Vaccinelibrarylibrary(glue)
library(ggrepel)
## Loading required package: ggplot2
library(ggridges)
library(ggthemes)
library(leaflet)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(scales)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble 3.1.0 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x lubridate::as.difftime() masks base::as.difftime()
## x readr::col_factor() masks scales::col_factor()
## x dplyr::collapse() masks glue::collapse()
## x lubridate::date() masks base::date()
## x purrr::discard() masks scales::discard()
## x dplyr::filter() masks stats::filter()
## x lubridate::intersect() masks base::intersect()
## x dplyr::lag() masks stats::lag()
## x lubridate::setdiff() masks base::setdiff()
## x lubridate::union() masks base::union()
library(sf)
## Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1
library(rnaturalearth)
library(padr)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(magick)
## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, freetype, fftw, ghostscript, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fontconfig, x11
vaccine <- read.csv("data_input/country_vaccinations.csv")
head(vaccine)
colSums(is.na(vaccine))
## country iso_code
## 0 0
## date total_vaccinations
## 0 1124
## people_vaccinated people_fully_vaccinated
## 1481 2114
## daily_vaccinations_raw daily_vaccinations
## 1473 125
## total_vaccinations_per_hundred people_vaccinated_per_hundred
## 1124 1481
## people_fully_vaccinated_per_hundred daily_vaccinations_per_million
## 2114 125
## vaccines source_name
## 0 0
## source_website
## 0
vaccine_clean <- vaccine %>%
drop_na(total_vaccinations,people_vaccinated,people_fully_vaccinated,daily_vaccinations_raw,daily_vaccinations,total_vaccinations_per_hundred,people_fully_vaccinated_per_hundred,people_fully_vaccinated_per_hundred,daily_vaccinations_per_million)
colSums(is.na(vaccine_clean))
## country iso_code
## 0 0
## date total_vaccinations
## 0 0
## people_vaccinated people_fully_vaccinated
## 0 0
## daily_vaccinations_raw daily_vaccinations
## 0 0
## total_vaccinations_per_hundred people_vaccinated_per_hundred
## 0 0
## people_fully_vaccinated_per_hundred daily_vaccinations_per_million
## 0 0
## vaccines source_name
## 0 0
## source_website
## 0
vaccine_indonesia <- vaccine_clean[vaccine_clean$country == "Indonesia", ]
vaccine_indonesia
boxplotboxplot(vaccine_indonesia$people_vaccinated)
aggregate(people_vaccinated ~ country, vaccine_indonesia, sum)
12348556 ppl vaccinatedggplot(vaccine_indonesia, aes(x = people_vaccinated,
y = total_vaccinations,
size = people_vaccinated,
color = country)
) +
geom_point() +
scale_color_manual(values = c("red", "blue", "green"))
insight: between total vaccine and ppl vaccinated balanceConclusion: 1.Actually i just interested with how many ppl vaccinated in Indonesia
2.normal
3.total 12348556 vaccinated
4.insight: between total vaccine and ppl vaccinated balance
# Based on data, 12348556 ppl vaccinated and government great to handle