library(psych)
library(lmSupport)
## Registered S3 methods overwritten by 'lme4':
## method from
## cooks.distance.influence.merMod car
## influence.merMod car
## dfbeta.influence.merMod car
## dfbetas.influence.merMod car
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
library(ggpubr)
library(lme4)
## Loading required package: Matrix
library(lmerTest)
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
library(lme4)
library(plyr)
##
## Attaching package: 'plyr'
## The following object is masked from 'package:ggpubr':
##
## mutate
library(tidyr)
##
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
##
## expand, pack, unpack
library(sjPlot)
library(splines)
source('http://psych.colorado.edu/~jclab/R/mcSummaryLm.R')
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
library(dfoptim)
library(optimx)
## Warning: package 'optimx' was built under R version 4.0.4
d <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/attention trust/attTrust_full_dataset.csv", header = T, stringsAsFactors = F)
#data for face information
df <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/attention trust/Study 2/face_measures_cleaned.csv", header = T, stringsAsFactors = F)
# contrast codes for phrasing condition
d$trust_.5 <- ifelse(d$condition == "trust", .5, -.5)
#dummy codes for phrasing condition
d$trustYes_0 <- ifelse(d$trust_.5 == .5, 0, 1)
d$trustNo_0 <- ifelse(d$trust_.5 == -.5, 0, 1)
#mean center response time around grand mean
d$respTime_grand_c <- d$respTime - mean(d$respTime)
#objective face measures
dface <- d %>% pivot_longer(c(faceLeft,faceRight), names_to = "faceSide", values_to = "face")
dwidth <- d %>% pivot_longer(c(fWtH_Ratio_L,fWtH_Ratio_R), names_to = "side", values_to = "fWtH_Ratio")
dhead <- d %>% pivot_longer(c(Upper_Head_Length_L,Upper_Head_Length_R), names_to = "side", values_to = "Upper_Head_Length")
dround <- d %>% pivot_longer(c(Face_Roundedness_L,Face_Roundedness_R), names_to = "side", values_to = "Face_Roundedness")
dheart <- d %>% pivot_longer(c(Face_Heartshapeness_L,Face_Heartshapeness_R), names_to = "side", values_to = "Face_Heartshapeness")
dprom <- d %>% pivot_longer(c(Cheekbone_Prominance_L,Cheekbone_Prominance_R), names_to = "side", values_to = "Cheekbone_Prominance")
dheight <- d %>% pivot_longer(c(Cheekbone_Height_L,Cheekbone_Height_R), names_to = "side", values_to = "Cheekbone_Height")
deye <- d %>% pivot_longer(c(Eye_Shape_L,Eye_Shape_R), names_to = "side", values_to = "Eye_Shape")
dsize <- d %>% pivot_longer(c(Eye_Size_L,Eye_Size_R), names_to = "side", values_to = "Eye_Size")
dpupil <- d %>% pivot_longer(c(Pupil_Distance_L,Pupil_Distance_R), names_to = "side", values_to = "Pupil_Distance")
dfull <- d %>% pivot_longer(c(Lip_Fullness_L,Lip_Fullness_R), names_to = "side", values_to = "Lip_Fullness")
dnose <- d %>% pivot_longer(c(Nose_Shape_L,Nose_Shape_R), names_to = "side", values_to = "Nose_Shape")
#subjective face measures
dtrust <- d %>% pivot_longer(c(trustL,trustR), names_to = "ide", values_to = "trust")
dappr <- d %>% pivot_longer(c(apprL,apprR), names_to = "ide", values_to = "appr")
dattr <- d %>% pivot_longer(c(attrL,attrR), names_to = "ide", values_to = "attractive")
dethical <- d %>% pivot_longer(c(ethicL,ethicR), names_to = "ide", values_to = "ethical")
dfamiliar <- d %>% pivot_longer(c(famL,famR), names_to = "ide", values_to = "familiar")
dfem_masc <- d %>% pivot_longer(c(fem_mascL,fem_mascR), names_to = "ide", values_to = "fem_masc")
dfriendly <- d %>% pivot_longer(c(friendL,friendR), names_to = "ide", values_to = "friendly")
dhelp <- d %>% pivot_longer(c(helpL,helpR), names_to = "ide", values_to = "helpful")
dhonest <- d %>% pivot_longer(c(honestL,honestR), names_to = "ide", values_to = "honest")
dmoral <- d %>% pivot_longer(c(moralL,moralR), names_to = "ide", values_to = "moral")
dsincere <- d %>% pivot_longer(c(sincereL,sincereR), names_to = "ide", values_to = "sincere")
# create new long long dataset
d2 <- data.frame(dface$participant)
colnames(d2)[colnames(d2)=="dface.participant"] <- "pt"
d2$trial <- dface$trial
d2$face <- dface$face
d2$cuedFace <- dface$cuedFace
d2$trust_.5 <- dface$trust_.5
d2$trustYes_0 <- dface$trustYes_0
d2$trustNo_0 <- dface$trustNo_0
d2$cuedFaceTrusted_1 <- dface$cuedFaceTrusted_1
d2$stim_female_.5 <- dface$stim_female_.5
d2$pt_female_.5 <- dface$pt_female_.5
d2$sideCuedRight_.5 <- dface$sideCuedRight_.5
d2$fWtH_Ratio <- dwidth$fWtH_Ratio
d2$Upper_Head_Length <- dhead$Upper_Head_Length
d2$Face_Roundedness <- dround$Face_Roundedness
d2$Face_Heartshapeness <- dheart$Face_Heartshapeness
d2$Cheekbone_Prominance <- dprom$Cheekbone_Prominance
d2$Cheekbone_Height <- dheight$Cheekbone_Height
d2$Eye_Shape <- deye$Eye_Shape
d2$Eye_Size <- dsize$Eye_Size
d2$Pupil_Distance <- dpupil$Pupil_Distance
d2$Lip_Fullness <- dfull$Lip_Fullness
d2$Nose_Shape <- dnose$Nose_Shape
d2$trustworthy <- dtrust$trust
d2$ethical <- dethical$ethical
d2$helpful <- dhelp$helpful
d2$honest <- dhonest$honest
d2$moral <- dmoral$moral
d2$sincere <- dsincere$sincere
d2$appr <- dappr$appr #appreciative?
d2$familiar <- dfamiliar$familiar
d2$fem_masc <- dfem_masc$fem_masc
d2$friendly <- dfriendly$friendly
d2$attractive <- dattr$attractive
## average measures of trustworthiness
d2$overallTrust <- ((d2$trustworthy + d2$moral + d2$ethical + d2$helpful + d2$honest + d2$sincere)/6)
psych::alpha(d2[c(23:28)]) #alpha = .98
##
## Reliability analysis
## Call: psych::alpha(x = d2[c(23:28)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.98 0.98 0.98 0.89 49 0.00032 3 0.47 0.89
##
## lower alpha upper 95% confidence boundaries
## 0.98 0.98 0.98
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## trustworthy 0.97 0.97 0.97 0.89 39 0.00041 0.00022 0.88
## ethical 0.98 0.98 0.97 0.89 40 0.00039 0.00018 0.89
## helpful 0.98 0.98 0.97 0.90 43 0.00037 0.00022 0.89
## honest 0.98 0.98 0.97 0.90 43 0.00037 0.00021 0.89
## moral 0.97 0.98 0.97 0.89 39 0.00040 0.00015 0.89
## sincere 0.98 0.98 0.97 0.89 41 0.00039 0.00030 0.89
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## trustworthy 9578 0.96 0.96 0.95 0.95 3.1 0.52
## ethical 9578 0.95 0.96 0.95 0.94 2.9 0.46
## helpful 9578 0.95 0.94 0.93 0.92 2.9 0.51
## honest 9578 0.95 0.95 0.93 0.92 3.0 0.49
## moral 9578 0.96 0.96 0.95 0.94 2.9 0.47
## sincere 9578 0.95 0.95 0.94 0.93 3.0 0.49
m1 <- glmer(cuedFaceTrusted_1 ~ 1 +
(1 | participant), family = binomial(), data = d)
summary(m1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ 1 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 6627.5 6640.4 -3311.7 6623.5 4787
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2110 -1.0128 0.8339 0.9540 1.1528
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.06439 0.2537
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06618 0.03379 1.958 0.0502 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
prop.table(table(d$cuedFaceTrusted_1))
##
## 0 1
## 0.4836083 0.5163917
OR1 = exp(0.06618)
Interpretation: \(\beta_0\): Cued face is trusted with marginal more significance compared with the uncued face (trusted = 51.6%, OR = 1.07, p = .050). ***
m2 <- glmer(cuedFaceTrusted_1 ~ sideCuedRight_.5 +
(1 | participant), family = binomial("logit"), data = d)
summary(m2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ sideCuedRight_.5 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 6629.2 6648.6 -3311.6 6623.2 4786
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2207 -1.0178 0.8400 0.9582 1.1618
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.06452 0.254
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06613 0.03380 1.957 0.0504 .
## sideCuedRight_.5 -0.02966 0.05864 -0.506 0.6130
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## sdCdRght_.5 0.003
ORB1 = exp(0.06613)
ORB2 = exp(-0.02966)
Interpretation: \(\beta_0\): Across side cued, on average, the odds of the cued face being chosen is marginally more significant than the uncued face (OR = 1.07, p = .050).
\(\beta_1\): As you move from left side cued to right side cued,on average there is significant difference in the odds for choosing the cued (OR = .97, p = .613). ***
m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | participant), family = binomial, data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 6626.1 6645.6 -3310.1 6620.1 4786
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2291 -1.0123 0.8211 0.9646 1.1350
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.06075 0.2465
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06196 0.03362 1.843 0.0653 .
## trust_.5 0.12278 0.06725 1.826 0.0679 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.067
exp(0.06196)
## [1] 1.06392
exp(0.12278)
## [1] 1.130636
Interpretation: \(\beta_0\): Across phrasing condition, on average, the odds of the cued face being chosen is marginally more significant than the uncued face (OR = 1.06, p = .065).
\(\beta_1\): As you move from trust phrasing to no trust phrasing condition,on average there is a marginally significant difference in the odds for choosing the cued face (OR = 1.13, p = .068). ***
m3a <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | participant), family = binomial, data = d)
summary(m3a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 6626.1 6645.6 -3310.1 6620.1 4786
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2291 -1.0123 0.8211 0.9646 1.1350
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.06075 0.2465
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12335 0.04592 2.686 0.00722 **
## trustYes_0 -0.12277 0.06724 -1.826 0.06788 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.683
ORB0 = exp(0.12335)
Interpretation: \(\beta_0\): Within the trust phrasing condition, on average, the odds of the cued face being chosen is significantly more likely than the uncued face being chosen (OR = 1.13, p = .007). ***
m3b <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | participant), family = binomial, data = d)
summary(m3b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 6626.1 6645.6 -3310.1 6620.1 4786
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2291 -1.0123 0.8211 0.9646 1.1350
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.06075 0.2465
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0005722 0.0491263 0.012 0.9907
## trustNo_0 0.1227805 0.0672452 1.826 0.0679 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.731
exp(0.0005722)
## [1] 1.000572
Interpretation: \(\beta_0\): Within the not trust phrasing condition, on average, the odds of the cued face being chosen is not significantly more likely than the uncued face being chosen (OR = 1.00, p = .991). ***
p <- plot_model(m3, type = "pred", terms = "trust_.5")
p + labs(title = "probability for cued face trusted given question phrasing",
x = "Not Trust Trust",
y = "probability of cued face chosen")
mean(d$cuedFaceTrusted_1[d$trust_.5 == .5])
## [1] 0.530445
mean(d$cuedFaceTrusted_1[d$trust_.5 == -.5])
## [1] 0.5002245
m6 <- glmer(cuedFaceTrusted_1 ~ trust_.5 * pt_female_.5 +
(1 | participant), family = binomial, data = d)
summary(m6)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * pt_female_.5 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 6629.7 6662.1 -3309.8 6619.7 4784
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2341 -1.0148 0.8178 0.9596 1.1189
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.06025 0.2454
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06306 0.03471 1.817 0.0693 .
## trust_.5 0.11121 0.06943 1.602 0.1092
## pt_female_.5 -0.01090 0.06943 -0.157 0.8752
## trust_.5:pt_female_.5 0.09219 0.13886 0.664 0.5067
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trs_.5 pt__.5
## trust_.5 -0.061
## pt_femal_.5 -0.252 0.004
## trs_.5:__.5 0.004 -0.252 -0.061
Interpretation: \(\beta_1\): there is no main effect for participant gender, p = .875.
\(\beta_2\): there is no significant interaction between participant gender and phrasing condition, p = .507.
m5 <- glmer(cuedFaceTrusted_1 ~ trust_.5 * stim_female_.5 +
(1 | participant), family = binomial, data = d)
summary(m5)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * stim_female_.5 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 6629.8 6662.2 -3309.9 6619.8 4784
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2352 -1.0176 0.8331 0.9604 1.1399
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.06053 0.246
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.062463 0.037101 1.684 0.0923 .
## trust_.5 0.104302 0.074206 1.406 0.1598
## stim_female_.5 -0.001444 0.066532 -0.022 0.9827
## trust_.5:stim_female_.5 0.078217 0.133065 0.588 0.5567
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trs_.5 st__.5
## trust_.5 -0.076
## stim_fml_.5 -0.424 0.041
## trs_.5:__.5 0.041 -0.424 -0.078
exp(0.05231) #beta0
## [1] 1.053702
exp(0.14444) #beta1
## [1] 1.155392
exp(-0.01418) #beta2
## [1] 0.9859201
exp(0.03078) #beta3
## [1] 1.031259
Interpretation: For a model that includes stimulus gender, phrasing condition, and their interaction, there are no significant findings. ***
m5a <- glmer(cuedFaceTrusted_1 ~ trustYes_0*stim_female_.5 +
(1 | participant), family = binomial, data = d)
summary(m5a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 * stim_female_.5 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 6629.8 6662.2 -3309.9 6619.8 4784
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2352 -1.0176 0.8331 0.9604 1.1399
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.06053 0.246
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.11461 0.05044 2.272 0.0231 *
## trustYes_0 -0.10431 0.07421 -1.406 0.1598
## stim_female_.5 0.03767 0.09033 0.417 0.6767
## trustYes_0:stim_female_.5 -0.07822 0.13307 -0.588 0.5566
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trsY_0 st__.5
## trustYes_0 -0.680
## stim_fml_.5 -0.415 0.282
## trsY_0:__.5 0.282 -0.424 -0.679
exp(0.11461)
## [1] 1.121436
p <- plot_model(m5a, type = "pred", terms = "trustYes_0")
p + labs(title = "probability for cued face trusted given trust condition",
subtitle = "controlling for stimulus gender",
x = "trust = 0",
y = "probability of cued face trusted",
tag = "A")
Interpretation: However, the simple effect of the trust phrasing condition remains significant, OR = 1.12, p = .023. ***
m5b <- glmer(cuedFaceTrusted_1 ~ trustNo_0*stim_female_.5 +
(1 | participant), family = binomial, data = d)
summary(m5b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 * stim_female_.5 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 6629.8 6662.2 -3309.9 6619.8 4784
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2352 -1.0176 0.8331 0.9604 1.1399
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.06053 0.246
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.01031 0.05442 0.189 0.850
## trustNo_0 0.10430 0.07420 1.406 0.160
## stim_female_.5 -0.04055 0.09771 -0.415 0.678
## trustNo_0:stim_female_.5 0.07822 0.13306 0.588 0.557
##
## Correlation of Fixed Effects:
## (Intr) trsN_0 st__.5
## trustNo_0 -0.733
## stim_fml_.5 -0.431 0.316
## trsN_0:__.5 0.317 -0.424 -0.734
Interpretation: The simple effect of the not trust phrasing condition remains non-significant, p = .850. ***
describe(d2$trustworthy)
m6 <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(1 | face), family = binomial("logit"), data = d2)
summary(m6)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (1 | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13109.5 13138.2 -6550.7 13101.5 9574
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6530 -0.9891 0.6654 0.9419 1.5202
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.17289 0.4158
## face (Intercept) 0.01351 0.1162
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06373 0.03649 1.747 0.0807 .
## trust_.5 0.12890 0.07006 1.840 0.0658 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
m6a <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(1 | face), family = binomial("logit"), data = d2)
summary(m6a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (1 | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13109.5 13138.2 -6550.7 13101.5 9574
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6530 -0.9891 0.6654 0.9419 1.5202
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.17289 0.4158
## face (Intercept) 0.01351 0.1162
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12818 0.04895 2.618 0.00884 **
## trustYes_0 -0.12889 0.07006 -1.840 0.06581 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.668
m6b <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(1 | face), family = binomial("logit"), data = d2)
summary(m6b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (1 | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13109.5 13138.2 -6550.7 13101.5 9574
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6530 -0.9891 0.6654 0.9419 1.5202
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.17289 0.4158
## face (Intercept) 0.01351 0.1162
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.0007167 0.0521536 -0.014 0.9890
## trustNo_0 0.1288966 0.0700580 1.840 0.0658 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.716
m7 <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(trustworthy || face), family = binomial("logit"), data = d2)
summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (trustworthy || face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.4 13147.2 -6550.7 13101.4 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6733 -0.9899 0.6644 0.9421 1.5194
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.1728770 0.41578
## face (Intercept) 0.0051840 0.07200
## face.1 trustworthy 0.0008371 0.02893
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06278 0.03660 1.715 0.0863 .
## trust_.5 0.12881 0.07006 1.839 0.0660 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
exp(0.06278)
## [1] 1.064793
exp(0.12881)
## [1] 1.137474
Interpretation: \(\beta_0\): collapsing across phrasing condition, the cued face is trusted marginally more than the uncued face, OR = 1.06, p = .086.
\(\beta_1\): As you move from trust phrasing to no trust phrasing condition,on average there is a marginally significant difference in the odds for choosing the cued face (OR = 1.14, p = .066). ***
m7a <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(trustworthy || face), family = binomial("logit"), data = d2)
summary(m7a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (trustworthy || face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.4 13147.2 -6550.7 13101.4 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6733 -0.9899 0.6644 0.9421 1.5194
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.172877 0.41578
## face (Intercept) 0.005186 0.07201
## face.1 trustworthy 0.000837 0.02893
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12719 0.04905 2.593 0.00951 **
## trustYes_0 -0.12881 0.07006 -1.839 0.06597 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.667
exp(0.12719)
## [1] 1.135633
Interpretation: \(\beta_0\): In the trust phrasing condition, the cued face is trusted significantly more than the uncued face, OR = 1.14, p = .0095. ***
m7b <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(trustworthy || face), family = binomial("logit"), data = d2)
summary(m7b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (trustworthy || face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.4 13147.2 -6550.7 13101.4 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6733 -0.9899 0.6644 0.9421 1.5194
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.1728765 0.41578
## face (Intercept) 0.0051842 0.07200
## face.1 trustworthy 0.0008371 0.02893
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.001622 0.052227 -0.031 0.975
## trustNo_0 0.128812 0.070056 1.839 0.066 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.715
exp(-0.001622)
## [1] 0.9983793
Interpretation: \(\beta_0\): In the not trust phrasing condition, there is no difference for cued of uncued face being trusted, OR = 1.00, p = .975. ***
honest.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(honest | face), family = binomial("logit"), data = d2)
summary(honest.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (honest | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.3 13156.3 -6550.6 13101.3 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6755 -0.9892 0.6641 0.9414 1.5198
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 1.729e-01 0.415812
## face (Intercept) 9.056e-05 0.009516
## honest 1.234e-03 0.035130 0.99
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06174 0.03672 1.681 0.0927 .
## trust_.5 0.12876 0.07006 1.838 0.0661 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.062
honest.m.trust <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(honest || face), family = binomial("logit"), data = d2)
summary(honest.m.trust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (honest || face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.3 13147.1 -6550.6 13101.3 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6760 -0.9892 0.6640 0.9414 1.5199
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.1728990 0.41581
## face (Intercept) 0.0007383 0.02717
## face.1 honest 0.0013766 0.03710
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12607 0.04914 2.566 0.0103 *
## trustYes_0 -0.12875 0.07006 -1.838 0.0661 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.666
honest.m.notrust <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(honest | face), family = binomial("logit"), data = d2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
summary(honest.m.notrust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (honest | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.3 13156.3 -6550.6 13101.3 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6755 -0.9892 0.6641 0.9414 1.5198
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.1728997 0.415812
## face (Intercept) 0.0000906 0.009519
## honest 0.0012336 0.035122 0.99
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.002634 0.052305 -0.050 0.9598
## trustNo_0 0.128755 0.070059 1.838 0.0661 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.714
## convergence code: 0
## unable to evaluate scaled gradient
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
sincere.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(sincere | face), family = binomial("logit"), data = d2)
summary(sincere.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (sincere | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.3 13156.3 -6550.7 13101.3 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6700 -0.9897 0.6658 0.9415 1.5202
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.1729147 0.41583
## face (Intercept) 0.0007318 0.02705
## sincere 0.0008863 0.02977 1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06219 0.03669 1.695 0.0901 .
## trust_.5 0.12865 0.07006 1.836 0.0663 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.062
sincere.m.trust <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(sincere | face), family = binomial("logit"), data = d2)
summary(sincere.m.trust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (sincere | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.3 13156.3 -6550.7 13101.3 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6701 -0.9897 0.6658 0.9415 1.5202
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.1729155 0.41583
## face (Intercept) 0.0007312 0.02704
## sincere 0.0008865 0.02977 1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12651 0.04913 2.575 0.0100 *
## trustYes_0 -0.12865 0.07007 -1.836 0.0663 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.667
sincere.m.notrust <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(sincere | face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(sincere.m.notrust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (sincere | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.3 13156.3 -6550.7 13101.3 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6700 -0.9897 0.6658 0.9415 1.5202
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.1729146 0.41583
## face (Intercept) 0.0007317 0.02705
## sincere 0.0008863 0.02977 1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.002141 0.052275 -0.041 0.9673
## trustNo_0 0.128652 0.070064 1.836 0.0663 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.714
## convergence code: 0
## boundary (singular) fit: see ?isSingular
helpful.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(helpful | face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(helpful.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (helpful | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.5 13156.5 -6550.7 13101.5 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6599 -0.9895 0.6654 0.9418 1.5183
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 1.729e-01 0.415788
## face (Intercept) 8.301e-03 0.091109
## helpful 7.406e-05 0.008606 1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06353 0.03653 1.739 0.0820 .
## trust_.5 0.12885 0.07006 1.839 0.0659 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
## convergence code: 0
## boundary (singular) fit: see ?isSingular
helpful.m.trust <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(helpful | face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(helpful.m.trust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (helpful | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.5 13156.5 -6550.7 13101.5 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6599 -0.9895 0.6654 0.9418 1.5183
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 1.729e-01 0.415786
## face (Intercept) 8.301e-03 0.091108
## helpful 7.408e-05 0.008607 1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12795 0.04899 2.612 0.00901 **
## trustYes_0 -0.12885 0.07006 -1.839 0.06590 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.668
## convergence code: 0
## boundary (singular) fit: see ?isSingular
helpful.m.notrust <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(helpful | face), family = binomial("logit"), data = d2)
summary(helpful.m.notrust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (helpful | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.5 13156.5 -6550.7 13101.5 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6599 -0.9895 0.6654 0.9418 1.5183
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 1.729e-01 0.415787
## face (Intercept) 8.299e-03 0.091096
## helpful 7.414e-05 0.008611 1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.0008974 0.0521745 -0.017 0.9863
## trustNo_0 0.1288455 0.0700575 1.839 0.0659 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.715
moral.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(moral | face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(moral.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (moral | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13112.9 13156.0 -6550.5 13100.9 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6998 -0.9890 0.6594 0.9409 1.5219
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.172954 0.41588
## face (Intercept) 0.003756 0.06129
## moral 0.003600 0.06000 -1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06108 0.03661 1.668 0.0952 .
## trust_.5 0.12863 0.07007 1.836 0.0664 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
## convergence code: 0
## boundary (singular) fit: see ?isSingular
moral.m.trust <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(moral | face), family = binomial("logit"), data = d2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00326138 (tol = 0.002, component 1)
summary(moral.m.trust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (moral | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13112.9 13156.0 -6550.5 13100.9 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6997 -0.9890 0.6594 0.9409 1.5219
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.172958 0.41588
## face (Intercept) 0.003716 0.06096
## moral 0.003586 0.05989 -1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12539 0.04906 2.556 0.0106 *
## trustYes_0 -0.12862 0.07007 -1.836 0.0664 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.667
## convergence code: 0
## Model failed to converge with max|grad| = 0.00326138 (tol = 0.002, component 1)
moral.m.notrust <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(moral | face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(moral.m.notrust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (moral | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13112.9 13156.0 -6550.5 13100.9 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6998 -0.9890 0.6594 0.9409 1.5219
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.172953 0.41588
## face (Intercept) 0.003756 0.06129
## moral 0.003600 0.06000 -1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.003239 0.052234 -0.062 0.9506
## trustNo_0 0.128630 0.070067 1.836 0.0664 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.715
## convergence code: 0
## boundary (singular) fit: see ?isSingular
ethical.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(ethical | face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(ethical.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (ethical | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13112.6 13155.6 -6550.3 13100.6 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7285 -0.9891 0.6607 0.9405 1.5348
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.172998 0.41593
## face (Intercept) 0.011453 0.10702
## ethical 0.005594 0.07479 -1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06123 0.03653 1.676 0.0937 .
## trust_.5 0.12864 0.07007 1.836 0.0664 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
## convergence code: 0
## boundary (singular) fit: see ?isSingular
ethical.m.trust <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(ethical | face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(ethical.m.trust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (ethical | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13112.6 13155.6 -6550.3 13100.6 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7285 -0.9891 0.6607 0.9405 1.5349
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.172996 0.41593
## face (Intercept) 0.011462 0.10706
## ethical 0.005596 0.07481 -1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12556 0.04899 2.563 0.0104 *
## trustYes_0 -0.12866 0.07007 -1.836 0.0663 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.668
## convergence code: 0
## boundary (singular) fit: see ?isSingular
ethical.m.notrust <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(ethical | face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(ethical.m.notrust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (ethical | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13112.6 13155.6 -6550.3 13100.6 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7285 -0.9891 0.6607 0.9405 1.5348
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.173001 0.41593
## face (Intercept) 0.011453 0.10702
## ethical 0.005594 0.07479 -1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.003086 0.052189 -0.059 0.9528
## trustNo_0 0.128637 0.070074 1.836 0.0664 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.716
## convergence code: 0
## boundary (singular) fit: see ?isSingular
attractive.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(attractive | face), family = binomial("logit"), data = d2)
summary(attractive.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (attractive | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.1 13156.1 -6550.5 13101.1 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6807 -0.9892 0.6609 0.9413 1.5171
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.17290 0.41581
## face (Intercept) 0.09908 0.31477
## attractive 0.00593 0.07701 -0.96
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06161 0.03657 1.685 0.0920 .
## trust_.5 0.12892 0.07006 1.840 0.0657 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
attractive.m.trust <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(attractive | face), family = binomial("logit"), data = d2)
summary(attractive.m.trust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (attractive | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.1 13156.1 -6550.5 13101.1 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6807 -0.9892 0.6609 0.9413 1.5171
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.17290 0.41581
## face (Intercept) 0.09908 0.31477
## attractive 0.00593 0.07701 -0.96
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12607 0.04901 2.572 0.0101 *
## trustYes_0 -0.12892 0.07006 -1.840 0.0657 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.668
attractive.m.notrust <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(attractive | face), family = binomial("logit"), data = d2)
summary(attractive.m.notrust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (attractive | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.1 13156.1 -6550.5 13101.1 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6807 -0.9892 0.6609 0.9413 1.5171
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.17290 0.4158
## face (Intercept) 0.09907 0.3148
## attractive 0.00593 0.0770 -0.96
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.002858 0.052212 -0.055 0.9563
## trustNo_0 0.128924 0.070060 1.840 0.0657 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.715
fem_masc.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(fem_masc | face), family = binomial("logit"), data = d2)
summary(fem_masc.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (fem_masc | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.2 13156.2 -6550.6 13101.2 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6897 -0.9897 0.6656 0.9415 1.5236
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.172797 0.41569
## face (Intercept) 0.035732 0.18903
## fem_masc 0.002566 0.05066 -0.89
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06314 0.03658 1.726 0.0843 .
## trust_.5 0.12870 0.07005 1.837 0.0662 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
fem_masc.m.trust <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(fem_masc | face), family = binomial("logit"), data = d2)
summary(fem_masc.m.trust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (fem_masc | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.2 13156.2 -6550.6 13101.2 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6897 -0.9897 0.6656 0.9415 1.5236
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.172796 0.41569
## face (Intercept) 0.035735 0.18904
## fem_masc 0.002566 0.05066 -0.89
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12749 0.04902 2.601 0.0093 **
## trustYes_0 -0.12870 0.07005 -1.837 0.0662 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.667
fem_masc.m.notrust <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(fem_masc | face), family = binomial("logit"), data = d2)
summary(fem_masc.m.notrust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (fem_masc | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.2 13156.2 -6550.6 13101.2 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6897 -0.9897 0.6656 0.9415 1.5236
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.172797 0.41569
## face (Intercept) 0.035739 0.18905
## fem_masc 0.002566 0.05066 -0.89
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.001206 0.052210 -0.023 0.9816
## trustNo_0 0.128700 0.070047 1.837 0.0662 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.715
friendly.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(friendly | face), family = binomial("logit"), data = d2)
summary(friendly.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (friendly | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.3 13156.3 -6550.6 13101.3 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6687 -0.9896 0.6667 0.9419 1.5199
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.1728887 0.41580
## face (Intercept) 0.0004587 0.02142
## friendly 0.0012295 0.03506 1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06340 0.03648 1.738 0.0822 .
## trust_.5 0.12858 0.07006 1.835 0.0665 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
friendly.m.trust <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(friendly | face), family = binomial("logit"), data = d2)
summary(friendly.m.trust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (friendly | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.3 13156.3 -6550.6 13101.3 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6687 -0.9896 0.6667 0.9419 1.5199
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.1728891 0.41580
## face (Intercept) 0.0004579 0.02140
## friendly 0.0012300 0.03507 1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12769 0.04895 2.609 0.00909 **
## trustYes_0 -0.12858 0.07006 -1.835 0.06647 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.669
friendly.m.notrust <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(friendly | face), family = binomial("logit"), data = d2)
summary(friendly.m.notrust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (friendly | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.3 13156.3 -6550.6 13101.3 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6687 -0.9896 0.6667 0.9419 1.5199
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.1728879 0.41580
## face (Intercept) 0.0004581 0.02140
## friendly 0.0012299 0.03507 1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.0008858 0.0521472 -0.017 0.9864
## trustNo_0 0.1285750 0.0700617 1.835 0.0665 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.716
overall.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(overallTrust | face), family = binomial("logit"), data = d2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?
summary(overall.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (overallTrust | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.2 13156.2 -6550.6 13101.2 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6854 -0.9895 0.6620 0.9415 1.5204
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 1.729e-01 0.41582
## face (Intercept) 7.327e-05 0.00856
## overallTrust 1.718e-03 0.04145 -1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06198 0.03663 1.692 0.0906 .
## trust_.5 0.12869 0.07006 1.837 0.0662 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.062
## convergence code: 0
## Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?
overall.m.trust <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | pt) +
(overallTrust || face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(overall.m.trust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | pt) + (overallTrust ||
## face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.2 13147.1 -6550.6 13101.2 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6835 -0.9895 0.6627 0.9416 1.5203
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.172905 0.41582
## face (Intercept) 0.000000 0.00000
## face.1 overallTrust 0.001499 0.03872
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12644 0.04895 2.583 0.00979 **
## trustYes_0 -0.12870 0.07006 -1.837 0.06621 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.668
## convergence code: 0
## boundary (singular) fit: see ?isSingular
overall.m.notrust <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | pt) +
(overallTrust || face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(overall.m.notrust)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | pt) + (overallTrust || face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.2 13147.1 -6550.6 13101.2 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6835 -0.9895 0.6627 0.9416 1.5203
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 1.729e-01 4.158e-01
## face (Intercept) 4.003e-09 6.327e-05
## face.1 overallTrust 1.499e-03 3.872e-02
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.002268 0.052152 -0.043 0.9653
## trustNo_0 0.128710 0.070058 1.837 0.0662 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.716
## convergence code: 0
## boundary (singular) fit: see ?isSingular
trustworthy.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(overallTrust | face), family = binomial("logit"), verbose = T, data = d2)
## start par. = 1 1 0 1 fn = 13736.35
## At return
## eval: 2911 fn: 13101.231 par: 0.415815 0.00854046 -0.0412693 0.00380563
## (NM) 20: f = 13101.2 at 0.415815 0.00854046 -0.0412693 0.00380563 0.0608942 0.126491
## (NM) 40: f = 13101.2 at 0.415815 0.00854046 -0.0412693 0.00380563 0.0608942 0.126491
## (NM) 60: f = 13101.2 at 0.415824 0.00851983 -0.0413349 0.00471163 0.0616698 0.128017
## (NM) 80: f = 13101.2 at 0.415727 0.00928089 -0.0414669 0.00394368 0.0621024 0.129027
## (NM) 100: f = 13101.2 at 0.415769 0.00901103 -0.0413881 0.00398998 0.0620506 0.12879
## (NM) 120: f = 13101.2 at 0.415819 0.00864451 -0.0412825 0.00406955 0.0619618 0.128603
## (NM) 140: f = 13101.2 at 0.415819 0.00860051 -0.0412716 0.00405697 0.0620051 0.128669
## (NM) 160: f = 13101.2 at 0.415809 0.00857972 -0.0412561 0.00406034 0.0619942 0.128675
## (NM) 180: f = 13101.2 at 0.415815 0.00856227 -0.041251 0.00406071 0.0619851 0.128703
## (NM) 200: f = 13101.2 at 0.415816 0.00855361 -0.0412497 0.00406138 0.0619812 0.128694
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?
summary(trustworthy.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (overallTrust | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13113.2 13156.2 -6550.6 13101.2 9572
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6854 -0.9895 0.6620 0.9415 1.5204
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 1.729e-01 0.41582
## face (Intercept) 7.327e-05 0.00856
## overallTrust 1.718e-03 0.04145 -1.00
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06198 0.03663 1.692 0.0906 .
## trust_.5 0.12869 0.07006 1.837 0.0662 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.062
## convergence code: 0
## Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?
eyesize.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(Eye_Size || face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(eyesize.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (Eye_Size || face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.5 13147.3 -6550.7 13101.5 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6530 -0.9891 0.6654 0.9419 1.5202
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 1.729e-01 4.158e-01
## face (Intercept) 1.351e-02 1.162e-01
## face.1 Eye_Size 4.823e-10 2.196e-05
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06373 0.03649 1.747 0.0807 .
## trust_.5 0.12890 0.07006 1.840 0.0658 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
## convergence code: 0
## boundary (singular) fit: see ?isSingular
eyeshape.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(Eye_Shape || face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(eyeshape.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (Eye_Shape || face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.5 13147.3 -6550.7 13101.5 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6530 -0.9891 0.6654 0.9419 1.5202
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 1.729e-01 4.158e-01
## face (Intercept) 1.351e-02 1.162e-01
## face.1 Eye_Shape 3.702e-10 1.924e-05
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06373 0.03649 1.747 0.0807 .
## trust_.5 0.12889 0.07006 1.840 0.0658 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
## convergence code: 0
## boundary (singular) fit: see ?isSingular
round.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(Face_Roundedness || face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(round.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (Face_Roundedness ||
## face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.2 13147.1 -6550.6 13101.2 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6673 -0.9890 0.6670 0.9425 1.5286
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.17294 0.4159
## face (Intercept) 0.00000 0.0000
## face.1 Face_Roundedness 0.03747 0.1936
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06394 0.03654 1.750 0.0801 .
## trust_.5 0.12882 0.07007 1.839 0.0660 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
## convergence code: 0
## boundary (singular) fit: see ?isSingular
fWtH_Ratio.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(fWtH_Ratio || face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(fWtH_Ratio.m )
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (fWtH_Ratio || face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.3 13147.1 -6550.6 13101.3 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6595 -0.9892 0.6656 0.9424 1.5180
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 1.729e-01 4.159e-01
## face (Intercept) 1.793e-09 4.235e-05
## face.1 fWtH_Ratio 2.880e-02 1.697e-01
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06399 0.03653 1.752 0.0798 .
## trust_.5 0.12886 0.07007 1.839 0.0659 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
## convergence code: 0
## boundary (singular) fit: see ?isSingular
pupil.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | pt) +
(Pupil_Distance || face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(pupil.m )
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (Pupil_Distance ||
## face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 13111.5 13147.3 -6550.7 13101.5 9573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6530 -0.9891 0.6654 0.9419 1.5202
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.17289 0.4158
## face (Intercept) 0.01351 0.1162
## face.1 Pupil_Distance 0.00000 0.0000
## Number of obs: 9578, groups: pt, 221; face, 132
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06373 0.03649 1.747 0.0807 .
## trust_.5 0.12890 0.07006 1.840 0.0658 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.063
## convergence code: 0
## boundary (singular) fit: see ?isSingular