The final marks in a statistics course are normally distributed with a mean of 70 and a standard deviation of 10. The professor must convert all marks to letter grades. She decides that she wants 10% A’s, 30% B’s, 40% C’s, 15% D’s, and 5% F’s. Determine the cutoffs for each letter grade.
A grade 10% des etudiants B grades 30% des etudiants => 40% (A+B) C grades 40% => 80% (A+B+C) D gardes 15% => 95% (A+B+C+D) F gardes 5% => 100% (A+B+C+D+F)
repartition = c(0.10,0.40,0.80,0.95)
round(qnorm(repartition,lower.tail = FALSE)*10+70,0)
## [1] 83 73 62 54
pnorm(54)*10+70
## [1] 80
pnorm(83,70,10,lower.tail = FALSE)
## [1] 0.09680048
pnorm(83,70,10)-pnorm(72,70,10)
## [1] 0.3239398
pnorm(72,70,10)-pnorm(62,70,10)
## [1] 0.3674043
pnorm(62,70,10)-pnorm(53,70,10)
## [1] 0.1672899
pnorm(53,70,10)
## [1] 0.04456546
Ceux qui ont entre 81 et 100 represent 10% des etudiants et auront la note A. Ceux qui ont entre 73 et 81 represent 10% des etudiants et auront la note B. Ceux qui ont entre 62 et 72 represent 10% des etudiants et auront la note C. Ceux qui ont entre 54 et 61 represent 10% des etudiants et auront la note D. Ceux qui ont entre 73 et 81 represent 10% des etudiants et auront la note F.
round(qnorm(0.10,70,10, lower.tail = FALSE))
## [1] 83
round(qnorm(0.40,70,10, lower.tail = FALSE))
## [1] 73
round(qnorm(0.80,70,10, lower.tail = FALSE))
## [1] 62
round(qnorm(0.95,70,10, lower.tail = FALSE))
## [1] 54
round(qnorm(0.05,70,10, lower.tail = TRUE))
## [1] 54
library(ggplot2)
p1 <- ggplot(data = data.frame(x = c(30, 100)), aes(x)) +
stat_function(fun = dnorm, n = 101, args = list(mean = 70, sd = 10),color="red")+ xlab("Marks")+ ylab("Density")
p1
library(kableExtra)
Grade=c(LETTERS[c(1:4,6)])
From=c(82,72,61,53,0)
To=c(100,82,72,61,53)
Perc=c(0.1,0.3,0.4,0.15,0.05)
data.frame(cbind(Grade,From,To,Perc))
## Grade From To Perc
## 1 A 82 100 0.1
## 2 B 72 82 0.3
## 3 C 61 72 0.4
## 4 D 53 61 0.15
## 5 F 0 53 0.05
fdata = data.frame(cbind(Grade,From,To,Perc))
tab = knitr::kable(fdata, caption = "Ex 8.57", digits = 4, col.names = c("Grade","Lower","Higher","percents"),
row.names = 1:5,
align = c("c","c","c","c"), booktabs=TRUE)
## Warning in if (is.na(row.names)) row.names = has_rownames(x): the condition has
## length > 1 and only the first element will be used
## Warning in if (row.names) {: the condition has length > 1 and only the first
## element will be used
tab3=kable_classic (tab, latex_options="hold_position")
tab1 = row_spec(tab, 1:2, bold = TRUE, italic = TRUE,background = "#2EFEF7")
tab2 = row_spec(tab1, 3:4, bold = TRUE, italic = TRUE, background = "#DAFF33")
row_spec(tab2, 5, bold = TRUE, italic = TRUE, background = "#FF5533")
| Grade | Lower | Higher | percents | |
|---|---|---|---|---|
| 1 | A | 82 | 100 | 0.1 |
| 2 | B | 72 | 82 | 0.3 |
| 3 | C | 61 | 72 | 0.4 |
| 4 | D | 53 | 61 | 0.15 |
| 5 | F | 0 | 53 | 0.05 |
res = kbl(fdata)
kable_material_dark(res)
| Grade | From | To | Perc |
|---|---|---|---|
| A | 82 | 100 | 0.1 |
| B | 72 | 82 | 0.3 |
| C | 61 | 72 | 0.4 |
| D | 53 | 61 | 0.15 |
| F | 0 | 53 | 0.05 |
Mensa is an organization whose members possess IQs that are in the top 2% of the population. It is known that IQs are normally distributed with a mean of 100 and a standard deviation of 16. Find the minimum IQ needed to be a Mensa member.
pnorm(.02,100,16, lower.tail = FALSE)
## [1] 1
q=50
pnorm(q,30,10)*0.5 + pnorm(q,40,10)*0.5
## [1] 0.9092973
prop=function(q){pnorm(q,30,10)*0.5 + pnorm(q,40,10)*0.5-0.9}
prop(49.5)
## [1] 0.001677907
uniroot(prop,c(49,50),maxiter = 1000)
## $root
## [1] 49.39365
##
## $f.root
## [1] -1.408408e-10
##
## $iter
## [1] 4
##
## $init.it
## [1] NA
##
## $estim.prec
## [1] 6.103516e-05