Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).
The training data for this project are available here:
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
The test data are available here:
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
The data for this project come from this source: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.
# Globe environment setting
knitr::opts_chunk$set(warning=FALSE, message=FALSE, cache = TRUE)
# Load libraries
library(lattice)
library(ggplot2)
library(ggcorrplot)
library(caret)
library(rattle)
library(rpart)
library(rpart.plot)
library(corrplot)
# Import data sets
TrainUrl <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
TestUrl <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
RawTrainData <- read.csv(url(TrainUrl), header = TRUE)
TestSet <- read.csv(url(TestUrl), header = TRUE)
# See how many missing values in the data set
sum(complete.cases(RawTrainData))
## [1] 406
# Remove all columns that contain missing values
TrainData <- RawTrainData[, colSums(is.na(RawTrainData)) == 0]
# Remove columns records users' names, timestamps and etc.
TrainData <- TrainData[, -c(1:7)]
# remove variables have very little variation
remove <- nearZeroVar(TrainData)
TrainData <- TrainData[, -remove]
# Set 30% of data from training data to be used for validation
# The "classe" variable in the training set is the manner in which users did the exercise
set.seed(1234)
partition <- createDataPartition(TrainData$classe, p=0.75, list=FALSE)
TrainData <- TrainData[partition, ]
TestData <- TrainData[-partition, ]
We plan to use following methods to train and predict the data:
# Train data through decision tree method
Model_CT <- rpart(classe ~ ., data = TrainData, method="class")
# Show tree by using fancyRpartPlot function
fancyRpartPlot(Model_CT)
# Predict validation data with the model trained
Pred_CT <- predict(Model_CT, TestData, type = "class")
# See the accuracy of the prediction
confmat_CT <- confusionMatrix(Pred_CT, factor(TestData$classe))
confmat_CT
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 895 111 12 20 18
## B 36 415 55 46 37
## C 46 101 532 98 80
## D 42 47 44 402 40
## E 21 25 22 37 500
##
## Overall Statistics
##
## Accuracy : 0.7452
## 95% CI : (0.7308, 0.7593)
## No Information Rate : 0.2825
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.6779
##
## Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.8606 0.5937 0.8000 0.6667 0.7407
## Specificity 0.9391 0.9417 0.8923 0.9438 0.9651
## Pos Pred Value 0.8475 0.7046 0.6208 0.6991 0.8264
## Neg Pred Value 0.9448 0.9082 0.9529 0.9353 0.9431
## Prevalence 0.2825 0.1898 0.1806 0.1638 0.1833
## Detection Rate 0.2431 0.1127 0.1445 0.1092 0.1358
## Detection Prevalence 0.2868 0.1600 0.2328 0.1562 0.1643
## Balanced Accuracy 0.8998 0.7677 0.8461 0.8052 0.8529
# Set k=3 in k-fold cross validation
set.seed(1334)
control_RF <- trainControl(method="cv", number=3, verboseIter=FALSE)
# Train data through random forests method
Model_RF <- train(classe ~ ., data = TrainData, method = "rf", trControl = control_RF)
# Check the statistical result
Model_RF
## Random Forest
##
## 14718 samples
## 52 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (3 fold)
## Summary of sample sizes: 9811, 9813, 9812
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa
## 2 0.9896726 0.9869342
## 27 0.9905558 0.9880522
## 52 0.9809076 0.9758432
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 27.
# Predict validation data with the model trained
Pred_RF <- predict(Model_RF, TestData)
# See the accuracy of the prediction
confmat_RF <- confusionMatrix(Pred_RF, factor(TestData$classe))
confmat_RF
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1040 0 0 0 0
## B 0 699 0 0 0
## C 0 0 665 0 0
## D 0 0 0 603 0
## E 0 0 0 0 675
##
## Overall Statistics
##
## Accuracy : 1
## 95% CI : (0.999, 1)
## No Information Rate : 0.2825
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000
## Specificity 1.0000 1.0000 1.0000 1.0000 1.0000
## Pos Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
## Neg Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
## Prevalence 0.2825 0.1898 0.1806 0.1638 0.1833
## Detection Rate 0.2825 0.1898 0.1806 0.1638 0.1833
## Detection Prevalence 0.2825 0.1898 0.1806 0.1638 0.1833
## Balanced Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000
# A plot of number of trees versus error of model
plot(Model_RF$finalModel)
# See the importance of each variables in this model
varImp(Model_RF)
## rf variable importance
##
## only 20 most important variables shown (out of 52)
##
## Overall
## roll_belt 100.000
## pitch_forearm 59.254
## yaw_belt 53.449
## pitch_belt 44.098
## roll_forearm 43.743
## magnet_dumbbell_z 43.417
## magnet_dumbbell_y 42.247
## accel_dumbbell_y 22.221
## accel_forearm_x 18.098
## roll_dumbbell 17.175
## magnet_belt_z 15.877
## magnet_dumbbell_x 15.631
## magnet_forearm_z 14.729
## accel_belt_z 14.115
## accel_dumbbell_z 13.393
## total_accel_dumbbell 13.213
## magnet_belt_y 12.793
## yaw_arm 10.630
## gyros_belt_z 10.605
## magnet_belt_x 9.778
# Set seed for reproduce
set.seed(1434)
control_GBM <- trainControl(method = "repeatedcv", number = 5, repeats = 1)
# Train data through gradient boosted method
Model_GBM <- train(classe ~ ., data = TrainData, method = "gbm",
trControl = control_GBM, verbose = FALSE)
# Check the statistical result
Model_GBM
## Stochastic Gradient Boosting
##
## 14718 samples
## 52 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times)
## Summary of sample sizes: 11774, 11775, 11773, 11775, 11775
## Resampling results across tuning parameters:
##
## interaction.depth n.trees Accuracy Kappa
## 1 50 0.7533633 0.6874558
## 1 100 0.8191337 0.7710841
## 1 150 0.8521547 0.8129341
## 2 50 0.8558908 0.8174003
## 2 100 0.9063051 0.8814493
## 2 150 0.9298817 0.9112816
## 3 50 0.8957058 0.8679918
## 3 100 0.9398011 0.9238241
## 3 150 0.9612040 0.9509200
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150, interaction.depth =
## 3, shrinkage = 0.1 and n.minobsinnode = 10.
# Predict validation data with the model trained
Pred_GBM <- predict(Model_GBM, TestData)
# See the accuracy of the prediction
confmat_GBM <- confusionMatrix(Pred_GBM, factor(TestData$classe))
confmat_GBM
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1033 15 0 1 2
## B 6 676 17 2 3
## C 0 6 639 16 6
## D 1 2 9 582 10
## E 0 0 0 2 654
##
## Overall Statistics
##
## Accuracy : 0.9734
## 95% CI : (0.9677, 0.9783)
## No Information Rate : 0.2825
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9663
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9933 0.9671 0.9609 0.9652 0.9689
## Specificity 0.9932 0.9906 0.9907 0.9929 0.9993
## Pos Pred Value 0.9829 0.9602 0.9580 0.9636 0.9970
## Neg Pred Value 0.9973 0.9923 0.9914 0.9932 0.9931
## Prevalence 0.2825 0.1898 0.1806 0.1638 0.1833
## Detection Rate 0.2806 0.1836 0.1735 0.1581 0.1776
## Detection Prevalence 0.2854 0.1912 0.1812 0.1640 0.1782
## Balanced Accuracy 0.9932 0.9789 0.9758 0.9790 0.9841
# A Boosting Iterations versus accuracy plot
plot(Model_GBM)
TestSet.TestPred <- predict(Model_RF, TestSet)
TestPred
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E