pacman::p_load(rvest, ggplot2, tidyverse, knitr) #Loading packages
#Specifying the url for desired website to be scraped
url <- 'http://www.imdb.com/search/title?count=100&release_date=2016,2016&title_type=feature'
webpage <- read_html(url) #Reading the HTML code from the website
rank_data_html <- html_nodes(webpage,'.text-primary') # Using CSS selectors to scrape the rankings section
rank_data <- html_text(rank_data_html) # Convert the ranking data to text
head(rank_data) # look at ranking data
## [1] "1." "2." "3." "4." "5." "6."
rank_data <- as.numeric(rank_data) # Convert rankings to numeric
head(rank_data)
## [1] 1 2 3 4 5 6
length(rank_data)
## [1] 100
title_data_html <- html_nodes(webpage,'.lister-item-header a') #Using CSS selectors to scrape the title section
title_data <- html_text(title_data_html) #Converting the title data to text
head(title_data)
## [1] "Batman v Superman: Dawn of Justice" "Suicide Squad"
## [3] "Captain America: Civil War" "Captain Fantastic"
## [5] "Deadpool" "Nocturnal Animals"
length(title_data)
## [1] 100
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted') # scrape the description section
description_data <- html_text(description_data_html) # convert to text
length(description_data) # look at description data
## [1] 100
head(description_data)
## [1] "\n Fearing that the actions of Superman are left unchecked, Batman takes on the Man of Steel, while the world wrestles with what kind of a hero it really needs."
## [2] "\n A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [3] "\n Political involvement in the Avengers' affairs causes a rift between Captain America and Iron Man."
## [4] "\n In the forests of the Pacific Northwest, a father devoted to raising his six kids with a rigorous physical and intellectual education is forced to leave his paradise and enter the world, challenging his idea of what it means to be a parent."
## [5] "\n A wisecracking mercenary gets experimented on and becomes immortal but ugly, and sets out to track down the man who ruined his looks."
## [6] "\n A wealthy art gallery owner is haunted by her ex-husband's novel, a violent thriller she interprets as a symbolic revenge tale."
description_data<-gsub("\n","",description_data) # clean data: remove '\n'
head(description_data) # another look at the description data
## [1] " Fearing that the actions of Superman are left unchecked, Batman takes on the Man of Steel, while the world wrestles with what kind of a hero it really needs."
## [2] " A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [3] " Political involvement in the Avengers' affairs causes a rift between Captain America and Iron Man."
## [4] " In the forests of the Pacific Northwest, a father devoted to raising his six kids with a rigorous physical and intellectual education is forced to leave his paradise and enter the world, challenging his idea of what it means to be a parent."
## [5] " A wisecracking mercenary gets experimented on and becomes immortal but ugly, and sets out to track down the man who ruined his looks."
## [6] " A wealthy art gallery owner is haunted by her ex-husband's novel, a violent thriller she interprets as a symbolic revenge tale."
runtime_data_html <- html_nodes(webpage,'.text-muted .runtime') # scrape the movie runtile section
runtime_data <- html_text(runtime_data_html) # convert to text
length(runtime_data)
## [1] 100
head(runtime_data)
## [1] "152 min" "123 min" "147 min" "118 min" "108 min" "116 min"
runtime_data<-gsub(" min","",runtime_data) # remove 'mins' and convert to numeric
runtime_data<-as.numeric(runtime_data)
head(runtime_data)
## [1] 152 123 147 118 108 116
genre_data_html <- html_nodes(webpage,'.genre') # scrape the movie genre section and convert to text
genre_data <- html_text(genre_data_html)
length(genre_data)
## [1] 100
head(genre_data)
## [1] "\nAction, Adventure, Sci-Fi "
## [2] "\nAction, Adventure, Fantasy "
## [3] "\nAction, Adventure, Sci-Fi "
## [4] "\nComedy, Drama "
## [5] "\nAction, Adventure, Comedy "
## [6] "\nDrama, Thriller "
genre_data<-gsub("\n","",genre_data) # remove \n and extra spaces
genre_data<-gsub(" ","",genre_data)
genre_data<-gsub(",.*","",genre_data) # take only the first genre
genre_data<-as.factor(genre_data) # convert from text to factor
head(genre_data)
## [1] Action Action Action Comedy Action Drama
## Levels: Action Adventure Animation Biography Comedy Crime Drama Horror
rating_data_html <- html_nodes(webpage,'.ratings-imdb-rating strong') # scrape rating section
rating_data <- html_text(rating_data_html) # convert to text
length(rating_data)
## [1] 100
head(rating_data)
## [1] "6.4" "6.0" "7.8" "7.9" "8.0" "7.5"
rating_data<-as.numeric(rating_data) # convert to numeric
head(rating_data)
## [1] 6.4 6.0 7.8 7.9 8.0 7.5
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)') # scrape votes section
votes_data <- html_text(votes_data_html) # convert to text
length(votes_data)
## [1] 100
head(votes_data)
## [1] "641,742" "611,108" "675,299" "194,178" "913,147" "242,786"
votes_data<-gsub(",","",votes_data) # remove commas
votes_data<-as.numeric(votes_data) # convert to numeric
head(votes_data)
## [1] 641742 611108 675299 194178 913147 242786
directors_data_html <- html_nodes(webpage,'.text-muted+ p a:nth-child(1)') # scrape directors section
directors_data <- html_text(directors_data_html) # convert to text
length(directors_data)
## [1] 100
head(directors_data)
## [1] "Zack Snyder" "David Ayer" "Anthony Russo" "Matt Ross"
## [5] "Tim Miller" "Tom Ford"
directors_data<-as.factor(directors_data) # convert to factor
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a') # scrape actors section
actors_data <- html_text(actors_data_html) # convert to text
length(actors_data)
## [1] 100
head(actors_data)
## [1] "Ben Affleck" "Will Smith" "Chris Evans" "Viggo Mortensen"
## [5] "Ryan Reynolds" "Amy Adams"
actors_data<-as.factor(actors_data) # convert to factor
This is the way it’s done in the tutorial.
metascore_data_html <- html_nodes(webpage,'.metascore') # scrape metascore section
metascore_data <- html_text(metascore_data_html) # convert to text
metascore_data<-gsub(" ","",metascore_data) # remove extra space
length(metascore_data)
## [1] 98
metascore_data
## [1] "44" "40" "75" "72" "65" "67" "72" "81" "81" "74" "62" "52" "70" "65" "94"
## [16] "78" "57" "71" "84" "82" "79" "57" "25" "96" "44" "67" "68" "51" "66" "99"
## [31] "59" "81" "72" "48" "41" "71" "69" "51" "48" "54" "65" "58" "66" "47" "32"
## [46] "46" "49" "88" "21" "32" "76" "51" "33" "36" "51" "78" "78" "34" "66" "79"
## [61] "42" "40" "60" "60" "66" "33" "28" "77" "42" "55" "45" "59" "42" "83" "47"
## [76] "26" "58" "36" "77" "67" "64" "68" "60" "77" "69" "70" "66" "55" "18" "74"
## [91] "62" "81" "52" "93" "64" "42" "23" "72"
Movies #14 and #57 are missing metascore. The metascore is part of the ratings bar in the html. Scrape the ratings bar data and extract the metascore with a regular expression. This will give the NA values in context.
ratings_bar_data <- html_nodes(webpage,'.ratings-bar') %>% # scrape the ratings bar and convert to text
html_text2()
head(ratings_bar_data) # look at the ratings bar
## [1] "6.4\nRate this\n 1 2 3 4 5 6 7 8 9 10 6.4/10 X \n44 Metascore"
## [2] "6.0\nRate this\n 1 2 3 4 5 6 7 8 9 10 6/10 X \n40 Metascore"
## [3] "7.8\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.8/10 X \n75 Metascore"
## [4] "7.9\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.9/10 X \n72 Metascore"
## [5] "8.0\nRate this\n 1 2 3 4 5 6 7 8 9 10 8/10 X \n65 Metascore"
## [6] "7.5\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.5/10 X \n67 Metascore"
metascore_data <- str_match(ratings_bar_data, "\\d{2} Metascore") %>% # extract Metascore
str_match("\\d{2}") %>%
as.numeric() # convert to number
length(metascore_data)
## [1] 100
metascore_data
## [1] 44 40 75 72 65 67 72 81 81 74 62 52 70 NA 65 94 78 57 71 84 82 79 57 25 96
## [26] 44 67 68 51 66 99 59 81 72 48 41 71 69 51 48 54 65 58 66 47 32 46 49 88 21
## [51] 32 76 51 33 36 51 NA 78 78 34 66 79 42 40 60 60 66 33 28 77 42 55 45 59 42
## [76] 83 47 26 58 36 77 67 64 68 60 77 69 70 66 55 18 74 62 81 52 93 64 42 23 72
summary(metascore_data) # summary statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 18.00 47.00 63.00 59.91 72.00 99.00 2
This is the way it’s done in the tutorial.
gross_data_html <- html_nodes(webpage,'.ghost~ .text-muted+ span') # scrape gross earnings section
gross_data <- html_text(gross_data_html) # convert to text
gross_data<-gsub("M","",gross_data) # remove 'M'
gross_data<-substring(gross_data,2,6) # remove '$' sign
length(gross_data)
## [1] 93
head(gross_data)
## [1] "330.3" "325.1" "408.0" "5.88" "363.0" "10.64"
Movies #14, 58, 64, 75, 82, 90, 94 are missing earnings. Earnings are part of the votes bar in the html, scrape the votes bar and extract earnings with a regular expression to get the NAs in context.
# scrape the votess bar and convert to text
votes_bar_data <- html_nodes(webpage,'.sort-num_votes-visible') %>%
html_text2()
head(votes_bar_data) # look at the votes bar data
## [1] "Votes: 641,742 | Gross: $330.36M" "Votes: 611,108 | Gross: $325.10M"
## [3] "Votes: 675,299 | Gross: $408.08M" "Votes: 194,178 | Gross: $5.88M"
## [5] "Votes: 913,147 | Gross: $363.07M" "Votes: 242,786 | Gross: $10.64M"
gross_data <- str_match(votes_bar_data, "\\$.+$") # extract the gross earnings
gross_data <- gsub("M","",gross_data) # clean data: remove 'M' sign
gross_data <- substring(gross_data,2,6) %>% # clean data: remove '$' sign
as.numeric()
length(gross_data)
## [1] 100
gross_data
## [1] 330.30 325.10 408.00 5.88 363.00 10.64 232.60 100.50 248.70 169.60
## [11] 138.20 155.40 36.26 NA 532.10 151.10 341.20 87.24 67.21 2.01
## [21] 0.23 5.02 43.03 31.15 47.70 126.60 1.91 158.80 56.25 234.00
## [31] 27.85 270.40 5.20 2.13 75.40 100.00 89.22 51.74 86.26 52.85
## [41] 93.43 102.40 162.40 55.48 8.11 47.37 65.08 10.38 26.86 35.59
## [51] 103.10 72.08 1.33 34.92 54.65 46.01 12.39 NA 8.58 14.90
## [61] 12.79 7.10 34.34 NA 113.20 128.30 97.69 66.18 62.68 364.00
## [71] 45.54 153.70 10.91 55.12 NA 3.37 58.70 18.71 21.59 14.27
## [81] 14.43 NA 3.44 61.43 40.10 486.30 31.89 3.02 15.43 NA
## [91] 32.46 125.00 0.18 NA 12.63 1.48 4.21 35.82 30.35 30.08
summary(gross_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.18 14.27 47.70 89.49 103.10 532.10 7
# Combining all the lists to form a tibble
movies_df<- tibble('Rank' = rank_data,
'Title' = title_data,
'Description' = description_data,
'Run_time' = runtime_data,
'Genre' = genre_data,
'Rating' = rating_data,
'Metascore' = metascore_data,
'Votes' = votes_data,
'Gross_Earning_in_Mil' = gross_data,
'Director' = directors_data,
'Actor' = actors_data)
str(movies_df) #Structure of the tibble
## tibble [100 x 11] (S3: tbl_df/tbl/data.frame)
## $ Rank : num [1:100] 1 2 3 4 5 6 7 8 9 10 ...
## $ Title : chr [1:100] "Batman v Superman: Dawn of Justice" "Suicide Squad" "Captain America: Civil War" "Captain Fantastic" ...
## $ Description : chr [1:100] " Fearing that the actions of Superman are left unchecked, Batman takes on the Man of Steel, while the world "| __truncated__ " A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defens"| __truncated__ " Political involvement in the Avengers' affairs causes a rift between Captain America and Iron Man." " In the forests of the Pacific Northwest, a father devoted to raising his six kids with a rigorous physical "| __truncated__ ...
## $ Run_time : num [1:100] 152 123 147 118 108 116 115 116 107 127 ...
## $ Genre : Factor w/ 8 levels "Action","Adventure",..: 1 1 1 5 1 7 1 7 3 4 ...
## $ Rating : num [1:100] 6.4 6 7.8 7.9 8 7.5 7.5 7.9 7.6 7.8 ...
## $ Metascore : num [1:100] 44 40 75 72 65 67 72 81 81 74 ...
## $ Votes : num [1:100] 641742 611108 675299 194178 913147 ...
## $ Gross_Earning_in_Mil: num [1:100] 330.3 325.1 408 5.88 363 ...
## $ Director : Factor w/ 98 levels "Alex Proyas",..: 98 23 6 61 93 95 85 26 81 91 ...
## $ Actor : Factor w/ 90 levels "Aamir Khan","Alexander Skarsgård",..: 8 88 20 87 73 3 9 3 7 82 ...
Based on the above data, which movie from which Genre had the longest runtime?
qplot(data = movies_df,Run_time,fill = Genre,bins = 30)
Answer 1: The comedy “Toni Erdmann” with runtime = 162 minutes.
movies_df %>% filter(Run_time == max(Run_time)) %>%
kable()
| Rank | Title | Description | Run_time | Genre | Rating | Metascore | Votes | Gross_Earning_in_Mil | Director | Actor |
|---|---|---|---|---|---|---|---|---|---|---|
| 96 | Toni Erdmann | A practical joking father tries to reconnect with his hard working daughter by creating an outrageous alter ego and posing as her CEO’s life coach. | 162 | Comedy | 7.4 | 93 | 44824 | 1.48 | Maren Ade | Sandra Hüller |
Based on the above data, in the Runtime of 130-160 mins, which genre has the highest votes?
ggplot(movies_df,aes(x=Run_time,y=Rating))+
geom_point(aes(size=Votes,col=Genre))
Answer 2: Action has the most votes.
movies_df %>% filter(Run_time >= 130 & Run_time <= 160) %>%
group_by(Genre) %>%
summarize(Votes = sum(Votes)) %>%
arrange(desc(Votes)) %>%
kable(format = "html")
| Genre | Votes |
|---|---|
| Action | 2679258 |
| Biography | 665280 |
| Drama | 522131 |
| Adventure | 414994 |
| Horror | 281926 |
| Animation | 51425 |
Based on the above data, across all genres which genre has the highest average gross earnings in Run_time 100 to 120.
ggplot(movies_df,aes(x=Run_time,y=Gross_Earning_in_Mil))+
geom_point(aes(size=Rating,col=Genre), na.rm = TRUE)
Answer 3: Animation has the highest average gross earnings of $216.33 million.
movies_df %>%
filter(Run_time >= 100 & Run_time <= 120 & !is.na(Gross_Earning_in_Mil)) %>%
group_by(Genre) %>%
summarize(Avg_earnings = mean(Gross_Earning_in_Mil)) %>%
arrange(desc(Avg_earnings)) %>%
kable(format = "html", digits = 2)
| Genre | Avg_earnings |
|---|---|
| Animation | 216.33 |
| Adventure | 141.56 |
| Crime | 75.40 |
| Horror | 69.76 |
| Action | 66.83 |
| Drama | 52.33 |
| Biography | 35.85 |
| Comedy | 29.41 |