The purpose of this assignment is to use the methods of section 2.5.8 as a template to recreate the choropleth of median housing values done in the March 1 notes.
library("yarrr")
## Warning: package 'yarrr' was built under R version 4.0.4
## Loading required package: jpeg
## Loading required package: BayesFactor
## Warning: package 'BayesFactor' was built under R version 4.0.4
## Loading required package: coda
## Warning: package 'coda' was built under R version 4.0.4
## Loading required package: Matrix
## ************
## Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).
##
## Type BFManual() to open the manual.
## ************
## Loading required package: circlize
## Warning: package 'circlize' was built under R version 4.0.4
## ========================================
## circlize version 0.4.12
## CRAN page: https://cran.r-project.org/package=circlize
## Github page: https://github.com/jokergoo/circlize
## Documentation: https://jokergoo.github.io/circlize_book/book/
##
## If you use it in published research, please cite:
## Gu, Z. circlize implements and enhances circular visualization
## in R. Bioinformatics 2014.
##
## This message can be suppressed by:
## suppressPackageStartupMessages(library(circlize))
## ========================================
## yarrr v0.1.5. Citation info at citation('yarrr'). Package guide at yarrr.guide()
## Email me at Nathaniel.D.Phillips.is@gmail.com
library("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library("knitr")
library(tidycensus)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.0.6 v stringr 1.4.0
## v tidyr 1.1.2 v forcats 0.5.1
## v readr 1.4.0
## Warning: package 'stringr' was built under R version 4.0.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x tidyr::unpack() masks Matrix::unpack()
library(tmap)
## Warning: package 'tmap' was built under R version 4.0.4
library(tmaptools)
## Warning: package 'tmaptools' was built under R version 4.0.4
install.packages(c("classInt", "tmap"))
## Warning: package 'tmap' is in use and will not be installed
## Installing package into 'C:/Users/Ken/Documents/R/win-library/4.0'
## (as 'lib' is unspecified)
## package 'classInt' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'classInt'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying C:
## \Users\Ken\Documents\R\win-library\4.0\00LOCK\classInt\libs\x64\classInt.dll
## to C:\Users\Ken\Documents\R\win-library\4.0\classInt\libs\x64\classInt.dll:
## Permission denied
## Warning: restored 'classInt'
##
## The downloaded binary packages are in
## C:\Users\Ken\AppData\Local\Temp\RtmpYBkwBx\downloaded_packages
# might also need these ones
install.packages(c("RColorBrewer", "sp", "rgeos",
"tmaptools", "sf", "downloader", "rgdal",
"geojsonio"))
## Warning: package 'tmaptools' is in use and will not be installed
## Installing packages into 'C:/Users/Ken/Documents/R/win-library/4.0'
## (as 'lib' is unspecified)
## also installing the dependencies 'triebeard', 'geometries', 'jsonify', 'rapidjsonr', 'sfheaders', 'urltools', 'httpcode', 'protolite', 'geojsonsf', 'crul', 'V8', 'geojson', 'jqr'
## package 'triebeard' successfully unpacked and MD5 sums checked
## package 'geometries' successfully unpacked and MD5 sums checked
## package 'jsonify' successfully unpacked and MD5 sums checked
## package 'rapidjsonr' successfully unpacked and MD5 sums checked
## package 'sfheaders' successfully unpacked and MD5 sums checked
## package 'urltools' successfully unpacked and MD5 sums checked
## package 'httpcode' successfully unpacked and MD5 sums checked
## package 'protolite' successfully unpacked and MD5 sums checked
## package 'geojsonsf' successfully unpacked and MD5 sums checked
## package 'crul' successfully unpacked and MD5 sums checked
## package 'V8' successfully unpacked and MD5 sums checked
## package 'geojson' successfully unpacked and MD5 sums checked
## package 'jqr' successfully unpacked and MD5 sums checked
## package 'RColorBrewer' successfully unpacked and MD5 sums checked
## package 'sp' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'sp'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying C:
## \Users\Ken\Documents\R\win-library\4.0\00LOCK\sp\libs\x64\sp.dll to C:
## \Users\Ken\Documents\R\win-library\4.0\sp\libs\x64\sp.dll: Permission denied
## Warning: restored 'sp'
## package 'rgeos' successfully unpacked and MD5 sums checked
## package 'sf' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'sf'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying C:
## \Users\Ken\Documents\R\win-library\4.0\00LOCK\sf\libs\x64\sf.dll to C:
## \Users\Ken\Documents\R\win-library\4.0\sf\libs\x64\sf.dll: Permission denied
## Warning: restored 'sf'
## package 'downloader' successfully unpacked and MD5 sums checked
## package 'rgdal' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'rgdal'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying C:
## \Users\Ken\Documents\R\win-library\4.0\00LOCK\rgdal\libs\x64\rgdal.dll to C:
## \Users\Ken\Documents\R\win-library\4.0\rgdal\libs\x64\rgdal.dll: Permission
## denied
## Warning: restored 'rgdal'
## package 'geojsonio' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\Ken\AppData\Local\Temp\RtmpYBkwBx\downloaded_packages
Copy the code from the March 22 notes to reproduce the choropleth.
library(tidycensus)
library(tidyverse)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
library(acs)
## Warning: package 'acs' was built under R version 4.0.4
## Loading required package: XML
## Warning: package 'XML' was built under R version 4.0.4
##
## Attaching package: 'acs'
## The following object is masked from 'package:dplyr':
##
## combine
## The following object is masked from 'package:base':
##
## apply
library(tigris)
## To enable
## caching of data, set `options(tigris_use_cache = TRUE)` in your R script or .Rprofile.
library(leaflet)
library(mapview)
## Warning: package 'mapview' was built under R version 4.0.4
## GDAL version >= 3.1.0 | setting mapviewOptions(fgb = TRUE)
library(stringr)
library(ggplot2)
library(tmap)
library(tigris)
wa_counties <- counties(state = "WA",)
##
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========= | 14%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================ | 24%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================= | 34%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|============================== | 44%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|===================================== | 54%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================ | 64%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|=================================================== | 74%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|========================================================== | 84%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================= | 94%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
th_value <- get_acs(geography = "tract", state = "WA",
variable = c(Value = "B25077_001"),
geometry = TRUE)
## Getting data from the 2015-2019 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
##
|
| | 0%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|====== | 8%
|
|======= | 10%
|
|======== | 12%
|
|========= | 14%
|
|=========== | 16%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|================= | 24%
|
|================== | 26%
|
|=================== | 27%
|
|==================== | 29%
|
|====================== | 31%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 36%
|
|============================ | 40%
|
|============================= | 42%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================= | 47%
|
|=================================== | 50%
|
|==================================== | 52%
|
|===================================== | 52%
|
|======================================= | 55%
|
|======================================== | 57%
|
|========================================== | 61%
|
|============================================ | 63%
|
|============================================== | 66%
|
|================================================ | 68%
|
|================================================== | 71%
|
|=================================================== | 73%
|
|===================================================== | 76%
|
|======================================================= | 78%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|================================================================ | 92%
|
|================================================================== | 94%
|
|==================================================================== | 97%
|
|======================================================================| 100%
th_value %>%
ggplot(aes(fill = estimate)) +
geom_sf() +
theme_void() +
ggtitle("Median Owner Occupied Housing Value")
Use qtm() to produce a simple choropleth.
# Place your code here.
qtm(th_value,
fill = "estimate")
## Warning: The shape th_value contains empty units.
## Warning: package 'sf' was built under R version 4.0.4
## Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1
Use the code in section 2.5.8 as a template to create a better choropleth.
# Place your code here.
tmapwa <- th_value %>%
st_bbox(.) %>%
tmaptools::read_osm(., type = "osm", zoom = NULL)
tmap_mode("plot")
## tmap mode set to plotting
tm_shape(tmapwa)+
tm_rgb()+
tm_shape(th_value) +
tm_polygons("estimate",
style="jenks",
palette="YlOrBr",
midpoint=NA,
title="Rate per 1,000 people",
alpha = 0.5) +
tm_compass(position = c("left", "bottom"),type = "arrow") +
tm_scale_bar(position = c("left", "bottom")) +
tm_layout(title = "Median Housing Value", legend.position = c("right", "bottom"))
## Warning: The shape th_value contains empty units.