ DEP_i + cohort + exam_num + (1 | ID)
##    Data: df_d
## 
## REML criterion at convergence: 26791.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4585 -0.0733 -0.0028  0.0476 14.4304 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 905648   951.66  
##  Residual               9872    99.36  
## Number of obs: 1906, groups:  ID, 727
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)  214.3995    79.1860  723.8489   2.708  0.00694 **
## DEP_i          0.4695     0.9650 1209.5262   0.487  0.62664   
## cohort4000  -192.4443   101.5931  716.3247  -1.894  0.05859 . 
## cohort5000  -201.6099    93.6582  714.7891  -2.153  0.03168 * 
## exam_num2      1.1936     6.6618 1171.1119   0.179  0.85784   
## exam_num3     11.0084     6.7625 1170.8516   1.628  0.10382   
## exam_num4     11.7559     7.9231 1169.9046   1.484  0.13815   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) DEP_i  ch4000 ch5000 exm_n2 exm_n3
## DEP_i      -0.066                                   
## cohort4000 -0.775 -0.004                            
## cohort5000 -0.839 -0.012  0.655                     
## exam_num2  -0.039 -0.003  0.009 -0.005              
## exam_num3  -0.044  0.075  0.010 -0.006  0.514       
## exam_num4  -0.048  0.110  0.019  0.001  0.413  0.431

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ DEP_i + cohort + exam_num + (1 | ID)
##    Data: df_d
## 
## REML criterion at convergence: 6751.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2270 -0.6154 -0.2444  0.4847  4.6755 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.5362   0.7323  
##  Residual             1.5823   1.2579  
## Number of obs: 1906, groups:  ID, 727
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  2.318e+00  1.046e-01  9.383e+02  22.168  < 2e-16 ***
## DEP_i        1.756e-02  7.006e-03  1.351e+03   2.506  0.01232 *  
## cohort4000  -3.712e-01  1.182e-01  6.883e+02  -3.141  0.00175 ** 
## cohort5000  -1.223e+00  1.028e-01  5.599e+02 -11.895  < 2e-16 ***
## exam_num2   -1.559e-01  7.887e-02  1.420e+03  -1.977  0.04828 *  
## exam_num3    8.258e-02  8.027e-02  1.420e+03   1.029  0.30375    
## exam_num4    6.909e-02  9.569e-02  1.362e+03   0.722  0.47038    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) DEP_i  ch4000 ch5000 exm_n2 exm_n3
## DEP_i      -0.358                                   
## cohort4000 -0.645 -0.021                            
## cohort5000 -0.634 -0.076  0.600                     
## exam_num2  -0.364  0.006  0.067 -0.036              
## exam_num3  -0.375  0.044  0.081 -0.045  0.489       
## exam_num4  -0.395  0.072  0.189  0.016  0.412  0.419

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ DEP_i + cohort + exam_num + (1 | ID)
##    Data: ttcmod_d
## 
## REML criterion at convergence: 22896.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0221 -0.2120 -0.1334 -0.0445 12.1205 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1894     43.52   
##  Residual             8397     91.63   
## Number of obs: 1904, groups:  ID, 726
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   34.2143     7.0956  778.9413   4.822 1.71e-06 ***
## DEP_i          1.1946     0.4813 1073.6708   2.482  0.01321 *  
## cohort4000   -14.5960     7.9089  525.8569  -1.846  0.06552 .  
## cohort5000   -21.4672     6.8212  404.2270  -3.147  0.00177 ** 
## exam_num2     -6.4496     5.7004 1298.9035  -1.131  0.25809    
## exam_num3      1.9068     5.8045 1303.5361   0.329  0.74259    
## exam_num4      7.1189     6.9350 1230.4285   1.027  0.30485    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) DEP_i  ch4000 ch5000 exm_n2 exm_n3
## DEP_i      -0.362                                   
## cohort4000 -0.633 -0.020                            
## cohort5000 -0.614 -0.077  0.592                     
## exam_num2  -0.389  0.006  0.070 -0.037              
## exam_num3  -0.399  0.041  0.084 -0.046  0.486       
## exam_num4  -0.417  0.069  0.201  0.015  0.412  0.418

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ DEP_i + cohort + exam_num + (1 | ID)
##    Data: ttcmod_d
## 
## REML criterion at convergence: 6692.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2651 -0.6136 -0.2457  0.4895  4.0269 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.5308   0.7286  
##  Residual             1.5335   1.2384  
## Number of obs: 1904, groups:  ID, 726
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    2.29857    0.10347  946.29403  22.215  < 2e-16 ***
## DEP_i          0.01774    0.00692 1367.15302   2.563  0.01047 *  
## cohort4000    -0.34981    0.11696  699.34143  -2.991  0.00288 ** 
## cohort5000    -1.20377    0.10191  571.27032 -11.813  < 2e-16 ***
## exam_num2     -0.15529    0.07768 1428.13831  -1.999  0.04578 *  
## exam_num3      0.06861    0.07910 1429.25964   0.867  0.38589    
## exam_num4      0.05174    0.09430 1368.62315   0.549  0.58334    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) DEP_i  ch4000 ch5000 exm_n2 exm_n3
## DEP_i      -0.358                                   
## cohort4000 -0.646 -0.021                            
## cohort5000 -0.636 -0.075  0.601                     
## exam_num2  -0.363  0.006  0.067 -0.036              
## exam_num3  -0.373  0.045  0.080 -0.045  0.489       
## exam_num4  -0.391  0.072  0.186  0.014  0.412  0.418

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ DEP_i + cohort + exam_num + (1 | ID)
##    Data: ttcmodz_d
## 
## REML criterion at convergence: 22896.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0221 -0.2120 -0.1334 -0.0445 12.1205 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1894     43.52   
##  Residual             8397     91.63   
## Number of obs: 1904, groups:  ID, 726
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   34.2143     7.0956  778.9413   4.822 1.71e-06 ***
## DEP_i          1.1946     0.4813 1073.6708   2.482  0.01321 *  
## cohort4000   -14.5960     7.9089  525.8569  -1.846  0.06552 .  
## cohort5000   -21.4672     6.8212  404.2270  -3.147  0.00177 ** 
## exam_num2     -6.4496     5.7004 1298.9035  -1.131  0.25809    
## exam_num3      1.9068     5.8045 1303.5361   0.329  0.74259    
## exam_num4      7.1189     6.9350 1230.4285   1.027  0.30485    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) DEP_i  ch4000 ch5000 exm_n2 exm_n3
## DEP_i      -0.362                                   
## cohort4000 -0.633 -0.020                            
## cohort5000 -0.614 -0.077  0.592                     
## exam_num2  -0.389  0.006  0.070 -0.037              
## exam_num3  -0.399  0.041  0.084 -0.046  0.486       
## exam_num4  -0.417  0.069  0.201  0.015  0.412  0.418

AICs

AIC(mod_all)
## [1] 26809.48
AIC(mod_all_log)
## [1] 6769.784
AIC(mod_cut1)
## [1] 22914.92
AIC(mod_cut1_log)
## [1] 6710.157
AIC(mod_cut2)
## [1] 22914.92

TTC Start and GAD_i by Prediction 2

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ GAD_i + Prediction_2 + exam_num + cohort + (1 | ID)
##    Data: df_g
## 
## REML criterion at convergence: 21431.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1382 -0.1877 -0.0962 -0.0077 11.0047 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 4420     66.48   
##  Residual             6876     82.92   
## Number of obs: 1783, groups:  ID, 714
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    62.0818    14.1851 1327.0738   4.377  1.3e-05 ***
## GAD_i           0.8907     0.5482 1266.1969   1.625   0.1045    
## Prediction_2   -0.3696     0.1599 1687.8382  -2.311   0.0210 *  
## exam_num2      -2.9780     5.6159 1012.4710  -0.530   0.5960    
## exam_num3       3.8157     5.7954  982.2799   0.658   0.5104    
## exam_num4       9.1437     6.8333  925.0681   1.338   0.1812    
## cohort4000    -15.7824     9.4187  400.0436  -1.676   0.0946 .  
## cohort5000    -23.9761     8.4646  335.7663  -2.833   0.0049 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GAD_i  Prdc_2 exm_n2 exm_n3 exm_n4 ch4000
## GAD_i       -0.313                                          
## Predictin_2 -0.817  0.144                                   
## exam_num2   -0.077  0.040 -0.153                            
## exam_num3   -0.248  0.106  0.047  0.515                     
## exam_num4   -0.075  0.086 -0.168  0.465  0.447              
## cohort4000  -0.385 -0.053  0.006  0.063  0.091  0.160       
## cohort5000  -0.457 -0.114  0.122 -0.088 -0.078 -0.046  0.603

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ GAD_i + Prediction_2 + exam_num + cohort + (1 |  
##     ID)
##    Data: df_g
## 
## REML criterion at convergence: 6237
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9755 -0.6093 -0.2311  0.4734  4.1402 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.5678   0.7535  
##  Residual             1.4648   1.2103  
## Number of obs: 1783, groups:  ID, 714
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   2.696e+00  1.909e-01  1.456e+03  14.125  < 2e-16 ***
## GAD_i         7.368e-03  7.341e-03  1.334e+03   1.004  0.31572    
## Prediction_2 -4.581e-03  2.181e-03  1.631e+03  -2.100  0.03588 *  
## exam_num2    -1.448e-01  8.071e-02  1.354e+03  -1.795  0.07296 .  
## exam_num3     9.522e-03  8.339e-02  1.335e+03   0.114  0.90910    
## exam_num4     1.868e-02  9.861e-02  1.281e+03   0.189  0.84977    
## cohort4000   -3.869e-01  1.199e-01  6.732e+02  -3.226  0.00132 ** 
## cohort5000   -1.226e+00  1.066e-01  5.585e+02 -11.500  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GAD_i  Prdc_2 exm_n2 exm_n3 exm_n4 ch4000
## GAD_i       -0.322                                          
## Predictin_2 -0.831  0.154                                   
## exam_num2   -0.100  0.038 -0.140                            
## exam_num3   -0.264  0.099  0.050  0.511                     
## exam_num4   -0.092  0.080 -0.161  0.462  0.445              
## cohort4000  -0.359 -0.055  0.004  0.068  0.100  0.182       
## cohort5000  -0.430 -0.119  0.128 -0.093 -0.082 -0.047  0.589

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ GAD_i + Prediction_2 + exam_num + cohort + (1 | ID)
##    Data: ttcmod_g
## 
## REML criterion at convergence: 21431.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1382 -0.1877 -0.0962 -0.0077 11.0047 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 4420     66.48   
##  Residual             6876     82.92   
## Number of obs: 1783, groups:  ID, 714
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    62.0818    14.1851 1327.0738   4.377  1.3e-05 ***
## GAD_i           0.8907     0.5482 1266.1969   1.625   0.1045    
## Prediction_2   -0.3696     0.1599 1687.8382  -2.311   0.0210 *  
## exam_num2      -2.9780     5.6159 1012.4710  -0.530   0.5960    
## exam_num3       3.8157     5.7954  982.2799   0.658   0.5104    
## exam_num4       9.1437     6.8333  925.0681   1.338   0.1812    
## cohort4000    -15.7824     9.4187  400.0436  -1.676   0.0946 .  
## cohort5000    -23.9761     8.4646  335.7663  -2.833   0.0049 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GAD_i  Prdc_2 exm_n2 exm_n3 exm_n4 ch4000
## GAD_i       -0.313                                          
## Predictin_2 -0.817  0.144                                   
## exam_num2   -0.077  0.040 -0.153                            
## exam_num3   -0.248  0.106  0.047  0.515                     
## exam_num4   -0.075  0.086 -0.168  0.465  0.447              
## cohort4000  -0.385 -0.053  0.006  0.063  0.091  0.160       
## cohort5000  -0.457 -0.114  0.122 -0.088 -0.078 -0.046  0.603

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ GAD_i + Prediction_2 + exam_num + cohort + (1 |  
##     ID)
##    Data: ttcmod_g
## 
## REML criterion at convergence: 6237
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9755 -0.6093 -0.2311  0.4734  4.1402 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.5678   0.7535  
##  Residual             1.4648   1.2103  
## Number of obs: 1783, groups:  ID, 714
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   2.696e+00  1.909e-01  1.456e+03  14.125  < 2e-16 ***
## GAD_i         7.368e-03  7.341e-03  1.334e+03   1.004  0.31572    
## Prediction_2 -4.581e-03  2.181e-03  1.631e+03  -2.100  0.03588 *  
## exam_num2    -1.448e-01  8.071e-02  1.354e+03  -1.795  0.07296 .  
## exam_num3     9.522e-03  8.339e-02  1.335e+03   0.114  0.90910    
## exam_num4     1.868e-02  9.861e-02  1.281e+03   0.189  0.84977    
## cohort4000   -3.869e-01  1.199e-01  6.732e+02  -3.226  0.00132 ** 
## cohort5000   -1.226e+00  1.066e-01  5.585e+02 -11.500  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GAD_i  Prdc_2 exm_n2 exm_n3 exm_n4 ch4000
## GAD_i       -0.322                                          
## Predictin_2 -0.831  0.154                                   
## exam_num2   -0.100  0.038 -0.140                            
## exam_num3   -0.264  0.099  0.050  0.511                     
## exam_num4   -0.092  0.080 -0.161  0.462  0.445              
## cohort4000  -0.359 -0.055  0.004  0.068  0.100  0.182       
## cohort5000  -0.430 -0.119  0.128 -0.093 -0.082 -0.047  0.589

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ GAD_i + (1 | ID)
##    Data: ttcmodz_g
## 
## REML criterion at convergence: 23075.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0277 -0.1975 -0.1489 -0.0928 12.0529 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1876     43.32   
##  Residual             8418     91.75   
## Number of obs: 1916, groups:  ID, 727
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   21.3794     3.8677  703.2155   5.528 4.57e-08 ***
## GAD_i          0.7808     0.4788 1121.4465   1.631    0.103    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## GAD_i -0.716
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ GAD_i + Prediction_2 + cohort + exam_num + (1 | ID)
##    Data: ttcmodz_g
## 
## REML criterion at convergence: 21431.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1382 -0.1877 -0.0962 -0.0077 11.0047 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 4420     66.48   
##  Residual             6876     82.92   
## Number of obs: 1783, groups:  ID, 714
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    62.0818    14.1851 1327.0738   4.377  1.3e-05 ***
## GAD_i           0.8907     0.5482 1266.1969   1.625   0.1045    
## Prediction_2   -0.3696     0.1599 1687.8382  -2.311   0.0210 *  
## cohort4000    -15.7824     9.4187  400.0436  -1.676   0.0946 .  
## cohort5000    -23.9761     8.4646  335.7663  -2.833   0.0049 ** 
## exam_num2      -2.9780     5.6159 1012.4710  -0.530   0.5960    
## exam_num3       3.8157     5.7954  982.2799   0.658   0.5104    
## exam_num4       9.1437     6.8333  925.0681   1.338   0.1812    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GAD_i  Prdc_2 ch4000 ch5000 exm_n2 exm_n3
## GAD_i       -0.313                                          
## Predictin_2 -0.817  0.144                                   
## cohort4000  -0.385 -0.053  0.006                            
## cohort5000  -0.457 -0.114  0.122  0.603                     
## exam_num2   -0.077  0.040 -0.153  0.063 -0.088              
## exam_num3   -0.248  0.106  0.047  0.091 -0.078  0.515       
## exam_num4   -0.075  0.086 -0.168  0.160 -0.046  0.465  0.447

AICs

AIC(mod_all)
## [1] 21451.66
AIC(mod_all_log)
## [1] 6257.043
AIC(mod_cut1)
## [1] 21451.66
AIC(mod_cut1_log)
## [1] 6257.043
AIC(mod_cut2_simple)
## [1] 23083.09
AIC(mod_cut2)
## [1] 21451.66

TTC Start and DEP_i by Prediction 2

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ DEP_i + Prediction_2 + cohort + exam_num + (1 | ID)
##    Data: df_d
## 
## REML criterion at convergence: 21309.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0690 -0.1882 -0.0955 -0.0067 10.9747 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 4409     66.40   
##  Residual             6929     83.24   
## Number of obs: 1772, groups:  ID, 713
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    59.6845    14.2830 1322.0019   4.179 3.12e-05 ***
## DEP_i           1.0943     0.5357 1260.3773   2.043  0.04127 *  
## Prediction_2   -0.3552     0.1607 1676.6986  -2.210  0.02721 *  
## cohort4000    -15.3307     9.4192  400.2588  -1.628  0.10440    
## cohort5000    -23.2706     8.4348  334.1498  -2.759  0.00612 ** 
## exam_num2      -3.4052     5.6438 1009.3275  -0.603  0.54640    
## exam_num3       3.8019     5.8212  964.1478   0.653  0.51385    
## exam_num4       9.0692     6.8482  912.8676   1.324  0.18573    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DEP_i  Prdc_2 ch4000 ch5000 exm_n2 exm_n3
## DEP_i       -0.323                                          
## Predictin_2 -0.818  0.152                                   
## cohort4000  -0.392 -0.022  0.010                            
## cohort5000  -0.475 -0.056  0.132  0.601                     
## exam_num2   -0.065 -0.002 -0.157  0.065 -0.083              
## exam_num3   -0.240  0.069  0.046  0.096 -0.067  0.508       
## exam_num4   -0.069  0.064 -0.171  0.164 -0.040  0.461  0.443

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ DEP_i + Prediction_2 + cohort + exam_num + (1 |  
##     ID)
##    Data: df_d
## 
## REML criterion at convergence: 6201.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9523 -0.6102 -0.2319  0.4757  4.1224 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.5633   0.7506  
##  Residual             1.4693   1.2122  
## Number of obs: 1772, groups:  ID, 713
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   2.624e+00  1.918e-01  1.447e+03  13.685  < 2e-16 ***
## DEP_i         1.423e-02  7.158e-03  1.326e+03   1.988  0.04704 *  
## Prediction_2 -4.140e-03  2.187e-03  1.621e+03  -1.893  0.05848 .  
## cohort4000   -3.827e-01  1.197e-01  6.698e+02  -3.196  0.00146 ** 
## cohort5000   -1.222e+00  1.060e-01  5.537e+02 -11.526  < 2e-16 ***
## exam_num2    -1.508e-01  8.091e-02  1.347e+03  -1.864  0.06253 .  
## exam_num3     2.179e-02  8.362e-02  1.316e+03   0.261  0.79442    
## exam_num4     2.160e-02  9.863e-02  1.267e+03   0.219  0.82671    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DEP_i  Prdc_2 ch4000 ch5000 exm_n2 exm_n3
## DEP_i       -0.332                                          
## Predictin_2 -0.832  0.161                                   
## cohort4000  -0.367 -0.023  0.009                            
## cohort5000  -0.450 -0.059  0.139  0.587                     
## exam_num2   -0.089  0.002 -0.144  0.070 -0.088              
## exam_num3   -0.257  0.067  0.049  0.106 -0.072  0.505       
## exam_num4   -0.086  0.062 -0.164  0.186 -0.042  0.459  0.441

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ DEP_i + Prediction_2 + cohort + exam_num + (1 | ID)
##    Data: ttcmod_d
## 
## REML criterion at convergence: 21309.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0690 -0.1882 -0.0955 -0.0067 10.9747 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 4409     66.40   
##  Residual             6929     83.24   
## Number of obs: 1772, groups:  ID, 713
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    59.6845    14.2830 1322.0019   4.179 3.12e-05 ***
## DEP_i           1.0943     0.5357 1260.3773   2.043  0.04127 *  
## Prediction_2   -0.3552     0.1607 1676.6986  -2.210  0.02721 *  
## cohort4000    -15.3307     9.4192  400.2588  -1.628  0.10440    
## cohort5000    -23.2706     8.4348  334.1498  -2.759  0.00612 ** 
## exam_num2      -3.4052     5.6438 1009.3275  -0.603  0.54640    
## exam_num3       3.8019     5.8212  964.1478   0.653  0.51385    
## exam_num4       9.0692     6.8482  912.8676   1.324  0.18573    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DEP_i  Prdc_2 ch4000 ch5000 exm_n2 exm_n3
## DEP_i       -0.323                                          
## Predictin_2 -0.818  0.152                                   
## cohort4000  -0.392 -0.022  0.010                            
## cohort5000  -0.475 -0.056  0.132  0.601                     
## exam_num2   -0.065 -0.002 -0.157  0.065 -0.083              
## exam_num3   -0.240  0.069  0.046  0.096 -0.067  0.508       
## exam_num4   -0.069  0.064 -0.171  0.164 -0.040  0.461  0.443

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ DEP_i + Prediction_2 + cohort + exam_num + (1 |  
##     ID)
##    Data: ttcmod_d
## 
## REML criterion at convergence: 6201.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9523 -0.6102 -0.2319  0.4757  4.1224 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.5633   0.7506  
##  Residual             1.4693   1.2122  
## Number of obs: 1772, groups:  ID, 713
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   2.624e+00  1.918e-01  1.447e+03  13.685  < 2e-16 ***
## DEP_i         1.423e-02  7.158e-03  1.326e+03   1.988  0.04704 *  
## Prediction_2 -4.140e-03  2.187e-03  1.621e+03  -1.893  0.05848 .  
## cohort4000   -3.827e-01  1.197e-01  6.698e+02  -3.196  0.00146 ** 
## cohort5000   -1.222e+00  1.060e-01  5.537e+02 -11.526  < 2e-16 ***
## exam_num2    -1.508e-01  8.091e-02  1.347e+03  -1.864  0.06253 .  
## exam_num3     2.179e-02  8.362e-02  1.316e+03   0.261  0.79442    
## exam_num4     2.160e-02  9.863e-02  1.267e+03   0.219  0.82671    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DEP_i  Prdc_2 ch4000 ch5000 exm_n2 exm_n3
## DEP_i       -0.332                                          
## Predictin_2 -0.832  0.161                                   
## cohort4000  -0.367 -0.023  0.009                            
## cohort5000  -0.450 -0.059  0.139  0.587                     
## exam_num2   -0.089  0.002 -0.144  0.070 -0.088              
## exam_num3   -0.257  0.067  0.049  0.106 -0.072  0.505       
## exam_num4   -0.086  0.062 -0.164  0.186 -0.042  0.459  0.441

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ DEP_i + Prediction_2 + cohort + exam_num + (1 | ID)
##    Data: ttcmodz_d
## 
## REML criterion at convergence: 21309.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0690 -0.1882 -0.0955 -0.0067 10.9747 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 4409     66.40   
##  Residual             6929     83.24   
## Number of obs: 1772, groups:  ID, 713
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    59.6845    14.2830 1322.0019   4.179 3.12e-05 ***
## DEP_i           1.0943     0.5357 1260.3773   2.043  0.04127 *  
## Prediction_2   -0.3552     0.1607 1676.6986  -2.210  0.02721 *  
## cohort4000    -15.3307     9.4192  400.2588  -1.628  0.10440    
## cohort5000    -23.2706     8.4348  334.1498  -2.759  0.00612 ** 
## exam_num2      -3.4052     5.6438 1009.3275  -0.603  0.54640    
## exam_num3       3.8019     5.8212  964.1478   0.653  0.51385    
## exam_num4       9.0692     6.8482  912.8676   1.324  0.18573    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DEP_i  Prdc_2 ch4000 ch5000 exm_n2 exm_n3
## DEP_i       -0.323                                          
## Predictin_2 -0.818  0.152                                   
## cohort4000  -0.392 -0.022  0.010                            
## cohort5000  -0.475 -0.056  0.132  0.601                     
## exam_num2   -0.065 -0.002 -0.157  0.065 -0.083              
## exam_num3   -0.240  0.069  0.046  0.096 -0.067  0.508       
## exam_num4   -0.069  0.064 -0.171  0.164 -0.040  0.461  0.443

AICs

AIC(mod_all)
## [1] 21329.57
AIC(mod_all_log)
## [1] 6221.205
AIC(mod_cut1)
## [1] 21329.57
AIC(mod_cut1_log)
## [1] 6221.205
AIC(mod_cut2)
## [1] 21329.57

TTC Start and Prediction 1

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 39714.3
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.109 -0.061 -0.053 -0.035 49.597 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)    299.3  17.3   
##  Residual             366999.4 605.8   
## Number of obs: 2538, groups:  ID, 895
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)     5.1393    53.4076 2155.8490   0.096    0.923
## Prediction_1    0.4258     0.7176 2142.9259   0.593    0.553
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.974

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_1 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 9033.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8354 -0.6038 -0.1375  0.4591  6.3639 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7085   0.8417  
##  Residual             1.5344   1.2387  
## Number of obs: 2538, groups:  ID, 895
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.754e+00  1.368e-01  2.382e+03  12.820   <2e-16 ***
## Prediction_1 -1.033e-03  1.831e-03  2.443e+03  -0.564    0.573    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.961

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 29830.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2894 -0.1953 -0.1414 -0.0790 13.3815 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1392     37.31   
##  Residual             6435     80.22   
## Number of obs: 2534, groups:  ID, 895
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    41.4579     8.1201 2224.0079   5.106 3.58e-07 ***
## Prediction_1   -0.2624     0.1090 2259.1388  -2.406   0.0162 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.967

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_1 + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 8929.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9271 -0.6128 -0.1415  0.4716  3.9560 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7144   0.8452  
##  Residual             1.4650   1.2104  
## Number of obs: 2534, groups:  ID, 895
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.750e+00  1.347e-01  2.391e+03  12.989   <2e-16 ***
## Prediction_1 -1.113e-03  1.802e-03  2.452e+03  -0.617    0.537    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.960

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + (1 | ID)
##    Data: ttcmodz
## 
## REML criterion at convergence: 30629.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0456 -0.1907 -0.1416 -0.0848 14.2807 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1429     37.81   
##  Residual             9026     95.00   
## Number of obs: 2537, groups:  ID, 895
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    46.9423     9.3374 2160.0583   5.027 5.38e-07 ***
## Prediction_1   -0.3137     0.1255 2184.3578  -2.500   0.0125 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.969

TTC Start and Prediction 1 (controlling for confidence)

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + Prediction_1_confidence + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 39640.1
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.126 -0.064 -0.049 -0.029 49.524 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)    493.4  22.21  
##  Residual             367611.4 606.31  
## Number of obs: 2533, groups:  ID, 895
## 
## Fixed effects:
##                          Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)              -16.4236    62.6258 2055.1585  -0.262    0.793
## Prediction_1               0.4425     0.7221 2129.4239   0.613    0.540
## Prediction_1_confidence    0.3319     0.4961 2036.1465   0.669    0.504
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.853       
## Prdctn_1_cn -0.514  0.034

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_1 + Prediction_1_confidence + (1 |      ID)
##    Data: df
## 
## REML criterion at convergence: 9020.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8349 -0.6160 -0.1367  0.4627  6.4087 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7142   0.8451  
##  Residual             1.5267   1.2356  
## Number of obs: 2533, groups:  ID, 895
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              1.873e+00  1.616e-01  2.364e+03  11.590   <2e-16 ***
## Prediction_1            -1.231e-03  1.840e-03  2.437e+03  -0.669    0.503    
## Prediction_1_confidence -1.767e-03  1.274e-03  2.432e+03  -1.387    0.166    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.844       
## Prdctn_1_cn -0.527  0.054

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + Prediction_1_confidence + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 29778.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2717 -0.1948 -0.1403 -0.0799 13.3761 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1391     37.30   
##  Residual             6451     80.32   
## Number of obs: 2529, groups:  ID, 895
## 
## Fixed effects:
##                          Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)               39.0301     9.5802 2156.6099   4.074 4.79e-05 ***
## Prediction_1              -0.2635     0.1097 2245.8162  -2.401   0.0164 *  
## Prediction_1_confidence    0.0407     0.0759 2198.8953   0.536   0.5918    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.848       
## Prdctn_1_cn -0.523  0.046

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_1 + Prediction_1_confidence + (1 |      ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 8914.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9418 -0.6239 -0.1428  0.4763  3.9572 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7212   0.8492  
##  Residual             1.4557   1.2065  
## Number of obs: 2529, groups:  ID, 895
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              1.901e+00  1.591e-01  2.376e+03  11.952   <2e-16 ***
## Prediction_1            -1.348e-03  1.811e-03  2.447e+03  -0.745   0.4566    
## Prediction_1_confidence -2.246e-03  1.254e-03  2.442e+03  -1.790   0.0736 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.843       
## Prdctn_1_cn -0.527  0.054

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + Prediction_1_confidence + (1 | ID)
##    Data: ttcmodz
## 
## REML criterion at convergence: 30575.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0327 -0.1914 -0.1398 -0.0838 14.2376 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1430     37.82   
##  Residual             9042     95.09   
## Number of obs: 2532, groups:  ID, 895
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               40.84194   11.01009 2076.60215   3.710 0.000213 ***
## Prediction_1              -0.31189    0.12625 2170.57257  -2.470 0.013575 *  
## Prediction_1_confidence    0.09729    0.08719 2106.13564   1.116 0.264633    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.849       
## Prdctn_1_cn -0.522  0.045

TTC Start and Prediction 2

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_2 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 9920.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8233 -0.6072 -0.1479  0.4600  6.2899 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7455   0.8634  
##  Residual             1.5624   1.2499  
## Number of obs: 2773, groups:  ID, 912
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.851e+00  1.251e-01  2.550e+03  14.797   <2e-16 ***
## Prediction_2 -2.117e-03  1.738e-03  2.655e+03  -1.218    0.223    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_2 -0.954

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 32726
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6281 -0.1916 -0.1334 -0.0733 12.8535 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1733     41.63   
##  Residual             6677     81.72   
## Number of obs: 2766, groups:  ID, 911
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    42.6107     7.5891 2275.4459   5.615 2.21e-08 ***
## Prediction_2   -0.2766     0.1059 2369.8943  -2.611  0.00908 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_2 -0.961

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_2 + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 9756.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9288 -0.6156 -0.1491  0.4743  3.9445 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7374   0.8587  
##  Residual             1.4717   1.2131  
## Number of obs: 2766, groups:  ID, 911
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.836e+00  1.223e-01  2.560e+03  15.010   <2e-16 ***
## Prediction_2 -2.151e-03  1.698e-03  2.665e+03  -1.267    0.205    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_2 -0.953

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + (1 | ID)
##    Data: ttcmodz
## 
## REML criterion at convergence: 33685.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0455 -0.1766 -0.1276 -0.0765 13.6272 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 2274     47.69   
##  Residual             9372     96.81   
## Number of obs: 2770, groups:  ID, 911
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    44.0262     8.9174 2307.4650   4.937  8.5e-07 ***
## Prediction_2   -0.2666     0.1245 2389.8709  -2.141   0.0324 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_2 -0.961

TTC Start and Prediction 2 (controlling for confidence)

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + Prediction_2_confidence + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 33600.3
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.106 -0.061 -0.043 -0.026 44.979 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)      0     0.0   
##  Residual             446722   668.4   
## Number of obs: 2121, groups:  ID, 729
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)              7.061e+01  6.918e+01  2.118e+03   1.021    0.308
## Prediction_2             5.305e-03  8.259e-01  2.118e+03   0.006    0.995
## Prediction_2_confidence -5.962e-01  5.888e-01  2.118e+03  -1.013    0.311
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.848       
## Prdctn_2_cn -0.543  0.068
## convergence code: 0
## boundary (singular) fit: see ?isSingular

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_2 + Prediction_2_confidence + (1 |      ID)
##    Data: df
## 
## REML criterion at convergence: 7567.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5982 -0.6379 -0.1526  0.4473  6.3130 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.6027   0.7763  
##  Residual             1.5996   1.2648  
## Number of obs: 2121, groups:  ID, 729
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              1.918e+00  1.628e-01  1.847e+03  11.778   <2e-16 ***
## Prediction_2            -3.368e-03  1.915e-03  1.973e+03  -1.759   0.0788 .  
## Prediction_2_confidence -2.768e-03  1.417e-03  1.738e+03  -1.954   0.0509 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.832       
## Prdctn_2_cn -0.554  0.071

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + Prediction_2_confidence + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 24846.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0227 -0.1797 -0.1151 -0.0548 13.4893 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1654     40.66   
##  Residual             5967     77.25   
## Number of obs: 2118, groups:  ID, 729
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               35.53532    9.57452 1663.65955   3.711 0.000213 ***
## Prediction_2              -0.30626    0.11295 1819.95217  -2.712 0.006761 ** 
## Prediction_2_confidence    0.09972    0.08307 1499.41761   1.200 0.230151    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.835       
## Prdctn_2_cn -0.553  0.070

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_2 + Prediction_2_confidence + (1 |      ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 7469.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7248 -0.6364 -0.1544  0.4621  3.9695 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.6223   0.7889  
##  Residual             1.5108   1.2292  
## Number of obs: 2118, groups:  ID, 729
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              1.889e+00  1.603e-01  1.869e+03  11.783   <2e-16 ***
## Prediction_2            -3.215e-03  1.882e-03  1.993e+03  -1.708   0.0877 .  
## Prediction_2_confidence -2.602e-03  1.396e-03  1.769e+03  -1.863   0.0626 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.831       
## Prdctn_2_cn -0.555  0.071

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + Prediction_2_confidence + (1 | ID)
##    Data: ttcmodz
## 
## REML criterion at convergence: 25159.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7769 -0.1850 -0.1214 -0.0591 15.7424 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1408     37.52   
##  Residual             7213     84.93   
## Number of obs: 2119, groups:  ID, 729
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               35.20375   10.12268 1609.84737   3.478 0.000519 ***
## Prediction_2              -0.33299    0.11978 1747.99741  -2.780 0.005494 ** 
## Prediction_2_confidence    0.14589    0.08747 1433.61040   1.668 0.095557 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.839       
## Prdctn_2_cn -0.551  0.070

TTC Start and Prediction change

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 39697.5
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.276 -0.058 -0.049 -0.033 49.585 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)    342.3  18.5   
##  Residual             367008.7 605.8   
## Number of obs: 2537, groups:  ID, 895
## 
## Fixed effects:
##                                Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)                      31.828     12.762 1242.785   2.494   0.0128 *
## I(Prediction_1 - Prediction_2)    1.526      1.535 2508.266   0.995   0.3201  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.330

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 9028.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8407 -0.6038 -0.1352  0.4589  6.3446 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7052   0.8398  
##  Residual             1.5357   1.2392  
## Number of obs: 2537, groups:  ID, 895
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    1.676e+00  3.928e-02 9.396e+02  42.666   <2e-16
## I(Prediction_1 - Prediction_2) 1.533e-03  3.591e-03 2.430e+03   0.427    0.669
##                                   
## (Intercept)                    ***
## I(Prediction_1 - Prediction_2)    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.257

Cut off 1 (< 1,440 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 29823.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2356 -0.1880 -0.1497 -0.0923 13.2679 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1402     37.45   
##  Residual             6446     80.29   
## Number of obs: 2533, groups:  ID, 895
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                      22.0554     2.1497  955.5948  10.260   <2e-16
## I(Prediction_1 - Prediction_2)    0.1809     0.2218 2518.4852   0.815    0.415
##                                   
## (Intercept)                    ***
## I(Prediction_1 - Prediction_2)    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.288

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 8924.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9336 -0.6132 -0.1357  0.4736  3.9556 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7111   0.8433  
##  Residual             1.4663   1.2109  
## Number of obs: 2533, groups:  ID, 895
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    1.666e+00  3.897e-02 9.388e+02  42.758   <2e-16
## I(Prediction_1 - Prediction_2) 1.574e-03  3.525e-03 2.418e+03   0.447    0.655
##                                   
## (Intercept)                    ***
## I(Prediction_1 - Prediction_2)    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.255

Cut off 2 (z <= 2.5)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: ttcmodz
## 
## REML criterion at convergence: 30623.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9795 -0.1818 -0.1553 -0.1017 14.3060 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1434     37.87   
##  Residual             9050     95.13   
## Number of obs: 2536, groups:  ID, 895
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    2.416e+01  2.414e+00 9.333e+02  10.009   <2e-16
## I(Prediction_1 - Prediction_2) 5.851e-02  2.582e-01 2.532e+03   0.227    0.821
##                                   
## (Intercept)                    ***
## I(Prediction_1 - Prediction_2)    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.297