1 Preparing Data

1.0.0.0.1 Loading Libraries and function using auxiliary file
source("funlibs.R")
1.0.0.0.2 Loading database
TDados <- read.spss(file = "Base Integrada - Servidores - Trabalho Remoto Covid-19 (dados completos)_27dez15h30.sav", to.data.frame = TRUE, use.value.labels = FALSE)
TDados<-as.data.frame(TDados)
#view(TDados)
# Criei um banco só com os itens de Suporte Gerencial
Itens <- na.omit(TDados[c(89:94)])
1.0.0.0.3 Subsetting AEC itens
data<-data.matrix(TDados[,c(89:94)])

2 Descriptive Statistics

2.0.0.0.1 Summary Statistics
psych::describe(data)
##             vars    n mean   sd median trimmed  mad min max range  skew
## SupG_Feed      1 7608 3.79 1.04      4    3.92 1.48   1   5     4 -0.89
## SupG_Meta      2 7608 4.10 0.82      4    4.20 0.00   1   5     4 -1.17
## SupG_Ori       3 7608 4.35 0.76      4    4.47 1.48   1   5     4 -1.42
## SupG_Mon       4 7608 4.33 0.75      4    4.45 1.48   1   5     4 -1.35
## SupG_Infra     5 7608 3.53 1.13      4    3.62 1.48   1   5     4 -0.54
## SupG_Bestar    6 7608 3.95 1.03      4    4.10 1.48   1   5     4 -1.03
##             kurtosis   se
## SupG_Feed       0.42 0.01
## SupG_Meta       1.99 0.01
## SupG_Ori        2.95 0.01
## SupG_Mon        2.87 0.01
## SupG_Infra     -0.35 0.01
## SupG_Bestar     0.74 0.01

2.1 Relative Frequencies

data<-as.matrix(data)
dsc<-descript(data)
porcentagem<-as.data.frame(round(dsc$perc,2)*100)
names(porcentagem)<-c("% lv1","% lv2","% lv3","% lv4","% lv5")
porcentagem
##             % lv1 % lv2 % lv3 % lv4 % lv5
## SupG_Feed       4     7    18    44    25
## SupG_Meta       1     4    10    54    31
## SupG_Ori        1     2     6    44    48
## SupG_Mon        1     2     7    45    46
## SupG_Infra      7    10    28    34    21
## SupG_Bestar     4     5    17    40    34
2.1.0.0.1 Plotting Itens as Likert
lbs <- c("lv1","lv2","lv3","lv4","lv5")
survey <- TDados[,c(89:94)] %>%
  dplyr::mutate_if(is.numeric, factor, levels = 1:5, labels = lbs)
plot(likert(survey[,1:6]), ordered = F, wrap= 60)

2.1.0.0.2 Histogram
dta_long <- melt(as.data.frame(data))
colnames(dta_long) <- c("Item", "Response")
Histogram <- ggplot(dta_long, aes(x = Response, fill = Item))+
geom_histogram(bins = 5)+
facet_wrap(~Item)+
theme_default()
Histogram

2.1.0.0.3 Density Plot
DensityPlot <- ggplot(dta_long, aes(x = Response, fill = Item))+
geom_density()+
facet_wrap(~Item)+
theme_default()
DensityPlot 

2.1.0.0.4 Correlation Matrix
CorMat <- psych::polychoric(data, correct=T, smooth=T,global=T)$rho
2.1.0.0.5 Plotting
corrplot(CorMat,order="hclust",type="upper",method="ellipse",
tl.pos = "lt",mar = c(2,2,2,2))
corrplot(CorMat,order="hclust",type="lower",method="number",
diag=FALSE,tl.pos="n", cl.pos="n",add=TRUE,mar = c(2,2,2,2))

2.1.0.0.6 Ggcorplot
#ggcorrplot(CorMat, hc.order = T,type = "lower", lab = TRUE,
#colors = c("#E46726", "white", "#6D9EC2"))

3 Splitting Data for Analysis

3.0.0.0.1 Random sampling training and test data for EFA and CFA
# Sorteio Aleatório
ss <- sample(1:2,size=nrow(TDados),replace=T,prob=c(0.3,0.7))
banco_EFA <- TDados[ss==1,]
banco_CFA <- TDados[ss==2,]
3.0.0.0.2 EFA of Criativity Auto-Efficacy
data<-as.data.frame(banco_EFA)

3.0.0.1 Subsetting

data<-data[,89:94]
3.0.0.1.1 Polychoric Correlation
CorMat <- psych::polychoric(data, correct=T, smooth=T,global=T)$rho
3.0.0.1.2 Bartlett Sphericity
bartlett<-psych::cortest.bartlett(CorMat, n = nrow(data),diag=TRUE)
#bartlett
3.0.0.1.3 Kayser Meyer - Sample Adequacy
kmo <-psych::KMO(CorMat)
#kmo

It was observed that the six items of CAEFF grouped a latent factor, Bartlett’s chi-square test 7964.06; df= 15; p< 0 and KMO = 0.88

3.0.0.1.4 Parallel Analysis using unweighted least square
parallel<-pa.plot(CorMat,n.obs = nrow(data), fm="uls", cor="poly",n.iter=1000)
## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
print(parallel)
## [[1]]

## 
## [[2]]
## [1] 2
#parallel[[2]][1]

Number of factor by parallel analysis is equal to 2

3.0.0.1.5 Numeric Rules - Very Simples Structure based on parallel number of factor plus one
NumericRule <- VSS(CorMat,n =parallel[[2]][1]+1, plot = F, n.obs =nrow(data),rotate="promax",cor="poly", fm="uls")
temp1 <- data.frame(nFactor = row.names(NumericRule$vss.stats), 
VSS1 = NumericRule$cfit.1, VSS2 = NumericRule$cfit.2, 
MAP = NumericRule$map)
temp2 <- NumericRule$vss.stats[,c(6:8,11)]
NumericRule <- cbind(temp1,temp2)
NumericRule
##   nFactor   VSS1   VSS2     MAP   RMSEA     BIC  SABIC     SRMR
## 1       1 0.9383 0.0000 0.07033 0.17515 537.631 566.23 0.055433
## 2       2 0.6282 0.7207 0.11965 0.05953   3.971  16.68 0.009464
## 3       3 0.4602 0.6296 0.23577      NA      NA     NA 0.000440
3.0.0.1.6 Exploratory Graph Analysis (EGA)

4 Method 1 - bootEGA Method from EFAShiny

EGArst <- bootEGA(data = data, n = 1000, medianStructure = TRUE, plot.MedianStructure = TRUE, ncores = 4, layout = "spring")
## Note: bootnet will store only the following statistics:  edge, strength, outStrength, inStrength
## model set to 'GGM'
## Estimating sample network...
## Estimating Network. Using package::function:
##   - qgraph::EBICglasso for EBIC model selection
##     - using glasso::glasso
## Note: Network with lowest lambda selected as best network: assumption of sparsity might be violated.
## Warning in EBICglassoCore(S = S, n = n, gamma = gamma, penalize.diagonal =
## penalize.diagonal, : A dense regularized network was selected (lambda < 0.1 *
## lambda.max). Recent work indicates a possible drop in specificity. Interpret the
## presence of the smallest edges with care. Setting threshold = TRUE will enforce
## higher specificity, at the cost of sensitivity.
## Bootstrapping...
## Computing statistics...
## Warning: `tbl_df()` was deprecated in dplyr 1.0.0.
## Please use `tibble::as_tibble()` instead.

5 Method 2 - ega.object from Cleyton’s paper (need to completed)

ega1 <- ega.object(CorMat,data)
## Note: Network with lowest lambda selected as best network: assumption of sparsity might be violated.

6 Method 3 - original boot.ega function with parallel processing

# BootEGA Function
boot.ega <- bootnet(data, nBoot = 1000, default = "EBICglasso",computeCentrality = T, type = "parametric", nCores = 4)
## Note: bootnet will store only the following statistics:  edge, strength, outStrength, inStrength
## model set to 'GGM'
## Estimating sample network...
## Estimating Network. Using package::function:
##   - qgraph::EBICglasso for EBIC model selection
##     - using glasso::glasso
## Note: Network with lowest lambda selected as best network: assumption of sparsity might be violated.
## Warning in EBICglassoCore(S = S, n = n, gamma = gamma, penalize.diagonal =
## penalize.diagonal, : A dense regularized network was selected (lambda < 0.1 *
## lambda.max). Recent work indicates a possible drop in specificity. Interpret the
## presence of the smallest edges with care. Setting threshold = TRUE will enforce
## higher specificity, at the cost of sensitivity.
## Bootstrapping...
## Computing statistics...
boot.ega
## === bootnet Results ===
## Number of nodes: 6 
## Number of non-zero edges in sample: 15 / 15 
## Mean weight of sample: 0.1671 
## Number of bootstrapped networks: 1000 
## Results of original sample stored in x$sample 
## Table of all statistics from original sample stored in x$sampleTable 
## Results of bootstraps stored in x$boots 
## Table of all statistics from bootstraps stored in x$bootTable 
##  
## Use plot(x$sample) to plot estimated network of original sample 
## Use summary(x) to inspect summarized statistics (see ?summary.bootnet for details) 
## Use plot(x) to plot summarized statistics (see ?plot.bootnet for details) 
## 
## Relevant references:
## 
##      Friedman, J. H., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9 (3), 432-441.
##  Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. 
##  Friedman, J. H., Hastie, T., & Tibshirani, R. (2014). glasso: Graphical lasso estimation of gaussian graphical models. Retrieved from https://CRAN.R-project.org/package=glasso
##  Epskamp, S., Cramer, A., Waldorp, L., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48 (1), 1-18.
##  Epskamp, S., Borsboom, D., & Fried, E. I. (2016). Estimating psychological networks and their accuracy: a tutorial paper. arXiv preprint, arXiv:1604.08462.
6.0.0.0.1 Estimated network of original sample
plot(boot.ega$sample)

##### Summarized statistics

summary(boot.ega)
## Warning: `select_()` was deprecated in dplyr 0.7.0.
## Please use `select()` instead.
## Warning: `mutate_()` was deprecated in dplyr 0.7.0.
## Please use `mutate()` instead.
## See vignette('programming') for more help
## Warning: `summarise_()` was deprecated in dplyr 0.7.0.
## Please use `summarise()` instead.
## Warning: `group_by_()` was deprecated in dplyr 0.7.0.
## Please use `group_by()` instead.
## See vignette('programming') for more help
## Warning: `filter_()` was deprecated in dplyr 0.7.0.
## Please use `filter()` instead.
## See vignette('programming') for more help
## # A tibble: 21 x 17
## # Groups:   type, node1, node2 [21]
##    type  id      node1 node2 sample   mean     sd  CIlower CIupper   q2.5  q97.5
##    <chr> <chr>   <chr> <chr>  <dbl>  <dbl>  <dbl>    <dbl>   <dbl>  <dbl>  <dbl>
##  1 edge  SupG_F… SupG… SupG… 0.171  0.170  0.0209  0.129    0.213  0.130  0.213 
##  2 edge  SupG_F… SupG… SupG… 0.165  0.165  0.0204  0.124    0.206  0.123  0.206 
##  3 edge  SupG_F… SupG… SupG… 0.138  0.136  0.0203  0.0971   0.178  0.0930 0.176 
##  4 edge  SupG_F… SupG… SupG… 0.210  0.210  0.0206  0.169    0.251  0.167  0.250 
##  5 edge  SupG_F… SupG… SupG… 0.145  0.144  0.0204  0.104    0.185  0.103  0.184 
##  6 edge  SupG_I… SupG… SupG… 0.467  0.462  0.0161  0.435    0.499  0.430  0.493 
##  7 edge  SupG_M… SupG… SupG… 0.0368 0.0380 0.0205 -0.00434  0.0779 0      0.0770
##  8 edge  SupG_M… SupG… SupG… 0.0658 0.0653 0.0203  0.0253   0.106  0.0265 0.104 
##  9 edge  SupG_M… SupG… SupG… 0.152  0.152  0.0202  0.111    0.192  0.112  0.191 
## 10 edge  SupG_M… SupG… SupG… 0.176  0.174  0.0204  0.135    0.217  0.133  0.213 
## # … with 11 more rows, and 6 more variables: q2.5_non0 <dbl>, mean_non0 <dbl>,
## #   q97.5_non0 <dbl>, var_non0 <dbl>, sd_non0 <dbl>, prop0 <dbl>

6.0.0.1 Plot from summarized statistics

plot(boot.ega)
## Warning: `arrange_()` was deprecated in dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help

6.0.0.2 Method 3 - New EGA package from Golino and XXX

# Estimate EGA
EGA(data =CorMat,n=nrow(data), plot.EGA = T,uni.method = "LE")
## Warning in EGA(data = CorMat, n = nrow(data), plot.EGA = T, uni.method =
## "LE"): Previous versions of EGAnet (<= 0.9.8) checked unidimensionality using
## uni.method = "expand" as the default
## Network estimated with:
##  • gamma = 0.5
##  • lambda.min.ratio = 0.1

## EGA Results:
## 
## Number of Dimensions:
## [1] 1
## 
## Items per Dimension:
##                   items dimension
## SupG_Feed     SupG_Feed         1
## SupG_Meta     SupG_Meta         1
## SupG_Ori       SupG_Ori         1
## SupG_Mon       SupG_Mon         1
## SupG_Infra   SupG_Infra         1
## SupG_Bestar SupG_Bestar         1

6.0.0.3 Factorial Exploratory Analysis

EFArst <- psych::fa(as.matrix(CorMat),1,n.obs=nrow(data), rotate = "promax",fm = "uls", n.iter =1000, alpha = T,correct = T)

The communalities were observed between 0.451 and 0.733, and the factor loadings between 0.671and 0.856 Table2. A factor was retained, with an eigenvalue of 3.66 that explained 0.61% of the variance.

6.0.0.3.1 Complete results from EFA
EFArst
## Factor Analysis with confidence intervals using method = psych::fa(r = as.matrix(CorMat), nfactors = 1, n.obs = nrow(data), 
##     n.iter = 1000, rotate = "promax", fm = "uls", alpha = T, 
##     correct = T)
## Factor Analysis using method =  uls
## Call: psych::fa(r = as.matrix(CorMat), nfactors = 1, n.obs = nrow(data), 
##     n.iter = 1000, rotate = "promax", fm = "uls", alpha = T, 
##     correct = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##             ULS1   h2   u2 com
## SupG_Feed   0.78 0.61 0.39   1
## SupG_Meta   0.67 0.45 0.55   1
## SupG_Ori    0.84 0.71 0.29   1
## SupG_Mon    0.86 0.73 0.27   1
## SupG_Infra  0.74 0.55 0.45   1
## SupG_Bestar 0.78 0.60 0.40   1
## 
##                ULS1
## SS loadings    3.66
## Proportion Var 0.61
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  15  and the objective function was  3.69 with Chi Square of  7964
## The degrees of freedom for the model are 9  and the objective function was  0.28 
## 
## The root mean square of the residuals (RMSR) is  0.06 
## The df corrected root mean square of the residuals is  0.07 
## 
## The harmonic number of observations is  2165 with the empirical chi square  199.6  with prob <  0.000000000000000000000000000000000000041 
## The total number of observations was  2165  with Likelihood Chi Square =  606.8  with prob <  7.4e-125 
## 
## Tucker Lewis Index of factoring reliability =  0.875
## RMSEA index =  0.175  and the 0 % confidence intervals are  NA 0.175
## BIC =  537.6
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                   ULS1
## Correlation of (regression) scores with factors   0.95
## Multiple R square of scores with factors          0.91
## Minimum correlation of possible factor scores     0.82
## 
##  Coefficients and bootstrapped confidence intervals 
##              low ULS1 upper
## SupG_Feed   0.76 0.78  0.80
## SupG_Meta   0.65 0.67  0.70
## SupG_Ori    0.83 0.84  0.86
## SupG_Mon    0.84 0.86  0.87
## SupG_Infra  0.72 0.74  0.76
## SupG_Bestar 0.76 0.78  0.80

6.0.0.4 Exploratory Fator Analysis using semTools and a Lavaan engine

#fa_mod1 <- efaUnrotate(data=data, nf = 1, estimator = "ULSMV",ordered=T,missing="pairwise",std.lv=T)
#fa_mod2 <- efaUnrotate(data, nf = 1, estimator = "MLR",ordered=F,missing="FIML")

7 Confirmatory Factor Analysis

7.0.0.1 Changing data

data<-banco_CFA

7.1 Structure Validity - Dimensionality

7.1.0.1 Model

model <- 'SupG =~ SupG_Feed + SupG_Meta + SupG_Ori + SupG_Mon + SupG_Infra + SupG_Bestar'

7.1.0.2 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise",std.lv=T)

7.1.0.3 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 9 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        30
##                                                       
##   Number of observations                          5443
##   Number of missing patterns                         1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               184.060     914.458
##   Degrees of freedom                                 9           9
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.201
##   Shift parameter                                            0.557
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31844.214   37805.641
##   Degrees of freedom                                15          15
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.842
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.995       0.976
##   Tucker-Lewis Index (TLI)                       0.991       0.960
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.060       0.136
##   90 Percent confidence interval - lower         0.052       0.129
##   90 Percent confidence interval - upper         0.067       0.143
##   P-value RMSEA <= 0.05                          0.015       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040       0.040
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         0.798    0.007  121.204    0.000    0.798    0.798
##     SupG_Meta         0.693    0.008   82.107    0.000    0.693    0.693
##     SupG_Ori          0.846    0.006  146.456    0.000    0.846    0.846
##     SupG_Mon          0.827    0.006  133.870    0.000    0.827    0.827
##     SupG_Infra        0.769    0.007  111.458    0.000    0.769    0.769
##     SupG_Bestar       0.796    0.006  123.043    0.000    0.796    0.796
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -1.711    0.030  -57.090    0.000   -1.711   -1.711
##     SupG_Feed|t2     -1.197    0.022  -53.819    0.000   -1.197   -1.197
##     SupG_Feed|t3     -0.521    0.018  -29.189    0.000   -0.521   -0.521
##     SupG_Feed|t4      0.653    0.018   35.519    0.000    0.653    0.653
##     SupG_Meta|t1     -2.247    0.047  -48.009    0.000   -2.247   -2.247
##     SupG_Meta|t2     -1.610    0.028  -57.510    0.000   -1.610   -1.610
##     SupG_Meta|t3     -1.039    0.021  -50.002    0.000   -1.039   -1.039
##     SupG_Meta|t4      0.483    0.018   27.245    0.000    0.483    0.483
##     SupG_Ori|t1      -2.422    0.056  -43.359    0.000   -2.422   -2.422
##     SupG_Ori|t2      -1.871    0.034  -55.477    0.000   -1.871   -1.871
##     SupG_Ori|t3      -1.337    0.024  -56.080    0.000   -1.337   -1.337
##     SupG_Ori|t4       0.057    0.017    3.375    0.001    0.057    0.057
##     SupG_Mon|t1      -2.358    0.052  -45.120    0.000   -2.358   -2.358
##     SupG_Mon|t2      -1.942    0.036  -54.427    0.000   -1.942   -1.942
##     SupG_Mon|t3      -1.305    0.023  -55.656    0.000   -1.305   -1.305
##     SupG_Mon|t4       0.100    0.017    5.895    0.000    0.100    0.100
##     SupG_Infra|t1    -1.494    0.026  -57.374    0.000   -1.494   -1.494
##     SupG_Infra|t2    -0.949    0.020  -47.261    0.000   -0.949   -0.949
##     SupG_Infra|t3    -0.136    0.017   -7.953    0.000   -0.136   -0.136
##     SupG_Infra|t4     0.789    0.019   41.388    0.000    0.789    0.789
##     SupG_Bestar|t1   -1.783    0.032  -56.500    0.000   -1.783   -1.783
##     SupG_Bestar|t2   -1.333    0.024  -56.024    0.000   -1.333   -1.333
##     SupG_Bestar|t3   -0.643    0.018  -35.074    0.000   -0.643   -0.643
##     SupG_Bestar|t4    0.404    0.018   23.096    0.000    0.404    0.404
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.363                               0.363    0.363
##    .SupG_Meta         0.520                               0.520    0.520
##    .SupG_Ori          0.284                               0.284    0.284
##    .SupG_Mon          0.316                               0.316    0.316
##    .SupG_Infra        0.409                               0.409    0.409
##    .SupG_Bestar       0.366                               0.366    0.366
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         1.000                               1.000    1.000
##     SupG_Meta         1.000                               1.000    1.000
##     SupG_Ori          1.000                               1.000    1.000
##     SupG_Mon          1.000                               1.000    1.000
##     SupG_Infra        1.000                               1.000    1.000
##     SupG_Bestar       1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.637
##     SupG_Meta         0.480
##     SupG_Ori          0.716
##     SupG_Mon          0.684
##     SupG_Infra        0.591
##     SupG_Bestar       0.634

7.1.0.4 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               914.458                 9.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.040                 0.976                 0.960 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.136                 0.129                 0.143

7.1.0.5 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##    lhs op         rhs est.std    se      z pvalue ci.lower ci.upper
## 1 SupG =~   SupG_Feed   0.798 0.007 121.20      0    0.785    0.811
## 2 SupG =~   SupG_Meta   0.693 0.008  82.11      0    0.676    0.709
## 3 SupG =~    SupG_Ori   0.846 0.006 146.46      0    0.835    0.857
## 4 SupG =~    SupG_Mon   0.827 0.006 133.87      0    0.815    0.839
## 5 SupG =~  SupG_Infra   0.769 0.007 111.46      0    0.755    0.783
## 6 SupG =~ SupG_Bestar   0.796 0.006 123.04      0    0.784    0.809

7.1.0.6 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T)
##           lhs op         rhs      mi    epc sepc.lv sepc.all sepc.nox
## 65 SupG_Infra ~~ SupG_Bestar 140.700  0.206   0.206    0.534    0.534
## 60   SupG_Ori ~~    SupG_Mon  40.100  0.116   0.116    0.388    0.388
## 61   SupG_Ori ~~  SupG_Infra  33.097 -0.103  -0.103   -0.301   -0.301
## 64   SupG_Mon ~~ SupG_Bestar  29.655 -0.097  -0.097   -0.287   -0.287
## 58  SupG_Meta ~~  SupG_Infra  16.442 -0.067  -0.067   -0.146   -0.146
## 56  SupG_Meta ~~    SupG_Ori  14.683  0.066   0.066    0.171    0.171
## 59  SupG_Meta ~~ SupG_Bestar   9.444 -0.052  -0.052   -0.119   -0.119
## 62   SupG_Ori ~~ SupG_Bestar   8.880 -0.054  -0.054   -0.167   -0.167
## 63   SupG_Mon ~~  SupG_Infra   8.312 -0.051  -0.051   -0.142   -0.142
## 57  SupG_Meta ~~    SupG_Mon   3.930  0.034   0.034    0.083    0.083
## 52  SupG_Feed ~~    SupG_Ori   1.837 -0.025  -0.025   -0.076   -0.076
## 51  SupG_Feed ~~   SupG_Meta   1.035  0.017   0.017    0.039    0.039
## 54  SupG_Feed ~~  SupG_Infra   0.544  0.013   0.013    0.033    0.033
## 55  SupG_Feed ~~ SupG_Bestar   0.022 -0.003  -0.003   -0.007   -0.007
## 53  SupG_Feed ~~    SupG_Mon   0.009 -0.002  -0.002   -0.005   -0.005

7.1.0.7 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##             SupG
## alpha     0.8621
## alpha.ord 0.9076
## omega     0.8710
## omega2    0.8710
## omega3    0.8691
## avevar    0.6237

7.1.0.8 Modified Model

model <- 
'
SupG =~ SupG_Feed + SupG_Meta + SupG_Ori + SupG_Mon + SupG_Infra + SupG_Bestar
SupG_Infra  ~~  SupG_Bestar
'

7.1.0.9 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise",std.lv=T)

7.1.0.10 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 15 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        31
##                                                       
##   Number of observations                          5443
##   Number of missing patterns                         1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                43.268     227.316
##   Degrees of freedom                                 8           8
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.191
##   Shift parameter                                            0.410
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31844.214   37805.641
##   Degrees of freedom                                15          15
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.842
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999       0.994
##   Tucker-Lewis Index (TLI)                       0.998       0.989
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.028       0.071
##   90 Percent confidence interval - lower         0.020       0.063
##   90 Percent confidence interval - upper         0.037       0.079
##   P-value RMSEA <= 0.05                          1.000       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.019       0.019
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         0.809    0.007  121.452    0.000    0.809    0.809
##     SupG_Meta         0.703    0.008   83.304    0.000    0.703    0.703
##     SupG_Ori          0.861    0.006  151.329    0.000    0.861    0.861
##     SupG_Mon          0.842    0.006  137.055    0.000    0.842    0.842
##     SupG_Infra        0.718    0.008   87.082    0.000    0.718    0.718
##     SupG_Bestar       0.746    0.008   97.156    0.000    0.746    0.746
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.202    0.009   23.807    0.000    0.202    0.436
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -1.711    0.030  -57.090    0.000   -1.711   -1.711
##     SupG_Feed|t2     -1.197    0.022  -53.819    0.000   -1.197   -1.197
##     SupG_Feed|t3     -0.521    0.018  -29.189    0.000   -0.521   -0.521
##     SupG_Feed|t4      0.653    0.018   35.519    0.000    0.653    0.653
##     SupG_Meta|t1     -2.247    0.047  -48.009    0.000   -2.247   -2.247
##     SupG_Meta|t2     -1.610    0.028  -57.510    0.000   -1.610   -1.610
##     SupG_Meta|t3     -1.039    0.021  -50.002    0.000   -1.039   -1.039
##     SupG_Meta|t4      0.483    0.018   27.245    0.000    0.483    0.483
##     SupG_Ori|t1      -2.422    0.056  -43.359    0.000   -2.422   -2.422
##     SupG_Ori|t2      -1.871    0.034  -55.477    0.000   -1.871   -1.871
##     SupG_Ori|t3      -1.337    0.024  -56.080    0.000   -1.337   -1.337
##     SupG_Ori|t4       0.057    0.017    3.375    0.001    0.057    0.057
##     SupG_Mon|t1      -2.358    0.052  -45.120    0.000   -2.358   -2.358
##     SupG_Mon|t2      -1.942    0.036  -54.427    0.000   -1.942   -1.942
##     SupG_Mon|t3      -1.305    0.023  -55.656    0.000   -1.305   -1.305
##     SupG_Mon|t4       0.100    0.017    5.895    0.000    0.100    0.100
##     SupG_Infra|t1    -1.494    0.026  -57.374    0.000   -1.494   -1.494
##     SupG_Infra|t2    -0.949    0.020  -47.261    0.000   -0.949   -0.949
##     SupG_Infra|t3    -0.136    0.017   -7.953    0.000   -0.136   -0.136
##     SupG_Infra|t4     0.789    0.019   41.388    0.000    0.789    0.789
##     SupG_Bestar|t1   -1.783    0.032  -56.500    0.000   -1.783   -1.783
##     SupG_Bestar|t2   -1.333    0.024  -56.024    0.000   -1.333   -1.333
##     SupG_Bestar|t3   -0.643    0.018  -35.074    0.000   -0.643   -0.643
##     SupG_Bestar|t4    0.404    0.018   23.096    0.000    0.404    0.404
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.345                               0.345    0.345
##    .SupG_Meta         0.506                               0.506    0.506
##    .SupG_Ori          0.258                               0.258    0.258
##    .SupG_Mon          0.292                               0.292    0.292
##    .SupG_Infra        0.485                               0.485    0.485
##    .SupG_Bestar       0.444                               0.444    0.444
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         1.000                               1.000    1.000
##     SupG_Meta         1.000                               1.000    1.000
##     SupG_Ori          1.000                               1.000    1.000
##     SupG_Mon          1.000                               1.000    1.000
##     SupG_Infra        1.000                               1.000    1.000
##     SupG_Bestar       1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.655
##     SupG_Meta         0.494
##     SupG_Ori          0.742
##     SupG_Mon          0.708
##     SupG_Infra        0.515
##     SupG_Bestar       0.556

7.1.0.11 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               227.316                 8.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.019                 0.994                 0.989 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.071                 0.063                 0.079

7.1.0.12 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##    lhs op         rhs est.std    se      z pvalue ci.lower ci.upper
## 1 SupG =~   SupG_Feed   0.809 0.007 121.45      0    0.796    0.822
## 2 SupG =~   SupG_Meta   0.703 0.008  83.30      0    0.686    0.719
## 3 SupG =~    SupG_Ori   0.861 0.006 151.33      0    0.850    0.872
## 4 SupG =~    SupG_Mon   0.842 0.006 137.06      0    0.830    0.854
## 5 SupG =~  SupG_Infra   0.718 0.008  87.08      0    0.701    0.734
## 6 SupG =~ SupG_Bestar   0.746 0.008  97.16      0    0.731    0.761

7.1.0.13 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T)
##          lhs op         rhs     mi    epc sepc.lv sepc.all sepc.nox
## 61  SupG_Ori ~~    SupG_Mon 15.939  0.077   0.077    0.279    0.279
## 55 SupG_Feed ~~  SupG_Infra 15.601  0.070   0.070    0.171    0.171
## 53 SupG_Feed ~~    SupG_Ori 13.097 -0.068  -0.068   -0.228   -0.228
## 56 SupG_Feed ~~ SupG_Bestar  8.889  0.053   0.053    0.137    0.137
## 62  SupG_Ori ~~  SupG_Infra  7.134 -0.049  -0.049   -0.138   -0.138
## 65  SupG_Mon ~~ SupG_Bestar  6.188 -0.045  -0.045   -0.126   -0.126
## 54 SupG_Feed ~~    SupG_Mon  4.807 -0.041  -0.041   -0.128   -0.128
## 57 SupG_Meta ~~    SupG_Ori  4.246  0.036   0.036    0.101    0.101
## 59 SupG_Meta ~~  SupG_Infra  2.327 -0.026  -0.026   -0.052   -0.052
## 60 SupG_Meta ~~ SupG_Bestar  0.347 -0.010  -0.010   -0.021   -0.021
## 52 SupG_Feed ~~   SupG_Meta  0.206 -0.008  -0.008   -0.019   -0.019
## 58 SupG_Meta ~~    SupG_Mon  0.061  0.004   0.004    0.011    0.011
## 64  SupG_Mon ~~  SupG_Infra  0.041  0.004   0.004    0.010    0.010
## 63  SupG_Ori ~~ SupG_Bestar  0.009  0.002   0.002    0.005    0.005

7.1.0.14 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##             SupG
## alpha     0.8621
## alpha.ord 0.9076
## omega     0.8414
## omega2    0.8414
## omega3    0.8403
## avevar    0.6117

7.1.0.15 Graphical Representation

semPaths(object=fit,whatLabels ="stand",residuals = F, thresholds = F,ThreshAtSide=F, cardinal = c("exogenous covariances", border.color = ("black")), layout="circle",intercept=F, edge.label.cex = 1)

7.1.1 Internal Validity

7.1.1.1 Organizing Sex

data$Gen<-car::recode(data$Gen,"0=NA")
data$SexoR<-as.factor(data$Gen)

7.1.1.2 Sex Invariance Model

model <- 
'
SupG =~ SupG_Feed + SupG_Meta + SupG_Ori + SupG_Mon + SupG_Infra + SupG_Bestar
SupG_Infra  ~~  SupG_Bestar
'

7.1.1.3 Fitting

invariance<- measurementInvarianceCat(model = model, data = data, group = "SexoR",parameterization = "theta", estimator = "ULSMV",ordered =T,missing="pairwise",std.lv=T)
## Warning: The measurementInvarianceCat function is deprecated, and it will cease
## to be included in future versions of semTools. See help('semTools-deprecated)
## for details.
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values
## 
## Measurement invariance models:
## 
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.thresholds
## Model 4 : fit.means
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan NOTE:
##     The "Chisq" column contains standard test statistics, not the
##     robust test that should be reported per model. A robust difference
##     test is a function of two standard (not robust) statistics.
##  
##                Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)  
## fit.configural 16          47.5                                
## fit.loadings   21          66.2       8.07       5      0.152  
## fit.thresholds 38         134.6      31.10      17      0.019 *
## fit.means      39         144.8       1.10       1      0.295  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Fit measures:
## 
##                cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural      0.994        0.073               NA                 NA
## fit.loadings        0.998        0.033            0.004              0.040
## fit.thresholds      0.998        0.024            0.000              0.008
## fit.means           0.999        0.022            0.000              0.003
7.1.1.3.1 Configural
summary(invariance$fit.configural,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 130 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        69
##   Number of equality constraints                     7
##                                                       
##   Number of observations per group:                   
##     2                                             2240
##     1                                             3199
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                47.519     248.570
##   Degrees of freedom                                16          16
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.192
##   Shift parameter for each group:                                 
##       2                                                      0.413
##       1                                                      0.589
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           16.779      87.830
##     1                                           30.740     160.740
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31830.796   38247.598
##   Degrees of freedom                                30          30
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.833
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999       0.994
##   Tucker-Lewis Index (TLI)                       0.998       0.989
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.027       0.073
##   90 Percent confidence interval - lower         0.018       0.065
##   90 Percent confidence interval - upper         0.036       0.081
##   P-value RMSEA <= 0.05                          1.000       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.020       0.020
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.431    0.053   26.961    0.000    1.431    0.820
##     SupG_Meta         1.066    0.037   28.894    0.000    1.066    0.729
##     SupG_Ori          1.739    0.067   25.869    0.000    1.739    0.867
##     SupG_Mon          1.520    0.056   26.956    0.000    1.520    0.835
##     SupG_Infra        1.063    0.038   27.857    0.000    1.063    0.728
##     SupG_Bestar       1.126    0.040   27.957    0.000    1.126    0.748
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.443    0.019   22.749    0.000    0.443    0.443
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.984    0.081  -36.873    0.000   -2.984   -1.709
##     SupG_Feed|t2     -2.051    0.065  -31.721    0.000   -2.051   -1.175
##     SupG_Feed|t3     -0.893    0.051  -17.538    0.000   -0.893   -0.512
##     SupG_Feed|t4      1.200    0.053   22.590    0.000    1.200    0.687
##     SupG_Meta|t1     -3.201    0.100  -32.080    0.000   -3.201   -2.189
##     SupG_Meta|t2     -2.386    0.065  -36.591    0.000   -2.386   -1.632
##     SupG_Meta|t3     -1.526    0.049  -30.852    0.000   -1.526   -1.044
##     SupG_Meta|t4      0.667    0.040   16.869    0.000    0.667    0.456
##     SupG_Ori|t1      -4.714    0.154  -30.534    0.000   -4.714   -2.350
##     SupG_Ori|t2      -3.616    0.110  -32.879    0.000   -3.616   -1.803
##     SupG_Ori|t3      -2.472    0.084  -29.370    0.000   -2.472   -1.232
##     SupG_Ori|t4       0.241    0.052    4.603    0.000    0.241    0.120
##     SupG_Mon|t1      -4.186    0.138  -30.364    0.000   -4.186   -2.300
##     SupG_Mon|t2      -3.580    0.110  -32.660    0.000   -3.580   -1.968
##     SupG_Mon|t3      -2.393    0.077  -30.884    0.000   -2.393   -1.315
##     SupG_Mon|t4       0.257    0.048    5.418    0.000    0.257    0.141
##     SupG_Infra|t1    -2.110    0.059  -36.062    0.000   -2.110   -1.446
##     SupG_Infra|t2    -1.354    0.047  -28.884    0.000   -1.354   -0.928
##     SupG_Infra|t3    -0.218    0.039   -5.601    0.000   -0.218   -0.149
##     SupG_Infra|t4     1.140    0.044   26.020    0.000    1.140    0.781
##     SupG_Bestar|t1   -2.750    0.076  -36.165    0.000   -2.750   -1.826
##     SupG_Bestar|t2   -2.018    0.058  -34.677    0.000   -2.018   -1.340
##     SupG_Bestar|t3   -0.945    0.044  -21.417    0.000   -0.945   -0.627
##     SupG_Bestar|t4    0.630    0.041   15.407    0.000    0.630    0.418
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.000                               1.000    0.328
##    .SupG_Meta         1.000                               1.000    0.468
##    .SupG_Ori          1.000                               1.000    0.249
##    .SupG_Mon          1.000                               1.000    0.302
##    .SupG_Infra        1.000                               1.000    0.470
##    .SupG_Bestar       1.000                               1.000    0.441
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.573                               0.573    1.000
##     SupG_Meta         0.684                               0.684    1.000
##     SupG_Ori          0.499                               0.499    1.000
##     SupG_Mon          0.550                               0.550    1.000
##     SupG_Infra        0.685                               0.685    1.000
##     SupG_Bestar       0.664                               0.664    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.672
##     SupG_Meta         0.532
##     SupG_Ori          0.751
##     SupG_Mon          0.698
##     SupG_Infra        0.530
##     SupG_Bestar       0.559
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.497    0.146   10.263    0.000    1.497    0.801
##     SupG_Meta         0.993    0.069   14.317    0.000    0.993    0.683
##     SupG_Ori          1.708    0.133   12.862    0.000    1.708    0.858
##     SupG_Mon          1.547    0.117   13.226    0.000    1.547    0.847
##     SupG_Infra        1.048    0.089   11.716    0.000    1.048    0.709
##     SupG_Bestar       1.244    0.102   12.228    0.000    1.244    0.745
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.505    0.084    5.977    0.000    0.505    0.435
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.149    0.152    0.980    0.327    0.149    0.149
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.984    0.081  -36.873    0.000   -2.984   -1.596
##     SupG_Feed|t2     -2.051    0.065  -31.721    0.000   -2.051   -1.097
##     SupG_Feed|t3     -0.767    0.158   -4.857    0.000   -0.767   -0.410
##     SupG_Feed|t4      1.397    0.355    3.934    0.000    1.397    0.747
##     SupG_Meta|t1     -3.201    0.100  -32.080    0.000   -3.201   -2.202
##     SupG_Meta|t2     -2.175    0.101  -21.531    0.000   -2.175   -1.496
##     SupG_Meta|t3     -1.358    0.105  -12.947    0.000   -1.358   -0.934
##     SupG_Meta|t4      0.878    0.199    4.400    0.000    0.878    0.604
##     SupG_Ori|t1      -4.714    0.154  -30.534    0.000   -4.714   -2.370
##     SupG_Ori|t2      -3.583    0.166  -21.599    0.000   -3.583   -1.801
##     SupG_Ori|t3      -2.579    0.161  -16.048    0.000   -2.579   -1.296
##     SupG_Ori|t4       0.282    0.277    1.018    0.309    0.282    0.142
##     SupG_Mon|t1      -4.186    0.138  -30.364    0.000   -4.186   -2.291
##     SupG_Mon|t2      -3.293    0.149  -22.126    0.000   -3.293   -1.802
##     SupG_Mon|t3      -2.143    0.149  -14.361    0.000   -2.143   -1.173
##     SupG_Mon|t4       0.362    0.257    1.407    0.160    0.362    0.198
##     SupG_Infra|t1    -2.110    0.059  -36.062    0.000   -2.110   -1.428
##     SupG_Infra|t2    -1.271    0.077  -16.409    0.000   -1.271   -0.861
##     SupG_Infra|t3    -0.032    0.158   -0.205    0.838   -0.032   -0.022
##     SupG_Infra|t4     1.328    0.264    5.039    0.000    1.328    0.899
##     SupG_Bestar|t1   -2.750    0.076  -36.165    0.000   -2.750   -1.647
##     SupG_Bestar|t2   -2.034    0.083  -24.548    0.000   -2.034   -1.218
##     SupG_Bestar|t3   -0.908    0.131   -6.940    0.000   -0.908   -0.544
##     SupG_Bestar|t4    0.844    0.251    3.360    0.001    0.844    0.505
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.254    0.235    5.329    0.000    1.254    0.359
##    .SupG_Meta         1.128    0.146    7.714    0.000    1.128    0.534
##    .SupG_Ori          1.042    0.157    6.633    0.000    1.042    0.263
##    .SupG_Mon          0.945    0.138    6.848    0.000    0.945    0.283
##    .SupG_Infra        1.084    0.181    5.998    0.000    1.084    0.497
##    .SupG_Bestar       1.241    0.196    6.324    0.000    1.241    0.445
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.535                               0.535    1.000
##     SupG_Meta         0.688                               0.688    1.000
##     SupG_Ori          0.503                               0.503    1.000
##     SupG_Mon          0.547                               0.547    1.000
##     SupG_Infra        0.677                               0.677    1.000
##     SupG_Bestar       0.599                               0.599    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.641
##     SupG_Meta         0.466
##     SupG_Ori          0.737
##     SupG_Mon          0.717
##     SupG_Infra        0.503
##     SupG_Bestar       0.555
lavaan::fitMeasures(invariance$fit.configural,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               248.570                16.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.020                 0.994                 0.989 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.073                 0.065                 0.081
modificationindices(invariance$fit.configural, sort.=T)
##           lhs op         rhs block group level     mi    epc sepc.lv sepc.all
## 133  SupG_Ori ~~    SupG_Mon     2     2     1 13.242  0.335   0.335    0.337
## 125 SupG_Feed ~~    SupG_Ori     2     2     1  9.924 -0.287  -0.287   -0.251
## 127 SupG_Feed ~~  SupG_Infra     2     2     1  9.820  0.200   0.200    0.171
## 113 SupG_Feed ~~  SupG_Infra     1     1     1  5.776  0.170   0.170    0.170
## 134  SupG_Ori ~~  SupG_Infra     2     2     1  5.518 -0.165  -0.165   -0.155
## 126 SupG_Feed ~~    SupG_Mon     2     2     1  5.227 -0.190  -0.190   -0.175
## 128 SupG_Feed ~~ SupG_Bestar     2     2     1  5.196  0.167   0.167    0.134
## 114 SupG_Feed ~~ SupG_Bestar     1     1     1  3.823  0.144   0.144    0.144
## 111 SupG_Feed ~~    SupG_Ori     1     1     1  3.757 -0.199  -0.199   -0.199
## 119  SupG_Ori ~~    SupG_Mon     1     1     1  3.692  0.207   0.207    0.207
## 115 SupG_Meta ~~    SupG_Ori     1     1     1  3.620  0.155   0.155    0.155
## 137  SupG_Mon ~~ SupG_Bestar     2     2     1  3.603 -0.139  -0.139   -0.129
## 123  SupG_Mon ~~ SupG_Bestar     1     1     1  2.847 -0.130  -0.130   -0.130
## 110 SupG_Feed ~~   SupG_Meta     1     1     1  2.090 -0.100  -0.100   -0.100
## 120  SupG_Ori ~~  SupG_Infra     1     1     1  1.839 -0.113  -0.113   -0.113
## 117 SupG_Meta ~~  SupG_Infra     1     1     1  1.369 -0.066  -0.066   -0.066
## 129 SupG_Meta ~~    SupG_Ori     2     2     1  1.145  0.071   0.071    0.065
## 132 SupG_Meta ~~ SupG_Bestar     2     2     1  1.144 -0.057  -0.057   -0.048
## 131 SupG_Meta ~~  SupG_Infra     2     2     1  1.045 -0.048  -0.048   -0.043
## 124 SupG_Feed ~~   SupG_Meta     2     2     1  0.464  0.041   0.041    0.035
## 112 SupG_Feed ~~    SupG_Mon     1     1     1  0.438 -0.060  -0.060   -0.060
## 135  SupG_Ori ~~ SupG_Bestar     2     2     1  0.385  0.050   0.050    0.044
## 121  SupG_Ori ~~ SupG_Bestar     1     1     1  0.341 -0.051  -0.051   -0.051
## 118 SupG_Meta ~~ SupG_Bestar     1     1     1  0.142  0.022   0.022    0.022
## 136  SupG_Mon ~~  SupG_Infra     2     2     1  0.048  0.014   0.014    0.014
## 116 SupG_Meta ~~    SupG_Mon     1     1     1  0.038  0.014   0.014    0.014
## 130 SupG_Meta ~~    SupG_Mon     2     2     1  0.018  0.008   0.008    0.008
## 122  SupG_Mon ~~  SupG_Infra     1     1     1  0.007  0.006   0.006    0.006
##     sepc.nox
## 133    0.337
## 125   -0.251
## 127    0.171
## 113    0.170
## 134   -0.155
## 126   -0.175
## 128    0.134
## 114    0.144
## 111   -0.199
## 119    0.207
## 115    0.155
## 137   -0.129
## 123   -0.130
## 110   -0.100
## 120   -0.113
## 117   -0.066
## 129    0.065
## 132   -0.048
## 131   -0.043
## 124    0.035
## 112   -0.060
## 135    0.044
## 121   -0.051
## 118    0.022
## 136    0.014
## 116    0.014
## 130    0.008
## 122    0.006
semTools::reliability(invariance$fit.configural)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##             SupG
## alpha     0.8694
## alpha.ord 0.9121
## omega     0.8480
## omega2    0.8480
## omega3    0.8471
## avevar    0.6454
## 
## $`1`
##             SupG
## alpha     0.8562
## alpha.ord 0.9043
## omega     0.8396
## omega2    0.8396
## omega3    0.8385
## avevar    0.6255
7.1.1.3.2 Loadings
summary(invariance$fit.loadings,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 123 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        70
##   Number of equality constraints                    13
##                                                       
##   Number of observations per group:                   
##     2                                             2240
##     1                                             3199
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                66.250      82.456
##   Degrees of freedom                                21          21
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.850
##   Shift parameter for each group:                                 
##       2                                                      1.868
##       1                                                      2.668
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           27.561      34.283
##     1                                           38.690      48.172
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31830.796   38247.598
##   Degrees of freedom                                30          30
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.833
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999       0.998
##   Tucker-Lewis Index (TLI)                       0.998       0.998
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.028       0.033
##   90 Percent confidence interval - lower         0.021       0.026
##   90 Percent confidence interval - upper         0.036       0.040
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.023       0.023
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.456    0.057   25.398    0.000    1.456    0.824
##     SupG_Meta         1.005    0.041   24.742    0.000    1.005    0.709
##     SupG_Ori          1.682    0.099   17.069    0.000    1.682    0.860
##     SupG_Mon          1.556    0.080   19.383    0.000    1.556    0.841
##     SupG_Infra        1.040    0.036   28.778    0.000    1.040    0.721
##     SupG_Bestar       1.223    0.049   24.914    0.000    1.223    0.774
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.428    0.025   16.891    0.000    0.428    0.428
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.991    0.099  -30.362    0.000   -2.991   -1.694
##     SupG_Feed|t2     -2.098    0.077  -27.229    0.000   -2.098   -1.188
##     SupG_Feed|t3     -0.904    0.053  -17.151    0.000   -0.904   -0.512
##     SupG_Feed|t4      1.214    0.055   21.997    0.000    1.214    0.687
##     SupG_Meta|t1     -3.129    0.114  -27.480    0.000   -3.129   -2.207
##     SupG_Meta|t2     -2.314    0.077  -30.099    0.000   -2.314   -1.632
##     SupG_Meta|t3     -1.480    0.054  -27.604    0.000   -1.480   -1.044
##     SupG_Meta|t4      0.647    0.039   16.626    0.000    0.647    0.456
##     SupG_Ori|t1      -4.609    0.267  -17.236    0.000   -4.609   -2.355
##     SupG_Ori|t2      -3.527    0.176  -20.058    0.000   -3.527   -1.803
##     SupG_Ori|t3      -2.411    0.118  -20.452    0.000   -2.411   -1.232
##     SupG_Ori|t4       0.235    0.052    4.532    0.000    0.235    0.120
##     SupG_Mon|t1      -4.244    0.217  -19.576    0.000   -4.244   -2.294
##     SupG_Mon|t2      -3.640    0.171  -21.242    0.000   -3.640   -1.968
##     SupG_Mon|t3      -2.433    0.107  -22.821    0.000   -2.433   -1.315
##     SupG_Mon|t4       0.262    0.049    5.372    0.000    0.262    0.141
##     SupG_Infra|t1    -2.107    0.063  -33.676    0.000   -2.107   -1.460
##     SupG_Infra|t2    -1.339    0.050  -26.710    0.000   -1.339   -0.928
##     SupG_Infra|t3    -0.216    0.039   -5.567    0.000   -0.216   -0.149
##     SupG_Infra|t4     1.127    0.043   26.056    0.000    1.127    0.781
##     SupG_Bestar|t1   -2.844    0.102  -27.826    0.000   -2.844   -1.800
##     SupG_Bestar|t2   -2.116    0.076  -27.860    0.000   -2.116   -1.340
##     SupG_Bestar|t3   -0.991    0.050  -19.871    0.000   -0.991   -0.627
##     SupG_Bestar|t4    0.660    0.044   15.125    0.000    0.660    0.418
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.000                               1.000    0.321
##    .SupG_Meta         1.000                               1.000    0.497
##    .SupG_Ori          1.000                               1.000    0.261
##    .SupG_Mon          1.000                               1.000    0.292
##    .SupG_Infra        1.000                               1.000    0.480
##    .SupG_Bestar       1.000                               1.000    0.401
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.566                               0.566    1.000
##     SupG_Meta         0.705                               0.705    1.000
##     SupG_Ori          0.511                               0.511    1.000
##     SupG_Mon          0.541                               0.541    1.000
##     SupG_Infra        0.693                               0.693    1.000
##     SupG_Bestar       0.633                               0.633    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.679
##     SupG_Meta         0.503
##     SupG_Ori          0.739
##     SupG_Mon          0.708
##     SupG_Infra        0.520
##     SupG_Bestar       0.599
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.456    0.057   25.398    0.000    1.376    0.798
##     SupG_Meta         1.005    0.041   24.742    0.000    0.950    0.698
##     SupG_Ori          1.682    0.099   17.069    0.000    1.589    0.863
##     SupG_Mon          1.556    0.080   19.383    0.000    1.471    0.842
##     SupG_Infra        1.040    0.036   28.778    0.000    0.983    0.715
##     SupG_Bestar       1.223    0.049   24.914    0.000    1.156    0.725
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.471    0.068    6.924    0.000    0.471    0.446
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG             -0.010    0.134   -0.076    0.940   -0.011   -0.011
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.991    0.099  -30.362    0.000   -2.991   -1.734
##     SupG_Feed|t2     -2.098    0.077  -27.229    0.000   -2.098   -1.216
##     SupG_Feed|t3     -0.928    0.133   -6.976    0.000   -0.928   -0.538
##     SupG_Feed|t4      1.068    0.274    3.901    0.000    1.068    0.619
##     SupG_Meta|t1     -3.129    0.114  -27.480    0.000   -3.129   -2.299
##     SupG_Meta|t2     -2.185    0.098  -22.263    0.000   -2.185   -1.606
##     SupG_Meta|t3     -1.420    0.088  -16.155    0.000   -1.420   -1.044
##     SupG_Meta|t4      0.673    0.178    3.775    0.000    0.673    0.494
##     SupG_Ori|t1      -4.609    0.267  -17.236    0.000   -4.609   -2.504
##     SupG_Ori|t2      -3.567    0.240  -14.841    0.000   -3.567   -1.938
##     SupG_Ori|t3      -2.639    0.193  -13.691    0.000   -2.639   -1.433
##     SupG_Ori|t4       0.008    0.228    0.036    0.972    0.008    0.004
##     SupG_Mon|t1      -4.244    0.217  -19.576    0.000   -4.244   -2.431
##     SupG_Mon|t2      -3.383    0.198  -17.066    0.000   -3.383   -1.938
##     SupG_Mon|t3      -2.285    0.155  -14.701    0.000   -2.285   -1.308
##     SupG_Mon|t4       0.109    0.217    0.503    0.615    0.109    0.063
##     SupG_Infra|t1    -2.107    0.063  -33.676    0.000   -2.107   -1.532
##     SupG_Infra|t2    -1.340    0.074  -18.144    0.000   -1.340   -0.974
##     SupG_Infra|t3    -0.186    0.130   -1.433    0.152   -0.186   -0.135
##     SupG_Infra|t4     1.080    0.210    5.146    0.000    1.080    0.786
##     SupG_Bestar|t1   -2.844    0.102  -27.826    0.000   -2.844   -1.784
##     SupG_Bestar|t2   -2.131    0.097  -22.013    0.000   -2.131   -1.337
##     SupG_Bestar|t3   -1.056    0.118   -8.984    0.000   -1.056   -0.663
##     SupG_Bestar|t4    0.616    0.200    3.078    0.002    0.616    0.387
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.083    0.183    5.918    0.000    1.083    0.364
##    .SupG_Meta         0.950    0.146    6.517    0.000    0.950    0.513
##    .SupG_Ori          0.862    0.202    4.266    0.000    0.862    0.255
##    .SupG_Mon          0.885    0.184    4.800    0.000    0.885    0.290
##    .SupG_Infra        0.925    0.132    7.011    0.000    0.925    0.489
##    .SupG_Bestar       1.205    0.169    7.145    0.000    1.205    0.474
##     SupG              0.893    0.127    7.056    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.580                               0.580    1.000
##     SupG_Meta         0.735                               0.735    1.000
##     SupG_Ori          0.543                               0.543    1.000
##     SupG_Mon          0.573                               0.573    1.000
##     SupG_Infra        0.727                               0.727    1.000
##     SupG_Bestar       0.627                               0.627    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.636
##     SupG_Meta         0.487
##     SupG_Ori          0.745
##     SupG_Mon          0.710
##     SupG_Infra        0.511
##     SupG_Bestar       0.526
lavaan::fitMeasures(invariance$fit.loadings,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##                82.456                21.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.023                 0.998                 0.998 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.033                 0.026                 0.040
modificationindices(invariance$fit.loadings, sort.=T)
##             lhs  op         rhs block group level     mi    epc sepc.lv
## 134   SupG_Feed  ~~ SupG_Bestar     2     2     1 11.316  0.200   0.200
## 101 SupG_Bestar  ~1                 2     2     1 10.835 -0.295  -0.295
## 95  SupG_Bestar ~*~ SupG_Bestar     2     2     1 10.835 -0.065  -0.065
## 44  SupG_Bestar ~*~ SupG_Bestar     1     1     1 10.835  0.066   0.066
## 50  SupG_Bestar  ~1                 1     1     1 10.835  0.295   0.295
## 139    SupG_Ori  ~~    SupG_Mon     2     2     1 10.420  0.236   0.236
## 129    SupG_Mon  ~~ SupG_Bestar     1     1     1  9.070 -0.222  -0.222
## 121   SupG_Meta  ~~    SupG_Ori     1     1     1  9.049  0.209   0.209
## 131   SupG_Feed  ~~    SupG_Ori     2     2     1  8.670 -0.207  -0.207
## 133   SupG_Feed  ~~  SupG_Infra     2     2     1  8.030  0.147   0.147
## 140    SupG_Ori  ~~  SupG_Infra     2     2     1  7.381 -0.150  -0.150
## 46    SupG_Meta  ~1                 1     1     1  7.358 -0.268  -0.268
## 91    SupG_Meta ~*~   SupG_Meta     2     2     1  7.358  0.063   0.063
## 40    SupG_Meta ~*~   SupG_Meta     1     1     1  7.358 -0.060  -0.060
## 97    SupG_Meta  ~1                 2     2     1  7.358  0.268   0.268
## 119   SupG_Feed  ~~  SupG_Infra     1     1     1  5.776  0.158   0.158
## 137   SupG_Meta  ~~  SupG_Infra     2     2     1  3.649 -0.073  -0.073
## 125    SupG_Ori  ~~    SupG_Mon     1     1     1  3.057  0.164   0.164
## 132   SupG_Feed  ~~    SupG_Mon     2     2     1  2.679 -0.108  -0.108
## 100  SupG_Infra  ~1                 2     2     1  2.661  0.119   0.119
## 43   SupG_Infra ~*~  SupG_Infra     1     1     1  2.661 -0.039  -0.039
## 94   SupG_Infra ~*~  SupG_Infra     2     2     1  2.661  0.041   0.041
## 49   SupG_Infra  ~1                 1     1     1  2.661 -0.119  -0.119
## 117   SupG_Feed  ~~    SupG_Ori     1     1     1  2.482 -0.140  -0.140
## 141    SupG_Ori  ~~ SupG_Bestar     2     2     1  2.235  0.095   0.095
## 127    SupG_Ori  ~~ SupG_Bestar     1     1     1  2.234 -0.117  -0.117
## 118   SupG_Feed  ~~    SupG_Mon     1     1     1  1.161 -0.090  -0.090
## 48     SupG_Mon  ~1                 1     1     1  0.833  0.110   0.110
## 42     SupG_Mon ~*~    SupG_Mon     1     1     1  0.833  0.014   0.014
## 99     SupG_Mon  ~1                 2     2     1  0.833 -0.110  -0.110
## 93     SupG_Mon ~*~    SupG_Mon     2     2     1  0.833 -0.015  -0.015
## 122   SupG_Meta  ~~    SupG_Mon     1     1     1  0.820  0.059   0.059
## 138   SupG_Meta  ~~ SupG_Bestar     2     2     1  0.670 -0.037  -0.037
## 90    SupG_Feed ~*~   SupG_Feed     2     2     1  0.596 -0.016  -0.016
## 39    SupG_Feed ~*~   SupG_Feed     1     1     1  0.593  0.015   0.015
## 98     SupG_Ori  ~1                 2     2     1  0.525  0.094   0.094
## 41     SupG_Ori ~*~    SupG_Ori     1     1     1  0.525 -0.010  -0.010
## 47     SupG_Ori  ~1                 1     1     1  0.525 -0.094  -0.094
## 92     SupG_Ori ~*~    SupG_Ori     2     2     1  0.525  0.011   0.011
## 116   SupG_Feed  ~~   SupG_Meta     1     1     1  0.303 -0.033  -0.033
## 136   SupG_Meta  ~~    SupG_Mon     2     2     1  0.295 -0.028  -0.028
## 126    SupG_Ori  ~~  SupG_Infra     1     1     1  0.290 -0.038  -0.038
## 120   SupG_Feed  ~~ SupG_Bestar     1     1     1  0.126  0.025   0.025
## 143    SupG_Mon  ~~ SupG_Bestar     2     2     1  0.102 -0.019  -0.019
## 96    SupG_Feed  ~1                 2     2     1  0.074 -0.031  -0.031
## 45    SupG_Feed  ~1                 1     1     1  0.074  0.031   0.031
## 128    SupG_Mon  ~~  SupG_Infra     1     1     1  0.033  0.012   0.012
## 124   SupG_Meta  ~~ SupG_Bestar     1     1     1  0.027  0.009   0.009
## 135   SupG_Meta  ~~    SupG_Ori     2     2     1  0.017 -0.007  -0.007
## 142    SupG_Mon  ~~  SupG_Infra     2     2     1  0.010  0.005   0.005
## 123   SupG_Meta  ~~  SupG_Infra     1     1     1  0.001  0.001   0.001
## 130   SupG_Feed  ~~   SupG_Meta     2     2     1  0.000 -0.001  -0.001
##     sepc.all sepc.nox
## 134    0.175    0.175
## 101   -0.185   -0.185
## 95    -1.000   -1.000
## 44     1.000    1.000
## 50     0.187    0.187
## 139    0.270    0.270
## 129   -0.222   -0.222
## 121    0.209    0.209
## 131   -0.215   -0.215
## 133    0.147    0.147
## 140   -0.168   -0.168
## 46    -0.189   -0.189
## 91     1.000    1.000
## 40    -1.000   -1.000
## 97     0.197    0.197
## 119    0.158    0.158
## 137   -0.078   -0.078
## 125    0.164    0.164
## 132   -0.111   -0.111
## 100    0.087    0.087
## 43    -1.000   -1.000
## 94     1.000    1.000
## 49    -0.083   -0.083
## 117   -0.140   -0.140
## 141    0.094    0.094
## 127   -0.117   -0.117
## 118   -0.090   -0.090
## 48     0.059    0.059
## 42     1.000    1.000
## 99    -0.063   -0.063
## 93    -1.000   -1.000
## 122    0.059    0.059
## 138   -0.034   -0.034
## 90    -1.000   -1.000
## 39     1.000    1.000
## 98     0.051    0.051
## 41    -1.000   -1.000
## 47    -0.048   -0.048
## 92     1.000    1.000
## 116   -0.033   -0.033
## 136   -0.030   -0.030
## 126   -0.038   -0.038
## 120    0.025    0.025
## 143   -0.019   -0.019
## 96    -0.018   -0.018
## 45     0.018    0.018
## 128    0.012    0.012
## 124    0.009    0.009
## 135   -0.008   -0.008
## 142    0.006    0.006
## 123    0.001    0.001
## 130   -0.001   -0.001
semTools::reliability(invariance$fit.loadings)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##             SupG
## alpha     0.8694
## alpha.ord 0.9121
## omega     0.8502
## omega2    0.8502
## omega3    0.8494
## avevar    0.6462
## 
## $`1`
##             SupG
## alpha     0.8562
## alpha.ord 0.9043
## omega     0.8339
## omega2    0.8339
## omega3    0.8322
## avevar    0.6235
7.1.1.3.3 Thresholds
summary(invariance$fit.thresholds,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 96 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        70
##   Number of equality constraints                    30
##                                                       
##   Number of observations per group:                   
##     2                                             2240
##     1                                             3199
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               134.582      99.465
##   Degrees of freedom                                38          38
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  1.453
##   Shift parameter for each group:                                 
##       2                                                      2.813
##       1                                                      4.017
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           68.323      49.841
##     1                                           66.258      49.624
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31830.796   38247.598
##   Degrees of freedom                                30          30
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.833
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997       0.998
##   Tucker-Lewis Index (TLI)                       0.998       0.999
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.031       0.024
##   90 Percent confidence interval - lower         0.025       0.019
##   90 Percent confidence interval - upper         0.036       0.030
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.023       0.023
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.461    0.059   24.825    0.000    1.461    0.825
##     SupG_Meta         1.014    0.038   26.877    0.000    1.014    0.712
##     SupG_Ori          1.609    0.077   20.981    0.000    1.609    0.849
##     SupG_Mon          1.633    0.081   20.095    0.000    1.633    0.853
##     SupG_Infra        1.035    0.036   29.040    0.000    1.035    0.719
##     SupG_Bestar       1.206    0.045   26.662    0.000    1.206    0.770
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.434    0.025   17.313    0.000    0.434    0.434
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -3.013    0.100  -30.101    0.000   -3.013   -1.702
##     SupG_Feed|t2     -2.101    0.075  -28.033    0.000   -2.101   -1.187
##     SupG_Feed|t3     -0.899    0.049  -18.526    0.000   -0.899   -0.508
##     SupG_Feed|t4      1.186    0.056   21.305    0.000    1.186    0.670
##     SupG_Meta|t1     -3.181    0.103  -30.772    0.000   -3.181   -2.234
##     SupG_Meta|t2     -2.267    0.075  -30.255    0.000   -2.267   -1.592
##     SupG_Meta|t3     -1.455    0.053  -27.594    0.000   -1.455   -1.022
##     SupG_Meta|t4      0.705    0.037   19.219    0.000    0.705    0.495
##     SupG_Ori|t1      -4.433    0.202  -21.964    0.000   -4.433   -2.340
##     SupG_Ori|t2      -3.407    0.156  -21.908    0.000   -3.407   -1.798
##     SupG_Ori|t3      -2.435    0.115  -21.222    0.000   -2.435   -1.285
##     SupG_Ori|t4       0.135    0.044    3.068    0.002    0.135    0.071
##     SupG_Mon|t1      -4.485    0.213  -21.105    0.000   -4.485   -2.343
##     SupG_Mon|t2      -3.676    0.178  -20.684    0.000   -3.676   -1.920
##     SupG_Mon|t3      -2.458    0.121  -20.347    0.000   -2.458   -1.284
##     SupG_Mon|t4       0.223    0.045    4.926    0.000    0.223    0.116
##     SupG_Infra|t1    -2.103    0.059  -35.615    0.000   -2.103   -1.462
##     SupG_Infra|t2    -1.327    0.044  -29.989    0.000   -1.327   -0.922
##     SupG_Infra|t3    -0.173    0.031   -5.551    0.000   -0.173   -0.120
##     SupG_Infra|t4     1.138    0.041   27.814    0.000    1.138    0.791
##     SupG_Bestar|t1   -2.818    0.093  -30.440    0.000   -2.818   -1.799
##     SupG_Bestar|t2   -2.098    0.070  -29.971    0.000   -2.098   -1.339
##     SupG_Bestar|t3   -1.000    0.045  -22.204    0.000   -1.000   -0.638
##     SupG_Bestar|t4    0.665    0.039   16.997    0.000    0.665    0.425
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.000                               1.000    0.319
##    .SupG_Meta         1.000                               1.000    0.493
##    .SupG_Ori          1.000                               1.000    0.279
##    .SupG_Mon          1.000                               1.000    0.273
##    .SupG_Infra        1.000                               1.000    0.483
##    .SupG_Bestar       1.000                               1.000    0.408
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.565                               0.565    1.000
##     SupG_Meta         0.702                               0.702    1.000
##     SupG_Ori          0.528                               0.528    1.000
##     SupG_Mon          0.522                               0.522    1.000
##     SupG_Infra        0.695                               0.695    1.000
##     SupG_Bestar       0.638                               0.638    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.681
##     SupG_Meta         0.507
##     SupG_Ori          0.721
##     SupG_Mon          0.727
##     SupG_Infra        0.517
##     SupG_Bestar       0.592
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.461    0.059   24.825    0.000    1.418    0.797
##     SupG_Meta         1.014    0.038   26.877    0.000    0.984    0.695
##     SupG_Ori          1.609    0.077   20.981    0.000    1.562    0.872
##     SupG_Mon          1.633    0.081   20.095    0.000    1.585    0.834
##     SupG_Infra        1.035    0.036   29.040    0.000    1.004    0.716
##     SupG_Bestar       1.206    0.045   26.662    0.000    1.170    0.728
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.479    0.046   10.366    0.000    0.479    0.443
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.033    0.031    1.049    0.294    0.034    0.034
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -3.013    0.100  -30.101    0.000   -3.013   -1.693
##     SupG_Feed|t2     -2.101    0.075  -28.033    0.000   -2.101   -1.181
##     SupG_Feed|t3     -0.899    0.049  -18.526    0.000   -0.899   -0.505
##     SupG_Feed|t4      1.186    0.056   21.305    0.000    1.186    0.667
##     SupG_Meta|t1     -3.181    0.103  -30.772    0.000   -3.181   -2.249
##     SupG_Meta|t2     -2.267    0.075  -30.255    0.000   -2.267   -1.602
##     SupG_Meta|t3     -1.455    0.053  -27.594    0.000   -1.455   -1.028
##     SupG_Meta|t4      0.705    0.037   19.219    0.000    0.705    0.498
##     SupG_Ori|t1      -4.433    0.202  -21.964    0.000   -4.433   -2.475
##     SupG_Ori|t2      -3.407    0.156  -21.908    0.000   -3.407   -1.902
##     SupG_Ori|t3      -2.435    0.115  -21.222    0.000   -2.435   -1.360
##     SupG_Ori|t4       0.135    0.044    3.068    0.002    0.135    0.075
##     SupG_Mon|t1      -4.485    0.213  -21.105    0.000   -4.485   -2.360
##     SupG_Mon|t2      -3.676    0.178  -20.684    0.000   -3.676   -1.934
##     SupG_Mon|t3      -2.458    0.121  -20.347    0.000   -2.458   -1.293
##     SupG_Mon|t4       0.223    0.045    4.926    0.000    0.223    0.117
##     SupG_Infra|t1    -2.103    0.059  -35.615    0.000   -2.103   -1.499
##     SupG_Infra|t2    -1.327    0.044  -29.989    0.000   -1.327   -0.946
##     SupG_Infra|t3    -0.173    0.031   -5.551    0.000   -0.173   -0.123
##     SupG_Infra|t4     1.138    0.041   27.814    0.000    1.138    0.811
##     SupG_Bestar|t1   -2.818    0.093  -30.440    0.000   -2.818   -1.753
##     SupG_Bestar|t2   -2.098    0.070  -29.971    0.000   -2.098   -1.305
##     SupG_Bestar|t3   -1.000    0.045  -22.204    0.000   -1.000   -0.622
##     SupG_Bestar|t4    0.665    0.039   16.997    0.000    0.665    0.414
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.154    0.106   10.900    0.000    1.154    0.365
##    .SupG_Meta         1.034    0.093   11.099    0.000    1.034    0.517
##    .SupG_Ori          0.769    0.119    6.467    0.000    0.769    0.240
##    .SupG_Mon          1.101    0.158    6.992    0.000    1.101    0.305
##    .SupG_Infra        0.961    0.067   14.363    0.000    0.961    0.488
##    .SupG_Bestar       1.214    0.103   11.747    0.000    1.214    0.470
##     SupG              0.942    0.055   17.016    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.562                               0.562    1.000
##     SupG_Meta         0.707                               0.707    1.000
##     SupG_Ori          0.558                               0.558    1.000
##     SupG_Mon          0.526                               0.526    1.000
##     SupG_Infra        0.713                               0.713    1.000
##     SupG_Bestar       0.622                               0.622    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.635
##     SupG_Meta         0.483
##     SupG_Ori          0.760
##     SupG_Mon          0.695
##     SupG_Infra        0.512
##     SupG_Bestar       0.530
lavaan::fitMeasures(invariance$fit.thresholds,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##                99.465                38.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.023                 0.998                 0.999 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.024                 0.019                 0.030
modificationindices(invariance$fit.thresholds, sort.=T)
##             lhs  op         rhs block group level     mi    epc sepc.lv
## 47     SupG_Ori  ~1                 1     1     1 20.460 -0.199  -0.199
## 98     SupG_Ori  ~1                 2     2     1 20.460  0.199   0.199
## 148   SupG_Feed  ~~    SupG_Ori     2     2     1 11.138 -0.232  -0.232
## 146    SupG_Mon  ~~ SupG_Bestar     1     1     1 10.651 -0.244  -0.244
## 156    SupG_Ori  ~~    SupG_Mon     2     2     1 10.042  0.238   0.238
## 138   SupG_Meta  ~~    SupG_Ori     1     1     1 10.011  0.207   0.207
## 157    SupG_Ori  ~~  SupG_Infra     2     2     1  9.964 -0.171  -0.171
## 151   SupG_Feed  ~~ SupG_Bestar     2     2     1  9.880  0.189   0.189
## 150   SupG_Feed  ~~  SupG_Infra     2     2     1  7.299  0.142   0.142
## 95  SupG_Bestar ~*~ SupG_Bestar     2     2     1  7.136 -0.049  -0.049
## 44  SupG_Bestar ~*~ SupG_Bestar     1     1     1  7.136  0.051   0.051
## 97    SupG_Meta  ~1                 2     2     1  6.515 -0.074  -0.074
## 46    SupG_Meta  ~1                 1     1     1  6.514  0.074   0.074
## 136   SupG_Feed  ~~  SupG_Infra     1     1     1  5.445  0.146   0.146
## 42     SupG_Mon ~*~    SupG_Mon     1     1     1  4.648  0.030   0.030
## 93     SupG_Mon ~*~    SupG_Mon     2     2     1  4.607 -0.029  -0.029
## 40    SupG_Meta ~*~   SupG_Meta     1     1     1  4.311 -0.041  -0.041
## 92     SupG_Ori ~*~    SupG_Ori     2     2     1  4.060  0.029   0.029
## 91    SupG_Meta ~*~   SupG_Meta     2     2     1  3.880  0.039   0.039
## 41     SupG_Ori ~*~    SupG_Ori     1     1     1  3.616 -0.026  -0.026
## 154   SupG_Meta  ~~  SupG_Infra     2     2     1  3.260 -0.073  -0.073
## 135   SupG_Feed  ~~    SupG_Mon     1     1     1  2.688 -0.140  -0.140
## 142    SupG_Ori  ~~    SupG_Mon     1     1     1  2.675  0.150   0.150
## 43   SupG_Infra ~*~  SupG_Infra     1     1     1  2.530 -0.035  -0.035
## 94   SupG_Infra ~*~  SupG_Infra     2     2     1  2.326  0.034   0.034
## 134   SupG_Feed  ~~    SupG_Ori     1     1     1  1.242 -0.094  -0.094
## 149   SupG_Feed  ~~    SupG_Mon     2     2     1  1.201 -0.080  -0.080
## 100  SupG_Infra  ~1                 2     2     1  1.124 -0.026  -0.026
## 49   SupG_Infra  ~1                 1     1     1  1.124  0.026   0.026
## 50  SupG_Bestar  ~1                 1     1     1  1.108  0.033   0.033
## 101 SupG_Bestar  ~1                 2     2     1  1.108 -0.033  -0.033
## 158    SupG_Ori  ~~ SupG_Bestar     2     2     1  0.777  0.055   0.055
## 155   SupG_Meta  ~~ SupG_Bestar     2     2     1  0.667 -0.038  -0.038
## 144    SupG_Ori  ~~ SupG_Bestar     1     1     1  0.666 -0.060  -0.060
## 96    SupG_Feed  ~1                 2     2     1  0.590  0.025   0.025
## 45    SupG_Feed  ~1                 1     1     1  0.590 -0.025  -0.025
## 133   SupG_Feed  ~~   SupG_Meta     1     1     1  0.510 -0.043  -0.043
## 39    SupG_Feed ~*~   SupG_Feed     1     1     1  0.492  0.011   0.011
## 90    SupG_Feed ~*~   SupG_Feed     2     2     1  0.437 -0.010  -0.010
## 99     SupG_Mon  ~1                 2     2     1  0.415 -0.029  -0.029
## 48     SupG_Mon  ~1                 1     1     1  0.415  0.029   0.029
## 137   SupG_Feed  ~~ SupG_Bestar     1     1     1  0.256  0.035   0.035
## 159    SupG_Mon  ~~  SupG_Infra     2     2     1  0.224  0.027   0.027
## 152   SupG_Meta  ~~    SupG_Ori     2     2     1  0.135 -0.020  -0.020
## 139   SupG_Meta  ~~    SupG_Mon     1     1     1  0.093  0.020   0.020
## 141   SupG_Meta  ~~ SupG_Bestar     1     1     1  0.043  0.011   0.011
## 145    SupG_Mon  ~~  SupG_Infra     1     1     1  0.036 -0.013  -0.013
## 147   SupG_Feed  ~~   SupG_Meta     2     2     1  0.021  0.007   0.007
## 160    SupG_Mon  ~~ SupG_Bestar     2     2     1  0.003 -0.004  -0.004
## 143    SupG_Ori  ~~  SupG_Infra     1     1     1  0.001 -0.002  -0.002
## 153   SupG_Meta  ~~    SupG_Mon     2     2     1  0.000  0.001   0.001
## 140   SupG_Meta  ~~  SupG_Infra     1     1     1  0.000 -0.001  -0.001
##     sepc.all sepc.nox
## 47    -0.105   -0.105
## 98     0.111    0.111
## 148   -0.246   -0.246
## 146   -0.244   -0.244
## 156    0.259    0.259
## 138    0.207    0.207
## 157   -0.199   -0.199
## 151    0.159    0.159
## 150    0.135    0.135
## 95    -1.000   -1.000
## 44     1.000    1.000
## 97    -0.052   -0.052
## 46     0.052    0.052
## 136    0.146    0.146
## 42     1.000    1.000
## 93    -1.000   -1.000
## 40    -1.000   -1.000
## 92     1.000    1.000
## 91     1.000    1.000
## 41    -1.000   -1.000
## 154   -0.073   -0.073
## 135   -0.140   -0.140
## 142    0.150    0.150
## 43    -1.000   -1.000
## 94     1.000    1.000
## 134   -0.094   -0.094
## 149   -0.071   -0.071
## 100   -0.018   -0.018
## 49     0.018    0.018
## 50     0.021    0.021
## 101   -0.020   -0.020
## 158    0.057    0.057
## 155   -0.034   -0.034
## 144   -0.060   -0.060
## 96     0.014    0.014
## 45    -0.014   -0.014
## 133   -0.043   -0.043
## 39     1.000    1.000
## 90    -1.000   -1.000
## 99    -0.015   -0.015
## 48     0.015    0.015
## 137    0.035    0.035
## 159    0.026    0.026
## 152   -0.022   -0.022
## 139    0.020    0.020
## 141    0.011    0.011
## 145   -0.013   -0.013
## 147    0.007    0.007
## 160   -0.003   -0.003
## 143   -0.002   -0.002
## 153    0.001    0.001
## 140   -0.001   -0.001
semTools::reliability(invariance$fit.thresholds)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##             SupG
## alpha     0.8694
## alpha.ord 0.9121
## omega     0.8498
## omega2    0.8498
## omega3    0.8487
## avevar    0.6458
## 
## $`1`
##             SupG
## alpha     0.8562
## alpha.ord 0.9043
## omega     0.8351
## omega2    0.8351
## omega3    0.8335
## avevar    0.6231

7.1.1.4 Partial Invariance - Sex Means

summary(invariance$fit.means,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 95 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        69
##   Number of equality constraints                    30
##                                                       
##   Number of observations per group:                   
##     2                                             2240
##     1                                             3199
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               144.821      89.182
##   Degrees of freedom                                39          39
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  1.800
##   Shift parameter for each group:                                 
##       2                                                      3.593
##       1                                                      5.131
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           75.169      45.354
##     1                                           69.653      43.828
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31830.796   38247.598
##   Degrees of freedom                                30          30
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.833
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997       0.999
##   Tucker-Lewis Index (TLI)                       0.997       0.999
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.032       0.022
##   90 Percent confidence interval - lower         0.026       0.016
##   90 Percent confidence interval - upper         0.037       0.028
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.023       0.023
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.458    0.059   24.743    0.000    1.458    0.825
##     SupG_Meta         1.017    0.038   26.856    0.000    1.017    0.713
##     SupG_Ori          1.603    0.076   21.046    0.000    1.603    0.848
##     SupG_Mon          1.632    0.081   20.063    0.000    1.632    0.853
##     SupG_Infra        1.038    0.036   29.081    0.000    1.038    0.720
##     SupG_Bestar       1.205    0.045   26.503    0.000    1.205    0.769
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.433    0.025   17.215    0.000    0.433    0.433
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -3.010    0.101  -29.950    0.000   -3.010   -1.703
##     SupG_Feed|t2     -2.108    0.073  -28.757    0.000   -2.108   -1.192
##     SupG_Feed|t3     -0.918    0.042  -21.764    0.000   -0.918   -0.519
##     SupG_Feed|t4      1.146    0.047   24.261    0.000    1.146    0.648
##     SupG_Meta|t1     -3.184    0.104  -30.698    0.000   -3.184   -2.233
##     SupG_Meta|t2     -2.274    0.074  -30.634    0.000   -2.274   -1.594
##     SupG_Meta|t3     -1.466    0.051  -29.032    0.000   -1.466   -1.028
##     SupG_Meta|t4      0.682    0.031   22.101    0.000    0.682    0.478
##     SupG_Ori|t1      -4.415    0.202  -21.907    0.000   -4.415   -2.336
##     SupG_Ori|t2      -3.400    0.155  -21.961    0.000   -3.400   -1.800
##     SupG_Ori|t3      -2.440    0.113  -21.534    0.000   -2.440   -1.291
##     SupG_Ori|t4       0.101    0.031    3.270    0.001    0.101    0.053
##     SupG_Mon|t1      -4.479    0.213  -20.989    0.000   -4.479   -2.340
##     SupG_Mon|t2      -3.675    0.178  -20.648    0.000   -3.675   -1.920
##     SupG_Mon|t3      -2.468    0.120  -20.583    0.000   -2.468   -1.289
##     SupG_Mon|t4       0.189    0.033    5.775    0.000    0.189    0.099
##     SupG_Infra|t1    -2.112    0.058  -36.660    0.000   -2.112   -1.465
##     SupG_Infra|t2    -1.340    0.041  -32.734    0.000   -1.340   -0.930
##     SupG_Infra|t3    -0.192    0.024   -7.850    0.000   -0.192   -0.133
##     SupG_Infra|t4     1.111    0.036   30.659    0.000    1.111    0.771
##     SupG_Bestar|t1   -2.815    0.094  -30.043    0.000   -2.815   -1.798
##     SupG_Bestar|t2   -2.101    0.069  -30.298    0.000   -2.101   -1.342
##     SupG_Bestar|t3   -1.014    0.040  -25.047    0.000   -1.014   -0.648
##     SupG_Bestar|t4    0.637    0.033   19.580    0.000    0.637    0.407
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.000                               1.000    0.320
##    .SupG_Meta         1.000                               1.000    0.492
##    .SupG_Ori          1.000                               1.000    0.280
##    .SupG_Mon          1.000                               1.000    0.273
##    .SupG_Infra        1.000                               1.000    0.482
##    .SupG_Bestar       1.000                               1.000    0.408
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.566                               0.566    1.000
##     SupG_Meta         0.701                               0.701    1.000
##     SupG_Ori          0.529                               0.529    1.000
##     SupG_Mon          0.522                               0.522    1.000
##     SupG_Infra        0.694                               0.694    1.000
##     SupG_Bestar       0.639                               0.639    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.680
##     SupG_Meta         0.508
##     SupG_Ori          0.720
##     SupG_Mon          0.727
##     SupG_Infra        0.518
##     SupG_Bestar       0.592
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.458    0.059   24.743    0.000    1.396    0.797
##     SupG_Meta         1.017    0.038   26.856    0.000    0.973    0.695
##     SupG_Ori          1.603    0.076   21.046    0.000    1.535    0.872
##     SupG_Mon          1.632    0.081   20.063    0.000    1.563    0.834
##     SupG_Infra        1.038    0.036   29.081    0.000    0.993    0.715
##     SupG_Bestar       1.205    0.045   26.503    0.000    1.153    0.729
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.466    0.047   10.005    0.000    0.466    0.443
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -3.010    0.101  -29.950    0.000   -3.010   -1.719
##     SupG_Feed|t2     -2.108    0.073  -28.757    0.000   -2.108   -1.204
##     SupG_Feed|t3     -0.918    0.042  -21.764    0.000   -0.918   -0.524
##     SupG_Feed|t4      1.146    0.047   24.261    0.000    1.146    0.655
##     SupG_Meta|t1     -3.184    0.104  -30.698    0.000   -3.184   -2.274
##     SupG_Meta|t2     -2.274    0.074  -30.634    0.000   -2.274   -1.624
##     SupG_Meta|t3     -1.466    0.051  -29.032    0.000   -1.466   -1.047
##     SupG_Meta|t4      0.682    0.031   22.101    0.000    0.682    0.487
##     SupG_Ori|t1      -4.415    0.202  -21.907    0.000   -4.415   -2.507
##     SupG_Ori|t2      -3.400    0.155  -21.961    0.000   -3.400   -1.931
##     SupG_Ori|t3      -2.440    0.113  -21.534    0.000   -2.440   -1.386
##     SupG_Ori|t4       0.101    0.031    3.270    0.001    0.101    0.057
##     SupG_Mon|t1      -4.479    0.213  -20.989    0.000   -4.479   -2.390
##     SupG_Mon|t2      -3.675    0.178  -20.648    0.000   -3.675   -1.961
##     SupG_Mon|t3      -2.468    0.120  -20.583    0.000   -2.468   -1.317
##     SupG_Mon|t4       0.189    0.033    5.775    0.000    0.189    0.101
##     SupG_Infra|t1    -2.112    0.058  -36.660    0.000   -2.112   -1.521
##     SupG_Infra|t2    -1.340    0.041  -32.734    0.000   -1.340   -0.965
##     SupG_Infra|t3    -0.192    0.024   -7.850    0.000   -0.192   -0.138
##     SupG_Infra|t4     1.111    0.036   30.659    0.000    1.111    0.800
##     SupG_Bestar|t1   -2.815    0.094  -30.043    0.000   -2.815   -1.778
##     SupG_Bestar|t2   -2.101    0.069  -30.298    0.000   -2.101   -1.327
##     SupG_Bestar|t3   -1.014    0.040  -25.047    0.000   -1.014   -0.640
##     SupG_Bestar|t4    0.637    0.033   19.580    0.000    0.637    0.402
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.117    0.106   10.552    0.000    1.117    0.364
##    .SupG_Meta         1.013    0.093   10.935    0.000    1.013    0.517
##    .SupG_Ori          0.746    0.115    6.482    0.000    0.746    0.240
##    .SupG_Mon          1.070    0.154    6.964    0.000    1.070    0.305
##    .SupG_Infra        0.942    0.068   13.836    0.000    0.942    0.488
##    .SupG_Bestar       1.176    0.107   10.993    0.000    1.176    0.469
##     SupG              0.917    0.054   17.018    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.571                               0.571    1.000
##     SupG_Meta         0.714                               0.714    1.000
##     SupG_Ori          0.568                               0.568    1.000
##     SupG_Mon          0.534                               0.534    1.000
##     SupG_Infra        0.720                               0.720    1.000
##     SupG_Bestar       0.632                               0.632    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.636
##     SupG_Meta         0.483
##     SupG_Ori          0.760
##     SupG_Mon          0.695
##     SupG_Infra        0.512
##     SupG_Bestar       0.531
lavaan::fitMeasures(invariance$fit.means,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##                89.182                39.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.023                 0.999                 0.999 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.022                 0.016                 0.028
modificationindices(invariance$fit.means, sort.=T)
##             lhs  op         rhs block group level     mi    epc sepc.lv
## 47     SupG_Ori  ~1                 1     1     1 28.264 -0.220  -0.220
## 98     SupG_Ori  ~1                 2     2     1 28.264  0.220   0.220
## 148   SupG_Feed  ~~    SupG_Ori     2     2     1 11.149 -0.225  -0.225
## 146    SupG_Mon  ~~ SupG_Bestar     1     1     1 10.520 -0.242  -0.242
## 51         SupG  ~1                 1     1     1 10.220 -0.033  -0.033
## 102        SupG  ~1                 2     2     1 10.219  0.033   0.034
## 156    SupG_Ori  ~~    SupG_Mon     2     2     1 10.132  0.233   0.233
## 138   SupG_Meta  ~~    SupG_Ori     1     1     1  9.889  0.205   0.205
## 157    SupG_Ori  ~~  SupG_Infra     2     2     1  9.785 -0.165  -0.165
## 151   SupG_Feed  ~~ SupG_Bestar     2     2     1  9.654  0.181   0.181
## 150   SupG_Feed  ~~  SupG_Infra     2     2     1  7.347  0.139   0.139
## 95  SupG_Bestar ~*~ SupG_Bestar     2     2     1  6.767 -0.049  -0.049
## 44  SupG_Bestar ~*~ SupG_Bestar     1     1     1  6.767  0.049   0.049
## 136   SupG_Feed  ~~  SupG_Infra     1     1     1  5.328  0.144   0.144
## 45    SupG_Feed  ~1                 1     1     1  4.636 -0.063  -0.063
## 96    SupG_Feed  ~1                 2     2     1  4.636  0.063   0.063
## 93     SupG_Mon ~*~    SupG_Mon     2     2     1  4.559 -0.030  -0.030
## 42     SupG_Mon ~*~    SupG_Mon     1     1     1  4.559  0.029   0.029
## 41     SupG_Ori ~*~    SupG_Ori     1     1     1  3.946 -0.027  -0.027
## 92     SupG_Ori ~*~    SupG_Ori     2     2     1  3.946  0.029   0.029
## 91    SupG_Meta ~*~   SupG_Meta     2     2     1  3.747  0.039   0.039
## 40    SupG_Meta ~*~   SupG_Meta     1     1     1  3.747 -0.038  -0.038
## 154   SupG_Meta  ~~  SupG_Infra     2     2     1  3.170 -0.070  -0.070
## 142    SupG_Ori  ~~    SupG_Mon     1     1     1  2.812  0.153   0.153
## 135   SupG_Feed  ~~    SupG_Mon     1     1     1  2.582 -0.136  -0.136
## 43   SupG_Infra ~*~  SupG_Infra     1     1     1  2.161 -0.032  -0.032
## 94   SupG_Infra ~*~  SupG_Infra     2     2     1  2.161  0.033   0.033
## 97    SupG_Meta  ~1                 2     2     1  1.854 -0.037  -0.037
## 46    SupG_Meta  ~1                 1     1     1  1.854  0.037   0.037
## 149   SupG_Feed  ~~    SupG_Mon     2     2     1  1.251 -0.079  -0.079
## 134   SupG_Feed  ~~    SupG_Ori     1     1     1  1.098 -0.088  -0.088
## 158    SupG_Ori  ~~ SupG_Bestar     2     2     1  0.746  0.052   0.052
## 155   SupG_Meta  ~~ SupG_Bestar     2     2     1  0.689 -0.037  -0.037
## 144    SupG_Ori  ~~ SupG_Bestar     1     1     1  0.589 -0.056  -0.056
## 133   SupG_Feed  ~~   SupG_Meta     1     1     1  0.547 -0.045  -0.045
## 90    SupG_Feed ~*~   SupG_Feed     2     2     1  0.398 -0.010  -0.010
## 39    SupG_Feed ~*~   SupG_Feed     1     1     1  0.398  0.010   0.010
## 137   SupG_Feed  ~~ SupG_Bestar     1     1     1  0.291  0.037   0.037
## 49   SupG_Infra  ~1                 1     1     1  0.279 -0.011  -0.011
## 100  SupG_Infra  ~1                 2     2     1  0.279  0.011   0.011
## 159    SupG_Mon  ~~  SupG_Infra     2     2     1  0.233  0.027   0.027
## 99     SupG_Mon  ~1                 2     2     1  0.183  0.018   0.018
## 48     SupG_Mon  ~1                 1     1     1  0.183 -0.018  -0.018
## 152   SupG_Meta  ~~    SupG_Ori     2     2     1  0.113 -0.017  -0.017
## 139   SupG_Meta  ~~    SupG_Mon     1     1     1  0.067  0.017   0.017
## 145    SupG_Mon  ~~  SupG_Infra     1     1     1  0.054 -0.016  -0.016
## 101 SupG_Bestar  ~1                 2     2     1  0.051  0.007   0.007
## 50  SupG_Bestar  ~1                 1     1     1  0.051 -0.007  -0.007
## 141   SupG_Meta  ~~ SupG_Bestar     1     1     1  0.030  0.009   0.009
## 147   SupG_Feed  ~~   SupG_Meta     2     2     1  0.022  0.008   0.008
## 160    SupG_Mon  ~~ SupG_Bestar     2     2     1  0.009 -0.006  -0.006
## 140   SupG_Meta  ~~  SupG_Infra     1     1     1  0.009 -0.005  -0.005
## 143    SupG_Ori  ~~  SupG_Infra     1     1     1  0.002 -0.003  -0.003
## 153   SupG_Meta  ~~    SupG_Mon     2     2     1  0.001  0.002   0.002
##     sepc.all sepc.nox
## 47    -0.116   -0.116
## 98     0.125    0.125
## 148   -0.247   -0.247
## 146   -0.242   -0.242
## 51    -0.033   -0.033
## 102    0.034    0.034
## 156    0.260    0.260
## 138    0.205    0.205
## 157   -0.197   -0.197
## 151    0.158    0.158
## 150    0.135    0.135
## 95    -1.000   -1.000
## 44     1.000    1.000
## 136    0.144    0.144
## 45    -0.036   -0.036
## 96     0.036    0.036
## 93    -1.000   -1.000
## 42     1.000    1.000
## 41    -1.000   -1.000
## 92     1.000    1.000
## 91     1.000    1.000
## 40    -1.000   -1.000
## 154   -0.072   -0.072
## 142    0.153    0.153
## 135   -0.136   -0.136
## 43    -1.000   -1.000
## 94     1.000    1.000
## 97    -0.026   -0.026
## 46     0.026    0.026
## 149   -0.072   -0.072
## 134   -0.088   -0.088
## 158    0.055    0.055
## 155   -0.034   -0.034
## 144   -0.056   -0.056
## 133   -0.045   -0.045
## 90    -1.000   -1.000
## 39     1.000    1.000
## 137    0.037    0.037
## 49    -0.008   -0.008
## 100    0.008    0.008
## 159    0.027    0.027
## 99     0.010    0.010
## 48    -0.009   -0.009
## 152   -0.020   -0.020
## 139    0.017    0.017
## 145   -0.016   -0.016
## 101    0.004    0.004
## 50    -0.004   -0.004
## 141    0.009    0.009
## 147    0.007    0.007
## 160   -0.005   -0.005
## 140   -0.005   -0.005
## 143   -0.003   -0.003
## 153    0.002    0.002
semTools::reliability(invariance$fit.means)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##             SupG
## alpha     0.8694
## alpha.ord 0.9121
## omega     0.8497
## omega2    0.8497
## omega3    0.8488
## avevar    0.6454
## 
## $`1`
##             SupG
## alpha     0.8562
## alpha.ord 0.9043
## omega     0.8345
## omega2    0.8345
## omega3    0.8329
## avevar    0.6228
7.1.1.4.1 Checking Latent Differences
partial<-partialInvarianceCat(invariance,type="means",return.fit = F)
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values
partial
## $estimates
##        poolest mean:2  mean:1 std:2   std:1 diff_std:1 vs. 2
## SupG~1       0      0 0.03275     0 0.03333          0.03333
## 
## $results
##        free.chi free.df free.p   free.cfi fix.chi fix.df  fix.p    fix.cfi
## SupG~1   0.6831       1 0.4085 -0.0002906  0.6831      1 0.4085 -0.0002906
##        wald.chi wald.df wald.p
## SupG~1       NA      NA     NA

7.1.1.5 Organizing Education

data$Esc<-car::recode(data$Esc,"5=4")
data$EscClasseR<-as.factor(data$Esc)

7.1.1.6 Education Invariance Model

model <- 
'
SupG =~ SupG_Feed + SupG_Meta + SupG_Ori + SupG_Mon + SupG_Infra + SupG_Bestar
SupG_Infra  ~~  SupG_Bestar
'

7.1.1.7 Fitting

invariance<- measurementInvarianceCat(model = model, data = data, group = "EscClasseR",parameterization = "theta", estimator = "ULSMV",ordered = T,missing="pairwise",std.lv=T)
## Warning: The measurementInvarianceCat function is deprecated, and it will cease
## to be included in future versions of semTools. See help('semTools-deprecated)
## for details.
## 
## Measurement invariance models:
## 
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.thresholds
## Model 4 : fit.means
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan NOTE:
##     The "Chisq" column contains standard test statistics, not the
##     robust test that should be reported per model. A robust difference
##     test is a function of two standard (not robust) statistics.
##  
##                 Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)  
## fit.configural  32          52.1                                
## fit.loadings    47         104.0       17.9      15      0.268  
## fit.thresholds  98         306.9       67.0      51      0.066 .
## fit.means      101         400.9        5.4       3      0.143  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Fit measures:
## 
##                cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural      0.994        0.075               NA                 NA
## fit.loadings        0.999        0.029            0.005              0.046
## fit.thresholds      0.998        0.026            0.001              0.003
## fit.means           0.997        0.027            0.000              0.001
7.1.1.7.1 Configural
summary(invariance$fit.configural,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 411 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       145
##   Number of equality constraints                    21
##                                                       
##   Number of observations per group:                   
##     2                                             1807
##     3                                             2851
##     1                                              356
##     4                                              429
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                52.088     275.532
##   Degrees of freedom                                32          32
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.191
##   Shift parameter for each group:                                 
##       2                                                      0.831
##       3                                                      1.310
##       1                                                      0.164
##       4                                                      0.197
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           11.493      61.072
##     3                                           22.903     121.364
##     1                                           11.123      58.468
##     4                                            6.569      34.628
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31849.655   38983.303
##   Degrees of freedom                                60          60
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.818
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999       0.994
##   Tucker-Lewis Index (TLI)                       0.999       0.988
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.021       0.075
##   90 Percent confidence interval - lower         0.010       0.067
##   90 Percent confidence interval - upper         0.032       0.083
##   P-value RMSEA <= 0.05                          1.000       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.021       0.021
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.266    0.053   23.825    0.000    1.266    0.785
##     SupG_Meta         0.926    0.038   24.387    0.000    0.926    0.679
##     SupG_Ori          1.724    0.079   21.775    0.000    1.724    0.865
##     SupG_Mon          1.629    0.073   22.246    0.000    1.629    0.852
##     SupG_Infra        1.033    0.043   24.128    0.000    1.033    0.718
##     SupG_Bestar       1.131    0.046   24.610    0.000    1.131    0.749
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.424    0.022   18.978    0.000    0.424    0.424
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.828    0.085  -33.361    0.000   -2.828   -1.752
##     SupG_Feed|t2     -1.968    0.067  -29.261    0.000   -1.968   -1.220
##     SupG_Feed|t3     -0.906    0.053  -17.027    0.000   -0.906   -0.562
##     SupG_Feed|t4      1.113    0.054   20.524    0.000    1.113    0.690
##     SupG_Meta|t1     -2.980    0.102  -29.120    0.000   -2.980   -2.187
##     SupG_Meta|t2     -2.187    0.067  -32.695    0.000   -2.187   -1.605
##     SupG_Meta|t3     -1.432    0.051  -27.892    0.000   -1.432   -1.051
##     SupG_Meta|t4      0.644    0.041   15.614    0.000    0.644    0.473
##     SupG_Ori|t1      -4.726    0.188  -25.077    0.000   -4.726   -2.372
##     SupG_Ori|t2      -3.890    0.142  -27.385    0.000   -3.890   -1.952
##     SupG_Ori|t3      -2.760    0.106  -26.012    0.000   -2.760   -1.385
##     SupG_Ori|t4       0.093    0.058    1.591    0.112    0.093    0.046
##     SupG_Mon|t1      -4.626    0.194  -23.852    0.000   -4.626   -2.421
##     SupG_Mon|t2      -3.928    0.142  -27.692    0.000   -3.928   -2.055
##     SupG_Mon|t3      -2.534    0.096  -26.269    0.000   -2.534   -1.326
##     SupG_Mon|t4       0.225    0.056    4.031    0.000    0.225    0.117
##     SupG_Infra|t1    -2.225    0.069  -32.106    0.000   -2.225   -1.547
##     SupG_Infra|t2    -1.437    0.053  -27.057    0.000   -1.437   -0.999
##     SupG_Infra|t3    -0.319    0.043   -7.400    0.000   -0.319   -0.222
##     SupG_Infra|t4     1.051    0.047   22.239    0.000    1.051    0.731
##     SupG_Bestar|t1   -2.738    0.087  -31.517    0.000   -2.738   -1.814
##     SupG_Bestar|t2   -2.125    0.068  -31.215    0.000   -2.125   -1.407
##     SupG_Bestar|t3   -1.031    0.051  -20.410    0.000   -1.031   -0.683
##     SupG_Bestar|t4    0.590    0.045   12.981    0.000    0.590    0.390
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.000                               1.000    0.384
##    .SupG_Meta         1.000                               1.000    0.538
##    .SupG_Ori          1.000                               1.000    0.252
##    .SupG_Mon          1.000                               1.000    0.274
##    .SupG_Infra        1.000                               1.000    0.484
##    .SupG_Bestar       1.000                               1.000    0.439
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.620                               0.620    1.000
##     SupG_Meta         0.734                               0.734    1.000
##     SupG_Ori          0.502                               0.502    1.000
##     SupG_Mon          0.523                               0.523    1.000
##     SupG_Infra        0.696                               0.696    1.000
##     SupG_Bestar       0.662                               0.662    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.616
##     SupG_Meta         0.462
##     SupG_Ori          0.748
##     SupG_Mon          0.726
##     SupG_Infra        0.516
##     SupG_Bestar       0.561
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.394    0.149    9.382    0.000    1.394    0.819
##     SupG_Meta         0.958    0.073   13.162    0.000    0.958    0.723
##     SupG_Ori          1.602    0.133   12.039    0.000    1.602    0.850
##     SupG_Mon          1.667    0.144   11.608    0.000    1.667    0.831
##     SupG_Infra        1.083    0.103   10.533    0.000    1.083    0.709
##     SupG_Bestar       1.157    0.100   11.528    0.000    1.157    0.742
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.490    0.089    5.506    0.000    0.490    0.435
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.033    0.171    0.191    0.849    0.033    0.033
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.828    0.085  -33.361    0.000   -2.828   -1.662
##     SupG_Feed|t2     -1.968    0.067  -29.261    0.000   -1.968   -1.157
##     SupG_Feed|t3     -0.777    0.161   -4.823    0.000   -0.777   -0.457
##     SupG_Feed|t4      1.150    0.354    3.247    0.001    1.150    0.676
##     SupG_Meta|t1     -2.980    0.102  -29.120    0.000   -2.980   -2.247
##     SupG_Meta|t2     -2.112    0.103  -20.493    0.000   -2.112   -1.593
##     SupG_Meta|t3     -1.348    0.109  -12.391    0.000   -1.348   -1.017
##     SupG_Meta|t4      0.681    0.206    3.301    0.001    0.681    0.513
##     SupG_Ori|t1      -4.726    0.188  -25.077    0.000   -4.726   -2.508
##     SupG_Ori|t2      -3.422    0.187  -18.303    0.000   -3.422   -1.816
##     SupG_Ori|t3      -2.425    0.179  -13.562    0.000   -2.425   -1.287
##     SupG_Ori|t4       0.187    0.286    0.655    0.513    0.187    0.099
##     SupG_Mon|t1      -4.626    0.194  -23.852    0.000   -4.626   -2.306
##     SupG_Mon|t2      -3.778    0.188  -20.101    0.000   -3.778   -1.883
##     SupG_Mon|t3      -2.525    0.177  -14.296    0.000   -2.525   -1.259
##     SupG_Mon|t4       0.262    0.304    0.863    0.388    0.262    0.131
##     SupG_Infra|t1    -2.225    0.069  -32.106    0.000   -2.225   -1.457
##     SupG_Infra|t2    -1.363    0.087  -15.625    0.000   -1.363   -0.892
##     SupG_Infra|t3    -0.063    0.181   -0.350    0.726   -0.063   -0.042
##     SupG_Infra|t4     1.329    0.302    4.394    0.000    1.329    0.870
##     SupG_Bestar|t1   -2.738    0.087  -31.517    0.000   -2.738   -1.756
##     SupG_Bestar|t2   -1.955    0.091  -21.503    0.000   -1.955   -1.254
##     SupG_Bestar|t3   -0.893    0.138   -6.490    0.000   -0.893   -0.573
##     SupG_Bestar|t4    0.725    0.255    2.848    0.004    0.725    0.465
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.951    0.197    4.832    0.000    0.951    0.329
##    .SupG_Meta         0.840    0.122    6.905    0.000    0.840    0.478
##    .SupG_Ori          0.985    0.160    6.162    0.000    0.985    0.277
##    .SupG_Mon          1.247    0.206    6.045    0.000    1.247    0.310
##    .SupG_Infra        1.159    0.215    5.388    0.000    1.159    0.497
##    .SupG_Bestar       1.094    0.184    5.939    0.000    1.094    0.450
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.588                               0.588    1.000
##     SupG_Meta         0.754                               0.754    1.000
##     SupG_Ori          0.531                               0.531    1.000
##     SupG_Mon          0.498                               0.498    1.000
##     SupG_Infra        0.655                               0.655    1.000
##     SupG_Bestar       0.641                               0.641    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.671
##     SupG_Meta         0.522
##     SupG_Ori          0.723
##     SupG_Mon          0.690
##     SupG_Infra        0.503
##     SupG_Bestar       0.550
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.344    0.316    4.249    0.000    1.344    0.796
##     SupG_Meta         0.998    0.184    5.437    0.000    0.998    0.707
##     SupG_Ori          2.027    0.434    4.673    0.000    2.027    0.887
##     SupG_Mon          1.879    0.375    5.006    0.000    1.879    0.884
##     SupG_Infra        1.094    0.239    4.578    0.000    1.094    0.758
##     SupG_Bestar       1.023    0.190    5.385    0.000    1.023    0.706
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.309    0.127    2.440    0.015    0.309    0.320
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.243    0.379    0.640    0.522    0.243    0.243
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.828    0.085  -33.361    0.000   -2.828   -1.674
##     SupG_Feed|t2     -1.968    0.067  -29.261    0.000   -1.968   -1.166
##     SupG_Feed|t3     -0.828    0.320   -2.584    0.010   -0.828   -0.490
##     SupG_Feed|t4      1.363    0.812    1.678    0.093    1.363    0.807
##     SupG_Meta|t1     -2.980    0.102  -29.120    0.000   -2.980   -2.111
##     SupG_Meta|t2     -2.288    0.217  -10.526    0.000   -2.288   -1.621
##     SupG_Meta|t3     -1.451    0.243   -5.969    0.000   -1.451   -1.028
##     SupG_Meta|t4      0.992    0.521    1.904    0.057    0.992    0.703
##     SupG_Ori|t1      -4.726    0.188  -25.077    0.000   -4.726   -2.067
##     SupG_Ori|t2      -3.978    0.330  -12.066    0.000   -3.978   -1.740
##     SupG_Ori|t3      -2.831    0.389   -7.273    0.000   -2.831   -1.238
##     SupG_Ori|t4       0.557    0.875    0.636    0.525    0.557    0.243
##     SupG_Mon|t1      -4.626    0.194  -23.852    0.000   -4.626   -2.175
##     SupG_Mon|t2      -4.214    0.328  -12.863    0.000   -4.214   -1.981
##     SupG_Mon|t3      -2.635    0.430   -6.131    0.000   -2.635   -1.239
##     SupG_Mon|t4       0.681    0.829    0.822    0.411    0.681    0.320
##     SupG_Infra|t1    -2.225    0.069  -32.106    0.000   -2.225   -1.542
##     SupG_Infra|t2    -1.486    0.156   -9.501    0.000   -1.486   -1.030
##     SupG_Infra|t3    -0.431    0.336   -1.281    0.200   -0.431   -0.299
##     SupG_Infra|t4     1.264    0.670    1.887    0.059    1.264    0.876
##     SupG_Bestar|t1   -2.738    0.087  -31.517    0.000   -2.738   -1.889
##     SupG_Bestar|t2   -1.983    0.169  -11.761    0.000   -1.983   -1.368
##     SupG_Bestar|t3   -1.034    0.246   -4.194    0.000   -1.034   -0.713
##     SupG_Bestar|t4    0.748    0.506    1.479    0.139    0.748    0.516
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.044    0.473    2.206    0.027    1.044    0.366
##    .SupG_Meta         0.997    0.314    3.174    0.002    0.997    0.500
##    .SupG_Ori          1.119    0.467    2.394    0.017    1.119    0.214
##    .SupG_Mon          0.990    0.358    2.767    0.006    0.990    0.219
##    .SupG_Infra        0.884    0.370    2.391    0.017    0.884    0.425
##    .SupG_Bestar       1.053    0.361    2.914    0.004    1.053    0.501
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.592                               0.592    1.000
##     SupG_Meta         0.708                               0.708    1.000
##     SupG_Ori          0.437                               0.437    1.000
##     SupG_Mon          0.470                               0.470    1.000
##     SupG_Infra        0.693                               0.693    1.000
##     SupG_Bestar       0.690                               0.690    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.634
##     SupG_Meta         0.500
##     SupG_Ori          0.786
##     SupG_Mon          0.781
##     SupG_Infra        0.575
##     SupG_Bestar       0.499
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.414    0.264    5.353    0.000    1.414    0.837
##     SupG_Meta         0.832    0.106    7.849    0.000    0.832    0.676
##     SupG_Ori          1.851    0.264    7.001    0.000    1.851    0.896
##     SupG_Mon          1.665    0.211    7.893    0.000    1.665    0.847
##     SupG_Infra        1.250    0.211    5.918    0.000    1.250    0.747
##     SupG_Bestar       1.315    0.205    6.405    0.000    1.315    0.783
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.641    0.225    2.850    0.004    0.641    0.551
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG             -0.101    0.286   -0.354    0.723   -0.101   -0.101
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.828    0.085  -33.361    0.000   -2.828   -1.675
##     SupG_Feed|t2     -1.968    0.067  -29.261    0.000   -1.968   -1.166
##     SupG_Feed|t3     -0.947    0.235   -4.025    0.000   -0.947   -0.561
##     SupG_Feed|t4      0.796    0.537    1.481    0.139    0.796    0.471
##     SupG_Meta|t1     -2.980    0.102  -29.120    0.000   -2.980   -2.421
##     SupG_Meta|t2     -1.901    0.179  -10.629    0.000   -1.901   -1.545
##     SupG_Meta|t3     -1.160    0.178   -6.521    0.000   -1.160   -0.942
##     SupG_Meta|t4      0.462    0.279    1.657    0.098    0.462    0.375
##     SupG_Ori|t1      -4.726    0.188  -25.077    0.000   -4.726   -2.288
##     SupG_Ori|t2      -3.704    0.278  -13.322    0.000   -3.704   -1.794
##     SupG_Ori|t3      -2.700    0.308   -8.758    0.000   -2.700   -1.307
##     SupG_Ori|t4      -0.121    0.516   -0.234    0.815   -0.121   -0.059
##     SupG_Mon|t1      -4.626    0.194  -23.852    0.000   -4.626   -2.354
##     SupG_Mon|t2      -3.421    0.293  -11.689    0.000   -3.421   -1.741
##     SupG_Mon|t3      -2.608    0.309   -8.441    0.000   -2.608   -1.327
##     SupG_Mon|t4      -0.163    0.463   -0.352    0.725   -0.163   -0.083
##     SupG_Infra|t1    -2.225    0.069  -32.106    0.000   -2.225   -1.330
##     SupG_Infra|t2    -1.450    0.155   -9.383    0.000   -1.450   -0.867
##     SupG_Infra|t3    -0.083    0.350   -0.236    0.813   -0.083   -0.049
##     SupG_Infra|t4     1.118    0.536    2.088    0.037    1.118    0.668
##     SupG_Bestar|t1   -2.738    0.087  -31.517    0.000   -2.738   -1.629
##     SupG_Bestar|t2   -2.263    0.130  -17.403    0.000   -2.263   -1.346
##     SupG_Bestar|t3   -1.150    0.229   -5.020    0.000   -1.150   -0.684
##     SupG_Bestar|t4    0.329    0.422    0.781    0.435    0.329    0.196
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.852    0.285    2.987    0.003    0.852    0.299
##    .SupG_Meta         0.823    0.193    4.272    0.000    0.823    0.543
##    .SupG_Ori          0.838    0.239    3.503    0.000    0.838    0.197
##    .SupG_Mon          1.089    0.284    3.832    0.000    1.089    0.282
##    .SupG_Infra        1.236    0.429    2.882    0.004    1.236    0.442
##    .SupG_Bestar       1.095    0.345    3.176    0.001    1.095    0.388
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.592                               0.592    1.000
##     SupG_Meta         0.812                               0.812    1.000
##     SupG_Ori          0.484                               0.484    1.000
##     SupG_Mon          0.509                               0.509    1.000
##     SupG_Infra        0.598                               0.598    1.000
##     SupG_Bestar       0.595                               0.595    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.701
##     SupG_Meta         0.457
##     SupG_Ori          0.803
##     SupG_Mon          0.718
##     SupG_Infra        0.558
##     SupG_Bestar       0.612
lavaan::fitMeasures(invariance$fit.configural,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               275.532                32.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.021                 0.994                 0.988 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.075                 0.067                 0.083
modificationindices(invariance$fit.configural, sort.=T)
##           lhs op         rhs block group level    mi    epc sepc.lv sepc.all
## 249  SupG_Ori ~~    SupG_Mon     2     2     1 7.765  0.276   0.276    0.249
## 243 SupG_Feed ~~  SupG_Infra     2     2     1 7.303  0.172   0.172    0.164
## 244 SupG_Feed ~~ SupG_Bestar     2     2     1 5.310  0.152   0.152    0.149
## 257 SupG_Feed ~~  SupG_Infra     3     3     1 5.232  0.386   0.386    0.401
## 250  SupG_Ori ~~  SupG_Infra     2     2     1 5.165 -0.163  -0.163   -0.153
## 253  SupG_Mon ~~ SupG_Bestar     2     2     1 5.139 -0.178  -0.178   -0.152
## 241 SupG_Feed ~~    SupG_Ori     2     2     1 5.046 -0.187  -0.187   -0.193
## 227 SupG_Feed ~~    SupG_Ori     1     1     1 4.714 -0.226  -0.226   -0.226
## 263  SupG_Ori ~~    SupG_Mon     3     3     1 4.301  0.780   0.780    0.741
## 235  SupG_Ori ~~    SupG_Mon     1     1     1 4.250  0.266   0.266    0.266
## 256 SupG_Feed ~~    SupG_Mon     3     3     1 4.117 -0.531  -0.531   -0.522
## 229 SupG_Feed ~~  SupG_Infra     1     1     1 3.203  0.127   0.127    0.127
## 245 SupG_Meta ~~    SupG_Ori     2     2     1 2.413  0.095   0.095    0.105
## 271 SupG_Feed ~~  SupG_Infra     4     4     1 2.064  0.260   0.260    0.253
## 272 SupG_Feed ~~ SupG_Bestar     4     4     1 2.048  0.264   0.264    0.273
## 255 SupG_Feed ~~    SupG_Ori     3     3     1 1.956 -0.394  -0.394   -0.364
## 236  SupG_Ori ~~  SupG_Infra     1     1     1 1.812 -0.123  -0.123   -0.123
## 240 SupG_Feed ~~   SupG_Meta     2     2     1 1.603 -0.069  -0.069   -0.077
## 269 SupG_Feed ~~    SupG_Ori     4     4     1 1.550 -0.296  -0.296   -0.350
## 231 SupG_Meta ~~    SupG_Ori     1     1     1 1.388  0.098   0.098    0.098
## 270 SupG_Feed ~~    SupG_Mon     4     4     1 1.284 -0.248  -0.248   -0.258
## 261 SupG_Meta ~~  SupG_Infra     3     3     1 1.239 -0.150  -0.150   -0.160
## 264  SupG_Ori ~~  SupG_Infra     3     3     1 1.221 -0.265  -0.265   -0.267
## 242 SupG_Feed ~~    SupG_Mon     2     2     1 1.190 -0.096  -0.096   -0.088
## 277  SupG_Ori ~~    SupG_Mon     4     4     1 1.148  0.298   0.298    0.312
## 230 SupG_Feed ~~ SupG_Bestar     1     1     1 1.069  0.078   0.078    0.078
## 258 SupG_Feed ~~ SupG_Bestar     3     3     1 1.068  0.172   0.172    0.164
## 233 SupG_Meta ~~  SupG_Infra     1     1     1 1.033 -0.058  -0.058   -0.058
## 274 SupG_Meta ~~    SupG_Mon     4     4     1 1.024  0.149   0.149    0.157
## 239  SupG_Mon ~~ SupG_Bestar     1     1     1 0.992 -0.092  -0.092   -0.092
## 228 SupG_Feed ~~    SupG_Mon     1     1     1 0.970 -0.098  -0.098   -0.098
## 276 SupG_Meta ~~ SupG_Bestar     4     4     1 0.888 -0.117  -0.117   -0.123
## 232 SupG_Meta ~~    SupG_Mon     1     1     1 0.598 -0.061  -0.061   -0.061
## 273 SupG_Meta ~~    SupG_Ori     4     4     1 0.533  0.115   0.115    0.139
## 226 SupG_Feed ~~   SupG_Meta     1     1     1 0.533  0.047   0.047    0.047
## 275 SupG_Meta ~~  SupG_Infra     4     4     1 0.448 -0.082  -0.082   -0.081
## 267  SupG_Mon ~~ SupG_Bestar     3     3     1 0.335 -0.127  -0.127   -0.124
## 247 SupG_Meta ~~  SupG_Infra     2     2     1 0.323 -0.027  -0.027   -0.027
## 254 SupG_Feed ~~   SupG_Meta     3     3     1 0.297  0.086   0.086    0.085
## 238  SupG_Mon ~~  SupG_Infra     1     1     1 0.281  0.046   0.046    0.046
## 260 SupG_Meta ~~    SupG_Mon     3     3     1 0.240  0.102   0.102    0.103
## 280  SupG_Mon ~~  SupG_Infra     4     4     1 0.225 -0.100  -0.100   -0.086
## 281  SupG_Mon ~~ SupG_Bestar     4     4     1 0.201 -0.097  -0.097   -0.088
## 262 SupG_Meta ~~ SupG_Bestar     3     3     1 0.164 -0.054  -0.054   -0.053
## 278  SupG_Ori ~~  SupG_Infra     4     4     1 0.132 -0.083  -0.083   -0.082
## 259 SupG_Meta ~~    SupG_Ori     3     3     1 0.117  0.077   0.077    0.072
## 268 SupG_Feed ~~   SupG_Meta     4     4     1 0.078 -0.035  -0.035   -0.042
## 246 SupG_Meta ~~    SupG_Mon     2     2     1 0.062  0.016   0.016    0.016
## 234 SupG_Meta ~~ SupG_Bestar     1     1     1 0.055 -0.014  -0.014   -0.014
## 237  SupG_Ori ~~ SupG_Bestar     1     1     1 0.044  0.020   0.020    0.020
## 279  SupG_Ori ~~ SupG_Bestar     4     4     1 0.023 -0.035  -0.035   -0.037
## 252  SupG_Mon ~~  SupG_Infra     2     2     1 0.020  0.011   0.011    0.009
## 266  SupG_Mon ~~  SupG_Infra     3     3     1 0.007 -0.018  -0.018   -0.019
## 248 SupG_Meta ~~ SupG_Bestar     2     2     1 0.004 -0.003  -0.003   -0.003
## 265  SupG_Ori ~~ SupG_Bestar     3     3     1 0.002 -0.010  -0.010   -0.009
## 251  SupG_Ori ~~ SupG_Bestar     2     2     1 0.002  0.003   0.003    0.003
##     sepc.nox
## 249    0.249
## 243    0.164
## 244    0.149
## 257    0.401
## 250   -0.153
## 253   -0.152
## 241   -0.193
## 227   -0.226
## 263    0.741
## 235    0.266
## 256   -0.522
## 229    0.127
## 245    0.105
## 271    0.253
## 272    0.273
## 255   -0.364
## 236   -0.123
## 240   -0.077
## 269   -0.350
## 231    0.098
## 270   -0.258
## 261   -0.160
## 264   -0.267
## 242   -0.088
## 277    0.312
## 230    0.078
## 258    0.164
## 233   -0.058
## 274    0.157
## 239   -0.092
## 228   -0.098
## 276   -0.123
## 232   -0.061
## 273    0.139
## 226    0.047
## 275   -0.081
## 267   -0.124
## 247   -0.027
## 254    0.085
## 238    0.046
## 260    0.103
## 280   -0.086
## 281   -0.088
## 262   -0.053
## 278   -0.082
## 259    0.072
## 268   -0.042
## 246    0.016
## 234   -0.014
## 237    0.020
## 279   -0.037
## 252    0.009
## 266   -0.019
## 248   -0.003
## 265   -0.009
## 251    0.003
semTools::reliability(invariance$fit.configural)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##             SupG
## alpha     0.8551
## alpha.ord 0.9046
## omega     0.8364
## omega2    0.8364
## omega3    0.8355
## avevar    0.6348
## 
## $`3`
##             SupG
## alpha     0.8629
## alpha.ord 0.9073
## omega     0.8423
## omega2    0.8423
## omega3    0.8413
## avevar    0.6307
## 
## $`1`
##             SupG
## alpha     0.8700
## alpha.ord 0.9117
## omega     0.8539
## omega2    0.8539
## omega3    0.8514
## avevar    0.6758
## 
## $`4`
##             SupG
## alpha     0.8764
## alpha.ord 0.9178
## omega     0.8530
## omega2    0.8530
## omega3    0.8518
## avevar    0.6724
7.1.1.7.2 Loadings
summary(invariance$fit.loadings,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 313 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    39
##                                                       
##   Number of observations per group:                   
##     2                                             1807
##     3                                             2851
##     1                                              356
##     4                                              429
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               104.041     100.872
##   Degrees of freedom                                47          47
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  1.234
##   Shift parameter for each group:                                 
##       2                                                      5.505
##       3                                                      8.686
##       1                                                      1.085
##       4                                                      1.307
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           17.870      19.983
##     3                                           34.874      36.939
##     1                                           25.910      22.076
##     4                                           25.386      21.874
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31849.655   38983.303
##   Degrees of freedom                                60          60
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.818
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998       0.999
##   Tucker-Lewis Index (TLI)                       0.998       0.998
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.030       0.029
##   90 Percent confidence interval - lower         0.022       0.021
##   90 Percent confidence interval - upper         0.038       0.037
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.026       0.026
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.328    0.059   22.410    0.000    1.328    0.799
##     SupG_Meta         0.931    0.044   21.216    0.000    0.931    0.681
##     SupG_Ori          1.543    0.095   16.239    0.000    1.543    0.839
##     SupG_Mon          1.665    0.104   16.024    0.000    1.665    0.857
##     SupG_Infra        1.055    0.042   24.903    0.000    1.055    0.726
##     SupG_Bestar       1.129    0.049   22.855    0.000    1.129    0.749
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.417    0.030   13.997    0.000    0.417    0.417
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.869    0.106  -26.950    0.000   -2.869   -1.726
##     SupG_Feed|t2     -2.056    0.084  -24.473    0.000   -2.056   -1.237
##     SupG_Feed|t3     -0.934    0.057  -16.422    0.000   -0.934   -0.562
##     SupG_Feed|t4      1.147    0.058   19.916    0.000    1.147    0.690
##     SupG_Meta|t1     -2.985    0.125  -23.884    0.000   -2.985   -2.185
##     SupG_Meta|t2     -2.193    0.085  -25.955    0.000   -2.193   -1.605
##     SupG_Meta|t3     -1.436    0.058  -24.562    0.000   -1.436   -1.051
##     SupG_Meta|t4      0.646    0.042   15.364    0.000    0.646    0.473
##     SupG_Ori|t1      -4.397    0.272  -16.180    0.000   -4.397   -2.391
##     SupG_Ori|t2      -3.589    0.193  -18.571    0.000   -3.589   -1.952
##     SupG_Ori|t3      -2.547    0.129  -19.706    0.000   -2.547   -1.385
##     SupG_Ori|t4       0.085    0.054    1.584    0.113    0.085    0.046
##     SupG_Mon|t1      -4.693    0.313  -14.978    0.000   -4.693   -2.416
##     SupG_Mon|t2      -3.992    0.235  -17.013    0.000   -3.992   -2.055
##     SupG_Mon|t3      -2.575    0.138  -18.637    0.000   -2.575   -1.326
##     SupG_Mon|t4       0.228    0.057    3.996    0.000    0.228    0.117
##     SupG_Infra|t1    -2.240    0.079  -28.301    0.000   -2.240   -1.541
##     SupG_Infra|t2    -1.453    0.060  -24.339    0.000   -1.453   -0.999
##     SupG_Infra|t3    -0.322    0.044   -7.300    0.000   -0.322   -0.222
##     SupG_Infra|t4     1.062    0.048   22.107    0.000    1.062    0.731
##     SupG_Bestar|t1   -2.739    0.106  -25.881    0.000   -2.739   -1.816
##     SupG_Bestar|t2   -2.122    0.084  -25.210    0.000   -2.122   -1.407
##     SupG_Bestar|t3   -1.030    0.055  -18.861    0.000   -1.030   -0.683
##     SupG_Bestar|t4    0.589    0.046   12.858    0.000    0.589    0.390
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.000                               1.000    0.362
##    .SupG_Meta         1.000                               1.000    0.536
##    .SupG_Ori          1.000                               1.000    0.296
##    .SupG_Mon          1.000                               1.000    0.265
##    .SupG_Infra        1.000                               1.000    0.473
##    .SupG_Bestar       1.000                               1.000    0.440
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.602                               0.602    1.000
##     SupG_Meta         0.732                               0.732    1.000
##     SupG_Ori          0.544                               0.544    1.000
##     SupG_Mon          0.515                               0.515    1.000
##     SupG_Infra        0.688                               0.688    1.000
##     SupG_Bestar       0.663                               0.663    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.638
##     SupG_Meta         0.464
##     SupG_Ori          0.704
##     SupG_Mon          0.735
##     SupG_Infra        0.527
##     SupG_Bestar       0.560
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.328    0.059   22.410    0.000    1.242    0.806
##     SupG_Meta         0.931    0.044   21.216    0.000    0.871    0.706
##     SupG_Ori          1.543    0.095   16.239    0.000    1.443    0.880
##     SupG_Mon          1.665    0.104   16.024    0.000    1.557    0.828
##     SupG_Infra        1.055    0.042   24.903    0.000    0.987    0.711
##     SupG_Bestar       1.129    0.049   22.855    0.000    1.056    0.741
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.405    0.067    6.067    0.000    0.405    0.434
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG             -0.180    0.147   -1.223    0.221   -0.192   -0.192
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.869    0.106  -26.950    0.000   -2.869   -1.862
##     SupG_Feed|t2     -2.056    0.084  -24.473    0.000   -2.056   -1.334
##     SupG_Feed|t3     -0.984    0.138   -7.146    0.000   -0.984   -0.639
##     SupG_Feed|t4      0.762    0.275    2.770    0.006    0.762    0.494
##     SupG_Meta|t1     -2.985    0.125  -23.884    0.000   -2.985   -2.420
##     SupG_Meta|t2     -2.161    0.105  -20.647    0.000   -2.161   -1.752
##     SupG_Meta|t3     -1.451    0.094  -15.454    0.000   -1.451   -1.176
##     SupG_Meta|t4      0.437    0.179    2.446    0.014    0.437    0.354
##     SupG_Ori|t1      -4.397    0.272  -16.180    0.000   -4.397   -2.682
##     SupG_Ori|t2      -3.300    0.233  -14.169    0.000   -3.300   -2.013
##     SupG_Ori|t3      -2.432    0.186  -13.043    0.000   -2.432   -1.484
##     SupG_Ori|t4      -0.160    0.236   -0.678    0.498   -0.160   -0.097
##     SupG_Mon|t1      -4.693    0.313  -14.978    0.000   -4.693   -2.495
##     SupG_Mon|t2      -3.892    0.275  -14.167    0.000   -3.892   -2.069
##     SupG_Mon|t3      -2.718    0.206  -13.200    0.000   -2.718   -1.445
##     SupG_Mon|t4      -0.105    0.259   -0.404    0.686   -0.105   -0.056
##     SupG_Infra|t1    -2.240    0.079  -28.301    0.000   -2.240   -1.614
##     SupG_Infra|t2    -1.460    0.086  -16.894    0.000   -1.460   -1.052
##     SupG_Infra|t3    -0.279    0.150   -1.864    0.062   -0.279   -0.201
##     SupG_Infra|t4     0.986    0.242    4.069    0.000    0.986    0.710
##     SupG_Bestar|t1   -2.739    0.106  -25.881    0.000   -2.739   -1.923
##     SupG_Bestar|t2   -2.023    0.102  -19.903    0.000   -2.023   -1.420
##     SupG_Bestar|t3   -1.053    0.124   -8.458    0.000   -1.053   -0.739
##     SupG_Bestar|t4    0.425    0.208    2.040    0.041    0.425    0.298
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.833    0.156    5.321    0.000    0.833    0.351
##    .SupG_Meta         0.763    0.127    6.026    0.000    0.763    0.502
##    .SupG_Ori          0.607    0.156    3.887    0.000    0.607    0.226
##    .SupG_Mon          1.115    0.262    4.250    0.000    1.115    0.315
##    .SupG_Infra        0.953    0.157    6.089    0.000    0.953    0.495
##    .SupG_Bestar       0.914    0.143    6.403    0.000    0.914    0.451
##     SupG              0.874    0.141    6.189    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.649                               0.649    1.000
##     SupG_Meta         0.811                               0.811    1.000
##     SupG_Ori          0.610                               0.610    1.000
##     SupG_Mon          0.532                               0.532    1.000
##     SupG_Infra        0.720                               0.720    1.000
##     SupG_Bestar       0.702                               0.702    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.649
##     SupG_Meta         0.498
##     SupG_Ori          0.774
##     SupG_Mon          0.685
##     SupG_Infra        0.505
##     SupG_Bestar       0.549
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.328    0.059   22.410    0.000    1.523    0.807
##     SupG_Meta         0.931    0.044   21.216    0.000    1.068    0.715
##     SupG_Ori          1.543    0.095   16.239    0.000    1.769    0.815
##     SupG_Mon          1.665    0.104   16.024    0.000    1.909    0.849
##     SupG_Infra        1.055    0.042   24.903    0.000    1.210    0.776
##     SupG_Bestar       1.129    0.049   22.855    0.000    1.295    0.797
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.164    0.131    1.249    0.212    0.164    0.170
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.436    0.445    0.980    0.327    0.381    0.381
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.869    0.106  -26.950    0.000   -2.869   -1.521
##     SupG_Feed|t2     -2.056    0.084  -24.473    0.000   -2.056   -1.090
##     SupG_Feed|t3     -0.710    0.344   -2.066    0.039   -0.710   -0.376
##     SupG_Feed|t4      1.737    0.814    2.134    0.033    1.737    0.921
##     SupG_Meta|t1     -2.985    0.125  -23.884    0.000   -2.985   -1.999
##     SupG_Meta|t2     -2.270    0.209  -10.873    0.000   -2.270   -1.521
##     SupG_Meta|t3     -1.385    0.216   -6.414    0.000   -1.385   -0.927
##     SupG_Meta|t4      1.199    0.551    2.176    0.030    1.199    0.803
##     SupG_Ori|t1      -4.397    0.272  -16.180    0.000   -4.397   -2.026
##     SupG_Ori|t2      -3.569    0.327  -10.913    0.000   -3.569   -1.645
##     SupG_Ori|t3      -2.481    0.326   -7.619    0.000   -2.481   -1.143
##     SupG_Ori|t4       0.734    0.698    1.052    0.293    0.734    0.338
##     SupG_Mon|t1      -4.693    0.313  -14.978    0.000   -4.693   -2.088
##     SupG_Mon|t2      -4.209    0.378  -11.142    0.000   -4.209   -1.873
##     SupG_Mon|t3      -2.541    0.361   -7.044    0.000   -2.541   -1.130
##     SupG_Mon|t4       0.964    0.792    1.217    0.224    0.964    0.429
##     SupG_Infra|t1    -2.240    0.079  -28.301    0.000   -2.240   -1.437
##     SupG_Infra|t2    -1.432    0.172   -8.341    0.000   -1.432   -0.919
##     SupG_Infra|t3    -0.292    0.344   -0.850    0.395   -0.292   -0.187
##     SupG_Infra|t4     1.539    0.661    2.330    0.020    1.539    0.988
##     SupG_Bestar|t1   -2.739    0.106  -25.881    0.000   -2.739   -1.686
##     SupG_Bestar|t2   -2.009    0.200  -10.061    0.000   -2.009   -1.237
##     SupG_Bestar|t3   -0.944    0.292   -3.235    0.001   -0.944   -0.581
##     SupG_Bestar|t4    1.053    0.592    1.779    0.075    1.053    0.648
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.241    0.542    2.291    0.022    1.241    0.349
##    .SupG_Meta         1.090    0.390    2.793    0.005    1.090    0.489
##    .SupG_Ori          1.579    0.664    2.380    0.017    1.579    0.335
##    .SupG_Mon          1.408    0.712    1.978    0.048    1.408    0.279
##    .SupG_Infra        0.965    0.365    2.648    0.008    0.965    0.397
##    .SupG_Bestar       0.963    0.356    2.704    0.007    0.963    0.365
##     SupG              1.315    0.496    2.652    0.008    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.530                               0.530    1.000
##     SupG_Meta         0.670                               0.670    1.000
##     SupG_Ori          0.461                               0.461    1.000
##     SupG_Mon          0.445                               0.445    1.000
##     SupG_Infra        0.642                               0.642    1.000
##     SupG_Bestar       0.616                               0.616    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.651
##     SupG_Meta         0.511
##     SupG_Ori          0.665
##     SupG_Mon          0.721
##     SupG_Infra        0.603
##     SupG_Bestar       0.635
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.328    0.059   22.410    0.000    1.206    0.855
##     SupG_Meta         0.931    0.044   21.216    0.000    0.845    0.755
##     SupG_Ori          1.543    0.095   16.239    0.000    1.401    0.851
##     SupG_Mon          1.665    0.104   16.024    0.000    1.511    0.867
##     SupG_Infra        1.055    0.042   24.903    0.000    0.958    0.706
##     SupG_Bestar       1.129    0.049   22.855    0.000    1.025    0.734
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.558    0.137    4.082    0.000    0.558    0.612
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG             -0.458    0.189   -2.421    0.015   -0.505   -0.505
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.869    0.106  -26.950    0.000   -2.869   -2.035
##     SupG_Feed|t2     -2.056    0.084  -24.473    0.000   -2.056   -1.459
##     SupG_Feed|t3     -1.279    0.171   -7.488    0.000   -1.279   -0.908
##     SupG_Feed|t4      0.176    0.332    0.529    0.597    0.176    0.125
##     SupG_Meta|t1     -2.985    0.125  -23.884    0.000   -2.985   -2.665
##     SupG_Meta|t2     -2.080    0.149  -14.005    0.000   -2.080   -1.857
##     SupG_Meta|t3     -1.405    0.127  -11.021    0.000   -1.405   -1.254
##     SupG_Meta|t4      0.070    0.233    0.302    0.762    0.070    0.063
##     SupG_Ori|t1      -4.397    0.272  -16.180    0.000   -4.397   -2.672
##     SupG_Ori|t2      -3.509    0.274  -12.821    0.000   -3.509   -2.132
##     SupG_Ori|t3      -2.709    0.244  -11.094    0.000   -2.709   -1.646
##     SupG_Ori|t4      -0.654    0.303   -2.161    0.031   -0.654   -0.397
##     SupG_Mon|t1      -4.693    0.313  -14.978    0.000   -4.693   -2.692
##     SupG_Mon|t2      -3.647    0.307  -11.875    0.000   -3.647   -2.093
##     SupG_Mon|t3      -2.926    0.275  -10.658    0.000   -2.926   -1.679
##     SupG_Mon|t4      -0.757    0.321   -2.358    0.018   -0.757   -0.435
##     SupG_Infra|t1    -2.240    0.079  -28.301    0.000   -2.240   -1.651
##     SupG_Infra|t2    -1.557    0.116  -13.444    0.000   -1.557   -1.147
##     SupG_Infra|t3    -0.448    0.208   -2.149    0.032   -0.448   -0.330
##     SupG_Infra|t4     0.526    0.305    1.727    0.084    0.526    0.388
##     SupG_Bestar|t1   -2.739    0.106  -25.881    0.000   -2.739   -1.962
##     SupG_Bestar|t2   -2.286    0.121  -18.882    0.000   -2.286   -1.638
##     SupG_Bestar|t3   -1.361    0.156   -8.730    0.000   -1.361   -0.975
##     SupG_Bestar|t4   -0.133    0.253   -0.526    0.599   -0.133   -0.095
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.533    0.158    3.362    0.001    0.533    0.268
##    .SupG_Meta         0.540    0.181    2.985    0.003    0.540    0.430
##    .SupG_Ori          0.746    0.265    2.820    0.005    0.746    0.276
##    .SupG_Mon          0.754    0.325    2.317    0.020    0.754    0.248
##    .SupG_Infra        0.924    0.218    4.237    0.000    0.924    0.502
##    .SupG_Bestar       0.898    0.204    4.405    0.000    0.898    0.461
##     SupG              0.824    0.183    4.491    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.710                               0.710    1.000
##     SupG_Meta         0.893                               0.893    1.000
##     SupG_Ori          0.608                               0.608    1.000
##     SupG_Mon          0.574                               0.574    1.000
##     SupG_Infra        0.737                               0.737    1.000
##     SupG_Bestar       0.716                               0.716    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.732
##     SupG_Meta         0.570
##     SupG_Ori          0.724
##     SupG_Mon          0.752
##     SupG_Infra        0.498
##     SupG_Bestar       0.539
lavaan::fitMeasures(invariance$fit.loadings,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               100.872                47.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.026                 0.999                 0.998 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.029                 0.021                 0.037
modificationindices(invariance$fit.loadings, sort.=T)
##             lhs  op         rhs block group level     mi    epc sepc.lv
## 98     SupG_Ori  ~1                 2     2     1 21.990  0.552   0.552
## 92     SupG_Ori ~*~    SupG_Ori     2     2     1 21.990  0.082   0.082
## 199   SupG_Meta  ~1                 4     4     1 14.028  0.538   0.538
## 193   SupG_Meta ~*~   SupG_Meta     4     4     1 14.026  0.188   0.188
## 268    SupG_Ori  ~~  SupG_Infra     2     2     1 12.712 -0.186  -0.186
## 281    SupG_Ori  ~~    SupG_Mon     3     3     1 12.627  1.041   1.041
## 261   SupG_Feed  ~~  SupG_Infra     2     2     1  9.586  0.153   0.153
## 146 SupG_Bestar ~*~ SupG_Bestar     3     3     1  8.923  0.109   0.109
## 152 SupG_Bestar  ~1                 3     3     1  8.922  0.570   0.570
## 259   SupG_Feed  ~~    SupG_Ori     2     2     1  8.245 -0.170  -0.170
## 97    SupG_Meta  ~1                 2     2     1  7.940 -0.254  -0.254
## 91    SupG_Meta ~*~   SupG_Meta     2     2     1  7.940 -0.073  -0.073
## 262   SupG_Feed  ~~ SupG_Bestar     2     2     1  7.894  0.141   0.141
## 253    SupG_Ori  ~~    SupG_Mon     1     1     1  6.943  0.267   0.267
## 143    SupG_Ori ~*~    SupG_Ori     3     3     1  6.209 -0.064  -0.064
## 149    SupG_Ori  ~1                 3     3     1  6.207 -0.701  -0.701
## 41     SupG_Ori ~*~    SupG_Ori     1     1     1  6.151 -0.039  -0.039
## 47     SupG_Ori  ~1                 1     1     1  6.151 -0.318  -0.318
## 90    SupG_Feed ~*~   SupG_Feed     2     2     1  6.085 -0.057  -0.057
## 96    SupG_Feed  ~1                 2     2     1  5.871 -0.248  -0.248
## 194    SupG_Ori ~*~    SupG_Ori     4     4     1  4.959 -0.070  -0.070
## 200    SupG_Ori  ~1                 4     4     1  4.958 -0.426  -0.426
## 286   SupG_Feed  ~~   SupG_Meta     4     4     1  4.363 -0.178  -0.178
## 198   SupG_Feed  ~1                 4     4     1  3.823  0.317   0.317
## 290   SupG_Feed  ~~ SupG_Bestar     4     4     1  3.550  0.207   0.207
## 271    SupG_Mon  ~~ SupG_Bestar     2     2     1  3.475 -0.113  -0.113
## 289   SupG_Feed  ~~  SupG_Infra     4     4     1  3.333  0.200   0.200
## 249   SupG_Meta  ~~    SupG_Ori     1     1     1  3.329  0.125   0.125
## 280   SupG_Meta  ~~ SupG_Bestar     3     3     1  3.290 -0.255  -0.255
## 288   SupG_Feed  ~~    SupG_Mon     4     4     1  3.015 -0.239  -0.239
## 203 SupG_Bestar  ~1                 4     4     1  2.858 -0.224  -0.224
## 197 SupG_Bestar ~*~ SupG_Bestar     4     4     1  2.858 -0.072  -0.072
## 39    SupG_Feed ~*~   SupG_Feed     1     1     1  2.807  0.036   0.036
## 246   SupG_Feed  ~~    SupG_Mon     1     1     1  2.742 -0.149  -0.149
## 297    SupG_Ori  ~~ SupG_Bestar     4     4     1  2.734  0.206   0.206
## 285    SupG_Mon  ~~ SupG_Bestar     3     3     1  2.523 -0.343  -0.343
## 275   SupG_Feed  ~~  SupG_Infra     3     3     1  2.464  0.290   0.290
## 202  SupG_Infra  ~1                 4     4     1  2.221 -0.175  -0.175
## 196  SupG_Infra ~*~  SupG_Infra     4     4     1  2.220 -0.073  -0.073
## 245   SupG_Feed  ~~    SupG_Ori     1     1     1  2.038 -0.120  -0.120
## 294   SupG_Meta  ~~ SupG_Bestar     4     4     1  2.011 -0.118  -0.118
## 295    SupG_Ori  ~~    SupG_Mon     4     4     1  1.942  0.225   0.225
## 269    SupG_Ori  ~~ SupG_Bestar     2     2     1  1.935 -0.075  -0.075
## 279   SupG_Meta  ~~  SupG_Infra     3     3     1  1.821 -0.181  -0.181
## 296    SupG_Ori  ~~  SupG_Infra     4     4     1  1.708  0.158   0.158
## 274   SupG_Feed  ~~    SupG_Mon     3     3     1  1.611 -0.319  -0.319
## 264   SupG_Meta  ~~    SupG_Mon     2     2     1  1.581  0.065   0.065
## 45    SupG_Feed  ~1                 1     1     1  1.553  0.140   0.140
## 293   SupG_Meta  ~~  SupG_Infra     4     4     1  1.518 -0.100  -0.100
## 251   SupG_Meta  ~~  SupG_Infra     1     1     1  1.497 -0.064  -0.064
## 277   SupG_Meta  ~~    SupG_Ori     3     3     1  1.480  0.234   0.234
## 255    SupG_Ori  ~~ SupG_Bestar     1     1     1  1.334  0.088   0.088
## 267    SupG_Ori  ~~    SupG_Mon     2     2     1  1.091  0.077   0.077
## 292   SupG_Meta  ~~    SupG_Mon     4     4     1  1.044 -0.111  -0.111
## 257    SupG_Mon  ~~ SupG_Bestar     1     1     1  1.027 -0.082  -0.082
## 263   SupG_Meta  ~~    SupG_Ori     2     2     1  0.986  0.046   0.046
## 144    SupG_Mon ~*~    SupG_Mon     3     3     1  0.971 -0.024  -0.024
## 150    SupG_Mon  ~1                 3     3     1  0.971 -0.291  -0.291
## 250   SupG_Meta  ~~    SupG_Mon     1     1     1  0.907 -0.069  -0.069
## 192   SupG_Feed ~*~   SupG_Feed     4     4     1  0.819  0.042   0.042
## 247   SupG_Feed  ~~  SupG_Infra     1     1     1  0.711  0.058   0.058
## 276   SupG_Feed  ~~ SupG_Bestar     3     3     1  0.677 -0.153  -0.153
## 278   SupG_Meta  ~~    SupG_Mon     3     3     1  0.634  0.159   0.159
## 266   SupG_Meta  ~~ SupG_Bestar     2     2     1  0.533  0.028   0.028
## 195    SupG_Mon ~*~    SupG_Mon     4     4     1  0.442  0.020   0.020
## 201    SupG_Mon  ~1                 4     4     1  0.442  0.135   0.135
## 43   SupG_Infra ~*~  SupG_Infra     1     1     1  0.430  0.016   0.016
## 49   SupG_Infra  ~1                 1     1     1  0.430  0.052   0.052
## 142   SupG_Meta ~*~   SupG_Meta     3     3     1  0.301  0.023   0.023
## 148   SupG_Meta  ~1                 3     3     1  0.301  0.114   0.114
## 48     SupG_Mon  ~1                 1     1     1  0.300  0.075   0.075
## 42     SupG_Mon ~*~    SupG_Mon     1     1     1  0.300  0.008   0.008
## 254    SupG_Ori  ~~  SupG_Infra     1     1     1  0.288 -0.039  -0.039
## 283    SupG_Ori  ~~ SupG_Bestar     3     3     1  0.280 -0.109  -0.109
## 99     SupG_Mon  ~1                 2     2     1  0.249 -0.063  -0.063
## 93     SupG_Mon ~*~    SupG_Mon     2     2     1  0.249 -0.008  -0.008
## 141   SupG_Feed ~*~   SupG_Feed     3     3     1  0.240  0.017   0.017
## 287   SupG_Feed  ~~    SupG_Ori     4     4     1  0.233 -0.062  -0.062
## 94   SupG_Infra ~*~  SupG_Infra     2     2     1  0.179  0.011   0.011
## 100  SupG_Infra  ~1                 2     2     1  0.179  0.031   0.031
## 248   SupG_Feed  ~~ SupG_Bestar     1     1     1  0.178  0.029   0.029
## 258   SupG_Feed  ~~   SupG_Meta     2     2     1  0.091  0.013   0.013
## 252   SupG_Meta  ~~ SupG_Bestar     1     1     1  0.070 -0.014  -0.014
## 40    SupG_Meta ~*~   SupG_Meta     1     1     1  0.066  0.006   0.006
## 46    SupG_Meta  ~1                 1     1     1  0.065  0.025   0.025
## 151  SupG_Infra  ~1                 3     3     1  0.058 -0.041  -0.041
## 145  SupG_Infra ~*~  SupG_Infra     3     3     1  0.058 -0.010  -0.010
## 299    SupG_Mon  ~~ SupG_Bestar     4     4     1  0.058  0.032   0.032
## 50  SupG_Bestar  ~1                 1     1     1  0.049 -0.020  -0.020
## 44  SupG_Bestar ~*~ SupG_Bestar     1     1     1  0.049 -0.005  -0.005
## 291   SupG_Meta  ~~    SupG_Ori     4     4     1  0.048 -0.022  -0.022
## 270    SupG_Mon  ~~  SupG_Infra     2     2     1  0.038  0.012   0.012
## 272   SupG_Feed  ~~   SupG_Meta     3     3     1  0.033  0.029   0.029
## 284    SupG_Mon  ~~  SupG_Infra     3     3     1  0.027  0.034   0.034
## 265   SupG_Meta  ~~  SupG_Infra     2     2     1  0.018  0.005   0.005
## 273   SupG_Feed  ~~    SupG_Ori     3     3     1  0.017 -0.031  -0.031
## 244   SupG_Feed  ~~   SupG_Meta     1     1     1  0.014  0.007   0.007
## 147   SupG_Feed  ~1                 3     3     1  0.012  0.027   0.027
## 298    SupG_Mon  ~~  SupG_Infra     4     4     1  0.008  0.012   0.012
## 260   SupG_Feed  ~~    SupG_Mon     2     2     1  0.004 -0.004  -0.004
## 282    SupG_Ori  ~~  SupG_Infra     3     3     1  0.004 -0.013  -0.013
## 101 SupG_Bestar  ~1                 2     2     1  0.001 -0.003  -0.003
## 95  SupG_Bestar ~*~ SupG_Bestar     2     2     1  0.001 -0.001  -0.001
## 256    SupG_Mon  ~~  SupG_Infra     1     1     1  0.001 -0.003  -0.003
##     sepc.all sepc.nox
## 98     0.337    0.337
## 92     1.000    1.000
## 199    0.480    0.480
## 193    1.000    1.000
## 268   -0.245   -0.245
## 281    0.698    0.698
## 261    0.172    0.172
## 146    1.000    1.000
## 152    0.351    0.351
## 259   -0.240   -0.240
## 97    -0.206   -0.206
## 91    -1.000   -1.000
## 262    0.162    0.162
## 253    0.267    0.267
## 143   -1.000   -1.000
## 149   -0.323   -0.323
## 41    -1.000   -1.000
## 47    -0.173   -0.173
## 90    -1.000   -1.000
## 96    -0.161   -0.161
## 194   -1.000   -1.000
## 200   -0.259   -0.259
## 286   -0.331   -0.331
## 198    0.225    0.225
## 290    0.300    0.300
## 271   -0.112   -0.112
## 289    0.285    0.285
## 249    0.125    0.125
## 280   -0.249   -0.249
## 288   -0.377   -0.377
## 203   -0.161   -0.161
## 197   -1.000   -1.000
## 39     1.000    1.000
## 246   -0.149   -0.149
## 297    0.252    0.252
## 285   -0.294   -0.294
## 275    0.265    0.265
## 202   -0.129   -0.129
## 196   -1.000   -1.000
## 245   -0.120   -0.120
## 294   -0.170   -0.170
## 295    0.300    0.300
## 269   -0.101   -0.101
## 279   -0.176   -0.176
## 296    0.191    0.191
## 274   -0.241   -0.241
## 264    0.071    0.071
## 45     0.084    0.084
## 293   -0.141   -0.141
## 251   -0.064   -0.064
## 277    0.178    0.178
## 255    0.088    0.088
## 267    0.093    0.093
## 292   -0.174   -0.174
## 257   -0.082   -0.082
## 263    0.068    0.068
## 144   -1.000   -1.000
## 150   -0.130   -0.130
## 250   -0.069   -0.069
## 192    1.000    1.000
## 247    0.058    0.058
## 276   -0.140   -0.140
## 278    0.129    0.129
## 266    0.034    0.034
## 195    1.000    1.000
## 201    0.077    0.077
## 43     1.000    1.000
## 49     0.036    0.036
## 142    1.000    1.000
## 148    0.077    0.077
## 48     0.038    0.038
## 42     1.000    1.000
## 254   -0.039   -0.039
## 283   -0.089   -0.089
## 99    -0.033   -0.033
## 93    -1.000   -1.000
## 141    1.000    1.000
## 287   -0.099   -0.099
## 94     1.000    1.000
## 100    0.022    0.022
## 248    0.029    0.029
## 258    0.016    0.016
## 252   -0.014   -0.014
## 40     1.000    1.000
## 46     0.018    0.018
## 151   -0.027   -0.027
## 145   -1.000   -1.000
## 299    0.039    0.039
## 50    -0.013   -0.013
## 44    -1.000   -1.000
## 291   -0.035   -0.035
## 270    0.011    0.011
## 272    0.025    0.025
## 284    0.029    0.029
## 265    0.006    0.006
## 273   -0.022   -0.022
## 244    0.007    0.007
## 147    0.014    0.014
## 298    0.014    0.014
## 260   -0.005   -0.005
## 282   -0.011   -0.011
## 101   -0.002   -0.002
## 95    -1.000   -1.000
## 256   -0.003   -0.003
semTools::reliability(invariance$fit.loadings)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##             SupG
## alpha     0.8551
## alpha.ord 0.9046
## omega     0.8381
## omega2    0.8381
## omega3    0.8389
## avevar    0.6290
## 
## $`3`
##             SupG
## alpha     0.8629
## alpha.ord 0.9073
## omega     0.8358
## omega2    0.8358
## omega3    0.8328
## avevar    0.6317
## 
## $`1`
##             SupG
## alpha     0.8700
## alpha.ord 0.9117
## omega     0.8682
## omega2    0.8682
## omega3    0.8703
## avevar    0.6485
## 
## $`4`
##             SupG
## alpha     0.8764
## alpha.ord 0.9178
## omega     0.8274
## omega2    0.8274
## omega3    0.8235
## avevar    0.6560
7.1.1.7.3 Thresholds
summary(invariance$fit.thresholds,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 145 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    90
##                                                       
##   Number of observations per group:                   
##     2                                             1807
##     3                                             2851
##     1                                              356
##     4                                              429
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               306.914     189.994
##   Degrees of freedom                                98          98
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  1.932
##   Shift parameter for each group:                                 
##       2                                                     10.345
##       3                                                     16.322
##       1                                                      2.038
##       4                                                      2.456
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           64.216      43.578
##     3                                           76.210      55.762
##     1                                           86.255      46.676
##     4                                           80.233      43.978
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31849.655   38983.303
##   Degrees of freedom                                60          60
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.818
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.993       0.998
##   Tucker-Lewis Index (TLI)                       0.996       0.999
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.040       0.026
##   90 Percent confidence interval - lower         0.035       0.021
##   90 Percent confidence interval - upper         0.045       0.032
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.354    0.061   22.076    0.000    1.354    0.804
##     SupG_Meta         0.919    0.038   24.205    0.000    0.919    0.677
##     SupG_Ori          1.590    0.087   18.217    0.000    1.590    0.847
##     SupG_Mon          1.614    0.090   18.015    0.000    1.614    0.850
##     SupG_Infra        1.045    0.041   25.599    0.000    1.045    0.723
##     SupG_Bestar       1.134    0.047   24.189    0.000    1.134    0.750
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.419    0.030   13.920    0.000    0.419    0.419
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.943    0.111  -26.608    0.000   -2.943   -1.748
##     SupG_Feed|t2     -2.072    0.083  -25.107    0.000   -2.072   -1.231
##     SupG_Feed|t3     -0.925    0.052  -17.836    0.000   -0.925   -0.550
##     SupG_Feed|t4      1.065    0.057   18.715    0.000    1.065    0.633
##     SupG_Meta|t1     -3.003    0.110  -27.423    0.000   -3.003   -2.211
##     SupG_Meta|t2     -2.162    0.079  -27.378    0.000   -2.162   -1.592
##     SupG_Meta|t3     -1.406    0.055  -25.385    0.000   -1.406   -1.035
##     SupG_Meta|t4      0.610    0.037   16.580    0.000    0.610    0.449
##     SupG_Ori|t1      -4.603    0.245  -18.788    0.000   -4.603   -2.450
##     SupG_Ori|t2      -3.549    0.195  -18.233    0.000   -3.549   -1.889
##     SupG_Ori|t3      -2.548    0.140  -18.149    0.000   -2.548   -1.356
##     SupG_Ori|t4       0.056    0.048    1.173    0.241    0.056    0.030
##     SupG_Mon|t1      -4.619    0.259  -17.809    0.000   -4.619   -2.433
##     SupG_Mon|t2      -3.841    0.215  -17.826    0.000   -3.841   -2.023
##     SupG_Mon|t3      -2.578    0.144  -17.953    0.000   -2.578   -1.358
##     SupG_Mon|t4       0.148    0.050    2.976    0.003    0.148    0.078
##     SupG_Infra|t1    -2.224    0.073  -30.539    0.000   -2.224   -1.537
##     SupG_Infra|t2    -1.424    0.053  -26.989    0.000   -1.424   -0.985
##     SupG_Infra|t3    -0.235    0.034   -6.829    0.000   -0.235   -0.163
##     SupG_Infra|t4     1.122    0.046   24.499    0.000    1.122    0.776
##     SupG_Bestar|t1   -2.780    0.100  -27.833    0.000   -2.780   -1.839
##     SupG_Bestar|t2   -2.082    0.079  -26.468    0.000   -2.082   -1.377
##     SupG_Bestar|t3   -1.022    0.049  -20.699    0.000   -1.022   -0.676
##     SupG_Bestar|t4    0.588    0.040   14.643    0.000    0.588    0.389
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.000                               1.000    0.353
##    .SupG_Meta         1.000                               1.000    0.542
##    .SupG_Ori          1.000                               1.000    0.283
##    .SupG_Mon          1.000                               1.000    0.277
##    .SupG_Infra        1.000                               1.000    0.478
##    .SupG_Bestar       1.000                               1.000    0.438
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.594                               0.594    1.000
##     SupG_Meta         0.736                               0.736    1.000
##     SupG_Ori          0.532                               0.532    1.000
##     SupG_Mon          0.527                               0.527    1.000
##     SupG_Infra        0.691                               0.691    1.000
##     SupG_Bestar       0.662                               0.662    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.647
##     SupG_Meta         0.458
##     SupG_Ori          0.717
##     SupG_Mon          0.723
##     SupG_Infra        0.522
##     SupG_Bestar       0.562
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.354    0.061   22.076    0.000    1.353    0.804
##     SupG_Meta         0.919    0.038   24.205    0.000    0.919    0.710
##     SupG_Ori          1.590    0.087   18.217    0.000    1.590    0.873
##     SupG_Mon          1.614    0.090   18.015    0.000    1.613    0.832
##     SupG_Infra        1.045    0.041   25.599    0.000    1.045    0.716
##     SupG_Bestar       1.134    0.047   24.189    0.000    1.133    0.738
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.456    0.048    9.592    0.000    0.456    0.432
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG             -0.068    0.034   -1.987    0.047   -0.068   -0.068
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.943    0.111  -26.608    0.000   -2.943   -1.748
##     SupG_Feed|t2     -2.072    0.083  -25.107    0.000   -2.072   -1.230
##     SupG_Feed|t3     -0.925    0.052  -17.836    0.000   -0.925   -0.549
##     SupG_Feed|t4      1.065    0.057   18.715    0.000    1.065    0.633
##     SupG_Meta|t1     -3.003    0.110  -27.423    0.000   -3.003   -2.320
##     SupG_Meta|t2     -2.162    0.079  -27.378    0.000   -2.162   -1.670
##     SupG_Meta|t3     -1.406    0.055  -25.385    0.000   -1.406   -1.086
##     SupG_Meta|t4      0.610    0.037   16.580    0.000    0.610    0.471
##     SupG_Ori|t1      -4.603    0.245  -18.788    0.000   -4.603   -2.528
##     SupG_Ori|t2      -3.549    0.195  -18.233    0.000   -3.549   -1.949
##     SupG_Ori|t3      -2.548    0.140  -18.149    0.000   -2.548   -1.399
##     SupG_Ori|t4       0.056    0.048    1.173    0.241    0.056    0.031
##     SupG_Mon|t1      -4.619    0.259  -17.809    0.000   -4.619   -2.382
##     SupG_Mon|t2      -3.841    0.215  -17.826    0.000   -3.841   -1.981
##     SupG_Mon|t3      -2.578    0.144  -17.953    0.000   -2.578   -1.330
##     SupG_Mon|t4       0.148    0.050    2.976    0.003    0.148    0.076
##     SupG_Infra|t1    -2.224    0.073  -30.539    0.000   -2.224   -1.524
##     SupG_Infra|t2    -1.424    0.053  -26.989    0.000   -1.424   -0.976
##     SupG_Infra|t3    -0.235    0.034   -6.829    0.000   -0.235   -0.161
##     SupG_Infra|t4     1.122    0.046   24.499    0.000    1.122    0.769
##     SupG_Bestar|t1   -2.780    0.100  -27.833    0.000   -2.780   -1.810
##     SupG_Bestar|t2   -2.082    0.079  -26.468    0.000   -2.082   -1.355
##     SupG_Bestar|t3   -1.022    0.049  -20.699    0.000   -1.022   -0.665
##     SupG_Bestar|t4    0.588    0.040   14.643    0.000    0.588    0.383
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.004    0.099   10.160    0.000    1.004    0.354
##    .SupG_Meta         0.831    0.080   10.361    0.000    0.831    0.496
##    .SupG_Ori          0.789    0.134    5.881    0.000    0.789    0.238
##    .SupG_Mon          1.156    0.179    6.462    0.000    1.156    0.308
##    .SupG_Infra        1.037    0.081   12.858    0.000    1.037    0.487
##    .SupG_Bestar       1.076    0.098   10.981    0.000    1.076    0.456
##     SupG              0.999    0.065   15.291    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.594                               0.594    1.000
##     SupG_Meta         0.773                               0.773    1.000
##     SupG_Ori          0.549                               0.549    1.000
##     SupG_Mon          0.516                               0.516    1.000
##     SupG_Infra        0.685                               0.685    1.000
##     SupG_Bestar       0.651                               0.651    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.646
##     SupG_Meta         0.504
##     SupG_Ori          0.762
##     SupG_Mon          0.692
##     SupG_Infra        0.513
##     SupG_Bestar       0.544
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.354    0.061   22.076    0.000    1.358    0.822
##     SupG_Meta         0.919    0.038   24.205    0.000    0.922    0.704
##     SupG_Ori          1.590    0.087   18.217    0.000    1.595    0.809
##     SupG_Mon          1.614    0.090   18.015    0.000    1.618    0.844
##     SupG_Infra        1.045    0.041   25.599    0.000    1.048    0.789
##     SupG_Bestar       1.134    0.047   24.189    0.000    1.137    0.793
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.110    0.097    1.131    0.258    0.110    0.154
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.114    0.066    1.724    0.085    0.113    0.113
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.943    0.111  -26.608    0.000   -2.943   -1.783
##     SupG_Feed|t2     -2.072    0.083  -25.107    0.000   -2.072   -1.255
##     SupG_Feed|t3     -0.925    0.052  -17.836    0.000   -0.925   -0.560
##     SupG_Feed|t4      1.065    0.057   18.715    0.000    1.065    0.645
##     SupG_Meta|t1     -3.003    0.110  -27.423    0.000   -3.003   -2.293
##     SupG_Meta|t2     -2.162    0.079  -27.378    0.000   -2.162   -1.650
##     SupG_Meta|t3     -1.406    0.055  -25.385    0.000   -1.406   -1.073
##     SupG_Meta|t4      0.610    0.037   16.580    0.000    0.610    0.465
##     SupG_Ori|t1      -4.603    0.245  -18.788    0.000   -4.603   -2.334
##     SupG_Ori|t2      -3.549    0.195  -18.233    0.000   -3.549   -1.800
##     SupG_Ori|t3      -2.548    0.140  -18.149    0.000   -2.548   -1.292
##     SupG_Ori|t4       0.056    0.048    1.173    0.241    0.056    0.028
##     SupG_Mon|t1      -4.619    0.259  -17.809    0.000   -4.619   -2.408
##     SupG_Mon|t2      -3.841    0.215  -17.826    0.000   -3.841   -2.002
##     SupG_Mon|t3      -2.578    0.144  -17.953    0.000   -2.578   -1.344
##     SupG_Mon|t4       0.148    0.050    2.976    0.003    0.148    0.077
##     SupG_Infra|t1    -2.224    0.073  -30.539    0.000   -2.224   -1.673
##     SupG_Infra|t2    -1.424    0.053  -26.989    0.000   -1.424   -1.072
##     SupG_Infra|t3    -0.235    0.034   -6.829    0.000   -0.235   -0.177
##     SupG_Infra|t4     1.122    0.046   24.499    0.000    1.122    0.844
##     SupG_Bestar|t1   -2.780    0.100  -27.833    0.000   -2.780   -1.940
##     SupG_Bestar|t2   -2.082    0.079  -26.468    0.000   -2.082   -1.453
##     SupG_Bestar|t3   -1.022    0.049  -20.699    0.000   -1.022   -0.713
##     SupG_Bestar|t4    0.588    0.040   14.643    0.000    0.588    0.410
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.881    0.175    5.031    0.000    0.881    0.323
##    .SupG_Meta         0.866    0.148    5.842    0.000    0.866    0.505
##    .SupG_Ori          1.346    0.298    4.516    0.000    1.346    0.346
##    .SupG_Mon          1.061    0.343    3.090    0.002    1.061    0.288
##    .SupG_Infra        0.668    0.117    5.690    0.000    0.668    0.378
##    .SupG_Bestar       0.761    0.158    4.829    0.000    0.761    0.371
##     SupG              1.005    0.136    7.409    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.606                               0.606    1.000
##     SupG_Meta         0.763                               0.763    1.000
##     SupG_Ori          0.507                               0.507    1.000
##     SupG_Mon          0.521                               0.521    1.000
##     SupG_Infra        0.752                               0.752    1.000
##     SupG_Bestar       0.698                               0.698    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.677
##     SupG_Meta         0.495
##     SupG_Ori          0.654
##     SupG_Mon          0.712
##     SupG_Infra        0.622
##     SupG_Bestar       0.629
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.354    0.061   22.076    0.000    1.529    0.828
##     SupG_Meta         0.919    0.038   24.205    0.000    1.038    0.755
##     SupG_Ori          1.590    0.087   18.217    0.000    1.796    0.875
##     SupG_Mon          1.614    0.090   18.015    0.000    1.823    0.863
##     SupG_Infra        1.045    0.041   25.599    0.000    1.181    0.700
##     SupG_Bestar       1.134    0.047   24.189    0.000    1.280    0.751
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.826    0.150    5.507    0.000    0.826    0.608
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG             -0.029    0.068   -0.431    0.666   -0.026   -0.026
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.943    0.111  -26.608    0.000   -2.943   -1.594
##     SupG_Feed|t2     -2.072    0.083  -25.107    0.000   -2.072   -1.122
##     SupG_Feed|t3     -0.925    0.052  -17.836    0.000   -0.925   -0.501
##     SupG_Feed|t4      1.065    0.057   18.715    0.000    1.065    0.577
##     SupG_Meta|t1     -3.003    0.110  -27.423    0.000   -3.003   -2.183
##     SupG_Meta|t2     -2.162    0.079  -27.378    0.000   -2.162   -1.571
##     SupG_Meta|t3     -1.406    0.055  -25.385    0.000   -1.406   -1.022
##     SupG_Meta|t4      0.610    0.037   16.580    0.000    0.610    0.443
##     SupG_Ori|t1      -4.603    0.245  -18.788    0.000   -4.603   -2.242
##     SupG_Ori|t2      -3.549    0.195  -18.233    0.000   -3.549   -1.728
##     SupG_Ori|t3      -2.548    0.140  -18.149    0.000   -2.548   -1.241
##     SupG_Ori|t4       0.056    0.048    1.173    0.241    0.056    0.027
##     SupG_Mon|t1      -4.619    0.259  -17.809    0.000   -4.619   -2.186
##     SupG_Mon|t2      -3.841    0.215  -17.826    0.000   -3.841   -1.817
##     SupG_Mon|t3      -2.578    0.144  -17.953    0.000   -2.578   -1.220
##     SupG_Mon|t4       0.148    0.050    2.976    0.003    0.148    0.070
##     SupG_Infra|t1    -2.224    0.073  -30.539    0.000   -2.224   -1.318
##     SupG_Infra|t2    -1.424    0.053  -26.989    0.000   -1.424   -0.844
##     SupG_Infra|t3    -0.235    0.034   -6.829    0.000   -0.235   -0.140
##     SupG_Infra|t4     1.122    0.046   24.499    0.000    1.122    0.665
##     SupG_Bestar|t1   -2.780    0.100  -27.833    0.000   -2.780   -1.630
##     SupG_Bestar|t2   -2.082    0.079  -26.468    0.000   -2.082   -1.221
##     SupG_Bestar|t3   -1.022    0.049  -20.699    0.000   -1.022   -0.599
##     SupG_Bestar|t4    0.588    0.040   14.643    0.000    0.588    0.345
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.070    0.199    5.367    0.000    1.070    0.314
##    .SupG_Meta         0.815    0.178    4.566    0.000    0.815    0.431
##    .SupG_Ori          0.989    0.288    3.434    0.001    0.989    0.235
##    .SupG_Mon          1.141    0.350    3.266    0.001    1.141    0.256
##    .SupG_Infra        1.451    0.188    7.701    0.000    1.451    0.510
##    .SupG_Bestar       1.270    0.199    6.399    0.000    1.270    0.437
##     SupG              1.276    0.136    9.349    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.542                               0.542    1.000
##     SupG_Meta         0.727                               0.727    1.000
##     SupG_Ori          0.487                               0.487    1.000
##     SupG_Mon          0.473                               0.473    1.000
##     SupG_Infra        0.593                               0.593    1.000
##     SupG_Bestar       0.586                               0.586    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.686
##     SupG_Meta         0.569
##     SupG_Ori          0.765
##     SupG_Mon          0.744
##     SupG_Infra        0.490
##     SupG_Bestar       0.563
lavaan::fitMeasures(invariance$fit.thresholds,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               189.994                98.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.025                 0.998                 0.999 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.026                 0.021                 0.032
modificationindices(invariance$fit.thresholds, sort.=T)
##             lhs  op         rhs block group level     mi    epc sepc.lv
## 49   SupG_Infra  ~1                 1     1     1 17.499  0.109   0.109
## 100  SupG_Infra  ~1                 2     2     1 16.724 -0.101  -0.101
## 151  SupG_Infra  ~1                 3     3     1 14.525  0.184   0.184
## 202  SupG_Infra  ~1                 4     4     1 14.017 -0.191  -0.191
## 332    SupG_Ori  ~~    SupG_Mon     3     3     1 13.061  0.787   0.787
## 319    SupG_Ori  ~~  SupG_Infra     2     2     1 12.211 -0.210  -0.210
## 193   SupG_Meta ~*~   SupG_Meta     4     4     1 10.853  0.118   0.118
## 92     SupG_Ori ~*~    SupG_Ori     2     2     1 10.842  0.047   0.047
## 313   SupG_Feed  ~~ SupG_Bestar     2     2     1  9.032  0.172   0.172
## 312   SupG_Feed  ~~  SupG_Infra     2     2     1  7.745  0.151   0.151
## 146 SupG_Bestar ~*~ SupG_Bestar     3     3     1  6.757  0.102   0.102
## 304    SupG_Ori  ~~    SupG_Mon     1     1     1  6.433  0.249   0.249
## 143    SupG_Ori ~*~    SupG_Ori     3     3     1  6.194 -0.065  -0.065
## 99     SupG_Mon  ~1                 2     2     1  5.393  0.105   0.105
## 310   SupG_Feed  ~~    SupG_Ori     2     2     1  5.357 -0.163  -0.163
## 48     SupG_Mon  ~1                 1     1     1  5.306 -0.110  -0.110
## 90    SupG_Feed ~*~   SupG_Feed     2     2     1  5.210 -0.038  -0.038
## 340   SupG_Feed  ~~  SupG_Infra     4     4     1  4.949  0.366   0.366
## 150    SupG_Mon  ~1                 3     3     1  4.729 -0.204  -0.204
## 296   SupG_Feed  ~~    SupG_Ori     1     1     1  3.721 -0.166  -0.166
## 341   SupG_Feed  ~~ SupG_Bestar     4     4     1  3.714  0.322   0.322
## 39    SupG_Feed ~*~   SupG_Feed     1     1     1  3.680  0.033   0.033
## 91    SupG_Meta ~*~   SupG_Meta     2     2     1  3.565 -0.041  -0.041
## 148   SupG_Meta  ~1                 3     3     1  3.544 -0.104  -0.104
## 322    SupG_Mon  ~~ SupG_Bestar     2     2     1  3.459 -0.124  -0.124
## 101 SupG_Bestar  ~1                 2     2     1  3.420 -0.055  -0.055
## 45    SupG_Feed  ~1                 1     1     1  3.364 -0.061  -0.061
## 203 SupG_Bestar  ~1                 4     4     1  3.199  0.107   0.107
## 201    SupG_Mon  ~1                 4     4     1  3.108  0.156   0.156
## 149    SupG_Ori  ~1                 3     3     1  3.056 -0.168  -0.168
## 300   SupG_Meta  ~~    SupG_Ori     1     1     1  2.934  0.115   0.115
## 96    SupG_Feed  ~1                 2     2     1  2.762  0.052   0.052
## 345   SupG_Meta  ~~ SupG_Bestar     4     4     1  2.761 -0.203  -0.203
## 41     SupG_Ori ~*~    SupG_Ori     1     1     1  2.661 -0.024  -0.024
## 196  SupG_Infra ~*~  SupG_Infra     4     4     1  2.658 -0.056  -0.056
## 337   SupG_Feed  ~~   SupG_Meta     4     4     1  2.492 -0.211  -0.211
## 297   SupG_Feed  ~~    SupG_Mon     1     1     1  2.477 -0.137  -0.137
## 331   SupG_Meta  ~~ SupG_Bestar     3     3     1  2.356 -0.163  -0.163
## 97    SupG_Meta  ~1                 2     2     1  2.308  0.040   0.040
## 328   SupG_Meta  ~~    SupG_Ori     3     3     1  2.056  0.209   0.209
## 325   SupG_Feed  ~~    SupG_Mon     3     3     1  2.002 -0.260  -0.260
## 336    SupG_Mon  ~~ SupG_Bestar     3     3     1  1.956 -0.222  -0.222
## 330   SupG_Meta  ~~  SupG_Infra     3     3     1  1.761 -0.131  -0.131
## 152 SupG_Bestar  ~1                 3     3     1  1.564  0.075   0.075
## 94   SupG_Infra ~*~  SupG_Infra     2     2     1  1.476  0.026   0.026
## 318    SupG_Ori  ~~    SupG_Mon     2     2     1  1.293  0.093   0.093
## 344   SupG_Meta  ~~  SupG_Infra     4     4     1  1.230 -0.134  -0.134
## 194    SupG_Ori ~*~    SupG_Ori     4     4     1  1.173 -0.025  -0.025
## 144    SupG_Mon ~*~    SupG_Mon     3     3     1  1.123 -0.028  -0.028
## 314   SupG_Meta  ~~    SupG_Ori     2     2     1  1.109  0.055   0.055
## 339   SupG_Feed  ~~    SupG_Mon     4     4     1  1.087 -0.218  -0.218
## 329   SupG_Meta  ~~    SupG_Mon     3     3     1  1.057  0.146   0.146
## 347    SupG_Ori  ~~  SupG_Infra     4     4     1  1.026  0.187   0.187
## 98     SupG_Ori  ~1                 2     2     1  0.998  0.044   0.044
## 326   SupG_Feed  ~~  SupG_Infra     3     3     1  0.991  0.127   0.127
## 141   SupG_Feed ~*~   SupG_Feed     3     3     1  0.970  0.032   0.032
## 327   SupG_Feed  ~~ SupG_Bestar     3     3     1  0.947 -0.133  -0.133
## 302   SupG_Meta  ~~  SupG_Infra     1     1     1  0.904 -0.048  -0.048
## 346    SupG_Ori  ~~    SupG_Mon     4     4     1  0.901  0.222   0.222
## 348    SupG_Ori  ~~ SupG_Bestar     4     4     1  0.809  0.168   0.168
## 343   SupG_Meta  ~~    SupG_Mon     4     4     1  0.801 -0.137  -0.137
## 197 SupG_Bestar ~*~ SupG_Bestar     4     4     1  0.696 -0.026  -0.026
## 320    SupG_Ori  ~~ SupG_Bestar     2     2     1  0.677 -0.052  -0.052
## 315   SupG_Meta  ~~    SupG_Mon     2     2     1  0.673  0.045   0.045
## 306    SupG_Ori  ~~ SupG_Bestar     1     1     1  0.670  0.063   0.063
## 308    SupG_Mon  ~~ SupG_Bestar     1     1     1  0.624 -0.061  -0.061
## 298   SupG_Feed  ~~  SupG_Infra     1     1     1  0.526  0.047   0.047
## 46    SupG_Meta  ~1                 1     1     1  0.492 -0.020  -0.020
## 317   SupG_Meta  ~~ SupG_Bestar     2     2     1  0.485  0.030   0.030
## 95  SupG_Bestar ~*~ SupG_Bestar     2     2     1  0.464 -0.013  -0.013
## 305    SupG_Ori  ~~  SupG_Infra     1     1     1  0.439 -0.049  -0.049
## 342   SupG_Meta  ~~    SupG_Ori     4     4     1  0.377 -0.092  -0.092
## 198   SupG_Feed  ~1                 4     4     1  0.276  0.032   0.032
## 301   SupG_Meta  ~~    SupG_Mon     1     1     1  0.245 -0.034  -0.034
## 192   SupG_Feed ~*~   SupG_Feed     4     4     1  0.211 -0.013  -0.013
## 195    SupG_Mon ~*~    SupG_Mon     4     4     1  0.169  0.009   0.009
## 147   SupG_Feed  ~1                 3     3     1  0.167 -0.026  -0.026
## 338   SupG_Feed  ~~    SupG_Ori     4     4     1  0.151 -0.079  -0.079
## 50  SupG_Bestar  ~1                 1     1     1  0.124  0.011   0.011
## 307    SupG_Mon  ~~  SupG_Infra     1     1     1  0.124  0.026   0.026
## 334    SupG_Ori  ~~ SupG_Bestar     3     3     1  0.123 -0.057  -0.057
## 43   SupG_Infra ~*~  SupG_Infra     1     1     1  0.091  0.007   0.007
## 321    SupG_Mon  ~~  SupG_Infra     2     2     1  0.090 -0.019  -0.019
## 316   SupG_Meta  ~~  SupG_Infra     2     2     1  0.078 -0.011  -0.011
## 324   SupG_Feed  ~~    SupG_Ori     3     3     1  0.075 -0.051  -0.051
## 349    SupG_Mon  ~~  SupG_Infra     4     4     1  0.073  0.051   0.051
## 40    SupG_Meta ~*~   SupG_Meta     1     1     1  0.062 -0.005  -0.005
## 309   SupG_Feed  ~~   SupG_Meta     2     2     1  0.037  0.009   0.009
## 145  SupG_Infra ~*~  SupG_Infra     3     3     1  0.035  0.008   0.008
## 311   SupG_Feed  ~~    SupG_Mon     2     2     1  0.035 -0.014  -0.014
## 93     SupG_Mon ~*~    SupG_Mon     2     2     1  0.032  0.002   0.002
## 333    SupG_Ori  ~~  SupG_Infra     3     3     1  0.027 -0.025  -0.025
## 299   SupG_Feed  ~~ SupG_Bestar     1     1     1  0.025  0.011   0.011
## 42     SupG_Mon ~*~    SupG_Mon     1     1     1  0.023 -0.002  -0.002
## 323   SupG_Feed  ~~   SupG_Meta     3     3     1  0.021  0.018   0.018
## 47     SupG_Ori  ~1                 1     1     1  0.019 -0.006  -0.006
## 303   SupG_Meta  ~~ SupG_Bestar     1     1     1  0.019 -0.007  -0.007
## 200    SupG_Ori  ~1                 4     4     1  0.018 -0.012  -0.012
## 295   SupG_Feed  ~~   SupG_Meta     1     1     1  0.015  0.007   0.007
## 199   SupG_Meta  ~1                 4     4     1  0.007  0.004   0.004
## 142   SupG_Meta ~*~   SupG_Meta     3     3     1  0.006  0.003   0.003
## 44  SupG_Bestar ~*~ SupG_Bestar     1     1     1  0.002 -0.001  -0.001
## 335    SupG_Mon  ~~  SupG_Infra     3     3     1  0.001  0.006   0.006
## 350    SupG_Mon  ~~ SupG_Bestar     4     4     1  0.000 -0.003  -0.003
##     sepc.all sepc.nox
## 49     0.075    0.075
## 100   -0.069   -0.069
## 151    0.138    0.138
## 202   -0.113   -0.113
## 332    0.659    0.659
## 319   -0.232   -0.232
## 193    1.000    1.000
## 92     1.000    1.000
## 313    0.166    0.166
## 312    0.148    0.148
## 146    1.000    1.000
## 304    0.249    0.249
## 143   -1.000   -1.000
## 99     0.054    0.054
## 310   -0.183   -0.183
## 48    -0.058   -0.058
## 90    -1.000   -1.000
## 340    0.294    0.294
## 150   -0.106   -0.106
## 296   -0.166   -0.166
## 341    0.276    0.276
## 39     1.000    1.000
## 91    -1.000   -1.000
## 148   -0.079   -0.079
## 322   -0.111   -0.111
## 101   -0.036   -0.036
## 45    -0.036   -0.036
## 203    0.063    0.063
## 201    0.074    0.074
## 149   -0.085   -0.085
## 300    0.115    0.115
## 96     0.031    0.031
## 345   -0.200   -0.200
## 41    -1.000   -1.000
## 196   -1.000   -1.000
## 337   -0.226   -0.226
## 297   -0.137   -0.137
## 331   -0.201   -0.201
## 97     0.031    0.031
## 328    0.193    0.193
## 325   -0.268   -0.268
## 336   -0.247   -0.247
## 330   -0.172   -0.172
## 152    0.052    0.052
## 94     1.000    1.000
## 318    0.097    0.097
## 344   -0.123   -0.123
## 194   -1.000   -1.000
## 144   -1.000   -1.000
## 314    0.068    0.068
## 339   -0.198   -0.198
## 329    0.153    0.153
## 347    0.156    0.156
## 98     0.024    0.024
## 326    0.165    0.165
## 141    1.000    1.000
## 327   -0.162   -0.162
## 302   -0.048   -0.048
## 346    0.209    0.209
## 348    0.150    0.150
## 343   -0.142   -0.142
## 197   -1.000   -1.000
## 320   -0.057   -0.057
## 315    0.046    0.046
## 306    0.063    0.063
## 308   -0.061   -0.061
## 298    0.047    0.047
## 46    -0.015   -0.015
## 317    0.032    0.032
## 95    -1.000   -1.000
## 305   -0.049   -0.049
## 342   -0.102   -0.102
## 198    0.018    0.018
## 301   -0.034   -0.034
## 192   -1.000   -1.000
## 195    1.000    1.000
## 147   -0.016   -0.016
## 338   -0.077   -0.077
## 50     0.007    0.007
## 307    0.026    0.026
## 334   -0.056   -0.056
## 43     1.000    1.000
## 321   -0.017   -0.017
## 316   -0.012   -0.012
## 324   -0.047   -0.047
## 349    0.040    0.040
## 40    -1.000   -1.000
## 309    0.010    0.010
## 145    1.000    1.000
## 311   -0.013   -0.013
## 93     1.000    1.000
## 333   -0.026   -0.026
## 299    0.011    0.011
## 42    -1.000   -1.000
## 323    0.020    0.020
## 47    -0.003   -0.003
## 303   -0.007   -0.007
## 200   -0.006   -0.006
## 295    0.007    0.007
## 199    0.003    0.003
## 142    1.000    1.000
## 44    -1.000   -1.000
## 335    0.007    0.007
## 350   -0.002   -0.002
semTools::reliability(invariance$fit.thresholds)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##             SupG
## alpha     0.8551
## alpha.ord 0.9046
## omega     0.8394
## omega2    0.8394
## omega3    0.8402
## avevar    0.6294
## 
## $`3`
##             SupG
## alpha     0.8629
## alpha.ord 0.9073
## omega     0.8383
## omega2    0.8383
## omega3    0.8357
## avevar    0.6334
## 
## $`1`
##             SupG
## alpha     0.8700
## alpha.ord 0.9117
## omega     0.8703
## omega2    0.8703
## omega3    0.8741
## avevar    0.6473
## 
## $`4`
##             SupG
## alpha     0.8764
## alpha.ord 0.9178
## omega     0.8417
## omega2    0.8417
## omega3    0.8359
## avevar    0.6587
7.1.1.7.4 Partial Invariance - Means
summary(invariance$fit.means,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 139 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       145
##   Number of equality constraints                    90
##                                                       
##   Number of observations per group:                   
##     2                                             1807
##     3                                             2851
##     1                                              356
##     4                                              429
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               400.862     202.952
##   Degrees of freedom                               101         101
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  2.390
##   Shift parameter for each group:                                 
##       2                                                     11.704
##       3                                                     18.467
##       1                                                      2.306
##       4                                                      2.779
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           72.584      42.069
##     3                                          109.195      64.147
##     1                                          137.927      60.006
##     4                                           81.157      36.730
## 
## Model Test Baseline Model:
## 
##   Test statistic                             31849.655   38983.303
##   Degrees of freedom                                60          60
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.818
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.991       0.997
##   Tucker-Lewis Index (TLI)                       0.994       0.998
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.047       0.027
##   90 Percent confidence interval - lower         0.042       0.022
##   90 Percent confidence interval - upper         0.052       0.033
##   P-value RMSEA <= 0.05                          0.865       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.360    0.062   21.998    0.000    1.360    0.806
##     SupG_Meta         0.918    0.038   24.370    0.000    0.918    0.676
##     SupG_Ori          1.598    0.088   18.134    0.000    1.598    0.848
##     SupG_Mon          1.624    0.091   17.915    0.000    1.624    0.852
##     SupG_Infra        1.034    0.040   26.013    0.000    1.034    0.719
##     SupG_Bestar       1.131    0.047   24.147    0.000    1.131    0.749
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.423    0.030   14.314    0.000    0.423    0.423
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.948    0.111  -26.617    0.000   -2.948   -1.747
##     SupG_Feed|t2     -2.064    0.080  -25.744    0.000   -2.064   -1.223
##     SupG_Feed|t3     -0.900    0.044  -20.378    0.000   -0.900   -0.533
##     SupG_Feed|t4      1.123    0.049   22.695    0.000    1.123    0.665
##     SupG_Meta|t1     -3.004    0.109  -27.520    0.000   -3.004   -2.213
##     SupG_Meta|t2     -2.156    0.077  -27.837    0.000   -2.156   -1.588
##     SupG_Meta|t3     -1.391    0.052  -26.607    0.000   -1.391   -1.025
##     SupG_Meta|t4      0.646    0.031   21.044    0.000    0.646    0.475
##     SupG_Ori|t1      -4.627    0.248  -18.678    0.000   -4.627   -2.454
##     SupG_Ori|t2      -3.559    0.196  -18.152    0.000   -3.559   -1.888
##     SupG_Ori|t3      -2.541    0.140  -18.207    0.000   -2.541   -1.348
##     SupG_Ori|t4       0.109    0.032    3.372    0.001    0.109    0.058
##     SupG_Mon|t1      -4.646    0.262  -17.704    0.000   -4.646   -2.436
##     SupG_Mon|t2      -3.857    0.217  -17.744    0.000   -3.857   -2.023
##     SupG_Mon|t3      -2.572    0.143  -18.008    0.000   -2.572   -1.349
##     SupG_Mon|t4       0.199    0.035    5.754    0.000    0.199    0.104
##     SupG_Infra|t1    -2.204    0.069  -31.858    0.000   -2.204   -1.533
##     SupG_Infra|t2    -1.402    0.047  -29.589    0.000   -1.402   -0.975
##     SupG_Infra|t3    -0.209    0.026   -8.113    0.000   -0.209   -0.146
##     SupG_Infra|t4     1.155    0.041   28.397    0.000    1.155    0.803
##     SupG_Bestar|t1   -2.778    0.100  -27.675    0.000   -2.778   -1.840
##     SupG_Bestar|t2   -2.074    0.077  -26.930    0.000   -2.074   -1.374
##     SupG_Bestar|t3   -1.002    0.043  -23.152    0.000   -1.002   -0.664
##     SupG_Bestar|t4    0.626    0.033   18.823    0.000    0.626    0.415
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.000                               1.000    0.351
##    .SupG_Meta         1.000                               1.000    0.543
##    .SupG_Ori          1.000                               1.000    0.281
##    .SupG_Mon          1.000                               1.000    0.275
##    .SupG_Infra        1.000                               1.000    0.483
##    .SupG_Bestar       1.000                               1.000    0.439
##     SupG              1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.592                               0.592    1.000
##     SupG_Meta         0.737                               0.737    1.000
##     SupG_Ori          0.530                               0.530    1.000
##     SupG_Mon          0.524                               0.524    1.000
##     SupG_Infra        0.695                               0.695    1.000
##     SupG_Bestar       0.662                               0.662    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.649
##     SupG_Meta         0.457
##     SupG_Ori          0.719
##     SupG_Mon          0.725
##     SupG_Infra        0.517
##     SupG_Bestar       0.561
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.360    0.062   21.998    0.000    1.397    0.804
##     SupG_Meta         0.918    0.038   24.370    0.000    0.943    0.712
##     SupG_Ori          1.598    0.088   18.134    0.000    1.642    0.873
##     SupG_Mon          1.624    0.091   17.915    0.000    1.669    0.833
##     SupG_Infra        1.034    0.040   26.013    0.000    1.062    0.715
##     SupG_Bestar       1.131    0.047   24.147    0.000    1.162    0.735
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.485    0.052    9.289    0.000    0.485    0.436
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.948    0.111  -26.617    0.000   -2.948   -1.695
##     SupG_Feed|t2     -2.064    0.080  -25.744    0.000   -2.064   -1.187
##     SupG_Feed|t3     -0.900    0.044  -20.378    0.000   -0.900   -0.517
##     SupG_Feed|t4      1.123    0.049   22.695    0.000    1.123    0.646
##     SupG_Meta|t1     -3.004    0.109  -27.520    0.000   -3.004   -2.268
##     SupG_Meta|t2     -2.156    0.077  -27.837    0.000   -2.156   -1.627
##     SupG_Meta|t3     -1.391    0.052  -26.607    0.000   -1.391   -1.050
##     SupG_Meta|t4      0.646    0.031   21.044    0.000    0.646    0.487
##     SupG_Ori|t1      -4.627    0.248  -18.678    0.000   -4.627   -2.460
##     SupG_Ori|t2      -3.559    0.196  -18.152    0.000   -3.559   -1.893
##     SupG_Ori|t3      -2.541    0.140  -18.207    0.000   -2.541   -1.351
##     SupG_Ori|t4       0.109    0.032    3.372    0.001    0.109    0.058
##     SupG_Mon|t1      -4.646    0.262  -17.704    0.000   -4.646   -2.319
##     SupG_Mon|t2      -3.857    0.217  -17.744    0.000   -3.857   -1.926
##     SupG_Mon|t3      -2.572    0.143  -18.008    0.000   -2.572   -1.284
##     SupG_Mon|t4       0.199    0.035    5.754    0.000    0.199    0.099
##     SupG_Infra|t1    -2.204    0.069  -31.858    0.000   -2.204   -1.483
##     SupG_Infra|t2    -1.402    0.047  -29.589    0.000   -1.402   -0.944
##     SupG_Infra|t3    -0.209    0.026   -8.113    0.000   -0.209   -0.141
##     SupG_Infra|t4     1.155    0.041   28.397    0.000    1.155    0.777
##     SupG_Bestar|t1   -2.778    0.100  -27.675    0.000   -2.778   -1.758
##     SupG_Bestar|t2   -2.074    0.077  -26.930    0.000   -2.074   -1.312
##     SupG_Bestar|t3   -1.002    0.043  -23.152    0.000   -1.002   -0.634
##     SupG_Bestar|t4    0.626    0.033   18.823    0.000    0.626    0.396
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.072    0.109    9.830    0.000    1.072    0.354
##    .SupG_Meta         0.865    0.085   10.208    0.000    0.865    0.493
##    .SupG_Ori          0.840    0.144    5.852    0.000    0.840    0.238
##    .SupG_Mon          1.228    0.191    6.422    0.000    1.228    0.306
##    .SupG_Infra        1.081    0.086   12.503    0.000    1.081    0.489
##    .SupG_Bestar       1.148    0.112   10.298    0.000    1.148    0.460
##     SupG              1.056    0.068   15.429    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.575                               0.575    1.000
##     SupG_Meta         0.755                               0.755    1.000
##     SupG_Ori          0.532                               0.532    1.000
##     SupG_Mon          0.499                               0.499    1.000
##     SupG_Infra        0.673                               0.673    1.000
##     SupG_Bestar       0.633                               0.633    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.646
##     SupG_Meta         0.507
##     SupG_Ori          0.762
##     SupG_Mon          0.694
##     SupG_Infra        0.511
##     SupG_Bestar       0.540
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.360    0.062   21.998    0.000    1.305    0.827
##     SupG_Meta         0.918    0.038   24.370    0.000    0.881    0.700
##     SupG_Ori          1.598    0.088   18.134    0.000    1.534    0.812
##     SupG_Mon          1.624    0.091   17.915    0.000    1.558    0.847
##     SupG_Infra        1.034    0.040   26.013    0.000    0.992    0.777
##     SupG_Bestar       1.131    0.047   24.147    0.000    1.085    0.795
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.114    0.089    1.280    0.201    0.114    0.172
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.948    0.111  -26.617    0.000   -2.948   -1.868
##     SupG_Feed|t2     -2.064    0.080  -25.744    0.000   -2.064   -1.308
##     SupG_Feed|t3     -0.900    0.044  -20.378    0.000   -0.900   -0.570
##     SupG_Feed|t4      1.123    0.049   22.695    0.000    1.123    0.712
##     SupG_Meta|t1     -3.004    0.109  -27.520    0.000   -3.004   -2.388
##     SupG_Meta|t2     -2.156    0.077  -27.837    0.000   -2.156   -1.713
##     SupG_Meta|t3     -1.391    0.052  -26.607    0.000   -1.391   -1.106
##     SupG_Meta|t4      0.646    0.031   21.044    0.000    0.646    0.513
##     SupG_Ori|t1      -4.627    0.248  -18.678    0.000   -4.627   -2.449
##     SupG_Ori|t2      -3.559    0.196  -18.152    0.000   -3.559   -1.884
##     SupG_Ori|t3      -2.541    0.140  -18.207    0.000   -2.541   -1.345
##     SupG_Ori|t4       0.109    0.032    3.372    0.001    0.109    0.058
##     SupG_Mon|t1      -4.646    0.262  -17.704    0.000   -4.646   -2.525
##     SupG_Mon|t2      -3.857    0.217  -17.744    0.000   -3.857   -2.096
##     SupG_Mon|t3      -2.572    0.143  -18.008    0.000   -2.572   -1.398
##     SupG_Mon|t4       0.199    0.035    5.754    0.000    0.199    0.108
##     SupG_Infra|t1    -2.204    0.069  -31.858    0.000   -2.204   -1.726
##     SupG_Infra|t2    -1.402    0.047  -29.589    0.000   -1.402   -1.098
##     SupG_Infra|t3    -0.209    0.026   -8.113    0.000   -0.209   -0.164
##     SupG_Infra|t4     1.155    0.041   28.397    0.000    1.155    0.904
##     SupG_Bestar|t1   -2.778    0.100  -27.675    0.000   -2.778   -2.036
##     SupG_Bestar|t2   -2.074    0.077  -26.930    0.000   -2.074   -1.520
##     SupG_Bestar|t3   -1.002    0.043  -23.152    0.000   -1.002   -0.735
##     SupG_Bestar|t4    0.626    0.033   18.823    0.000    0.626    0.459
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.788    0.162    4.859    0.000    0.788    0.316
##    .SupG_Meta         0.807    0.138    5.829    0.000    0.807    0.510
##    .SupG_Ori          1.216    0.275    4.424    0.000    1.216    0.341
##    .SupG_Mon          0.958    0.314    3.053    0.002    0.958    0.283
##    .SupG_Infra        0.647    0.110    5.864    0.000    0.647    0.397
##    .SupG_Bestar       0.684    0.149    4.582    0.000    0.684    0.368
##     SupG              0.921    0.123    7.497    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.634                               0.634    1.000
##     SupG_Meta         0.795                               0.795    1.000
##     SupG_Ori          0.529                               0.529    1.000
##     SupG_Mon          0.543                               0.543    1.000
##     SupG_Infra        0.783                               0.783    1.000
##     SupG_Bestar       0.733                               0.733    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.684
##     SupG_Meta         0.490
##     SupG_Ori          0.659
##     SupG_Mon          0.717
##     SupG_Infra        0.603
##     SupG_Bestar       0.632
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SupG =~                                                               
##     SupG_Feed         1.360    0.062   21.998    0.000    1.554    0.829
##     SupG_Meta         0.918    0.038   24.370    0.000    1.049    0.755
##     SupG_Ori          1.598    0.088   18.134    0.000    1.827    0.876
##     SupG_Mon          1.624    0.091   17.915    0.000    1.856    0.864
##     SupG_Infra        1.034    0.040   26.013    0.000    1.181    0.698
##     SupG_Bestar       1.131    0.047   24.147    0.000    1.293    0.749
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .SupG_Infra ~~                                                         
##    .SupG_Bestar       0.847    0.160    5.305    0.000    0.847    0.611
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         0.000                               0.000    0.000
##    .SupG_Meta         0.000                               0.000    0.000
##    .SupG_Ori          0.000                               0.000    0.000
##    .SupG_Mon          0.000                               0.000    0.000
##    .SupG_Infra        0.000                               0.000    0.000
##    .SupG_Bestar       0.000                               0.000    0.000
##     SupG              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed|t1     -2.948    0.111  -26.617    0.000   -2.948   -1.572
##     SupG_Feed|t2     -2.064    0.080  -25.744    0.000   -2.064   -1.100
##     SupG_Feed|t3     -0.900    0.044  -20.378    0.000   -0.900   -0.480
##     SupG_Feed|t4      1.123    0.049   22.695    0.000    1.123    0.599
##     SupG_Meta|t1     -3.004    0.109  -27.520    0.000   -3.004   -2.162
##     SupG_Meta|t2     -2.156    0.077  -27.837    0.000   -2.156   -1.551
##     SupG_Meta|t3     -1.391    0.052  -26.607    0.000   -1.391   -1.001
##     SupG_Meta|t4      0.646    0.031   21.044    0.000    0.646    0.465
##     SupG_Ori|t1      -4.627    0.248  -18.678    0.000   -4.627   -2.218
##     SupG_Ori|t2      -3.559    0.196  -18.152    0.000   -3.559   -1.706
##     SupG_Ori|t3      -2.541    0.140  -18.207    0.000   -2.541   -1.218
##     SupG_Ori|t4       0.109    0.032    3.372    0.001    0.109    0.052
##     SupG_Mon|t1      -4.646    0.262  -17.704    0.000   -4.646   -2.162
##     SupG_Mon|t2      -3.857    0.217  -17.744    0.000   -3.857   -1.795
##     SupG_Mon|t3      -2.572    0.143  -18.008    0.000   -2.572   -1.197
##     SupG_Mon|t4       0.199    0.035    5.754    0.000    0.199    0.093
##     SupG_Infra|t1    -2.204    0.069  -31.858    0.000   -2.204   -1.302
##     SupG_Infra|t2    -1.402    0.047  -29.589    0.000   -1.402   -0.828
##     SupG_Infra|t3    -0.209    0.026   -8.113    0.000   -0.209   -0.124
##     SupG_Infra|t4     1.155    0.041   28.397    0.000    1.155    0.682
##     SupG_Bestar|t1   -2.778    0.100  -27.675    0.000   -2.778   -1.610
##     SupG_Bestar|t2   -2.074    0.077  -26.930    0.000   -2.074   -1.202
##     SupG_Bestar|t3   -1.002    0.043  -23.152    0.000   -1.002   -0.581
##     SupG_Bestar|t4    0.626    0.033   18.823    0.000    0.626    0.363
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SupG_Feed         1.102    0.213    5.182    0.000    1.102    0.313
##    .SupG_Meta         0.829    0.183    4.543    0.000    0.829    0.430
##    .SupG_Ori          1.015    0.300    3.386    0.001    1.015    0.233
##    .SupG_Mon          1.172    0.365    3.212    0.001    1.172    0.254
##    .SupG_Infra        1.473    0.200    7.374    0.000    1.473    0.513
##    .SupG_Bestar       1.306    0.223    5.847    0.000    1.306    0.439
##     SupG              1.306    0.141    9.254    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     SupG_Feed         0.533                               0.533    1.000
##     SupG_Meta         0.720                               0.720    1.000
##     SupG_Ori          0.479                               0.479    1.000
##     SupG_Mon          0.465                               0.465    1.000
##     SupG_Infra        0.590                               0.590    1.000
##     SupG_Bestar       0.580                               0.580    1.000
## 
## R-Square:
##                    Estimate
##     SupG_Feed         0.687
##     SupG_Meta         0.570
##     SupG_Ori          0.767
##     SupG_Mon          0.746
##     SupG_Infra        0.487
##     SupG_Bestar       0.561
lavaan::fitMeasures(invariance$fit.means,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               202.952               101.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.025                 0.997                 0.998 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.027                 0.022                 0.033
modificationindices(invariance$fit.means, sort.=T)
##             lhs  op         rhs block group level     mi    epc sepc.lv
## 102        SupG  ~1                 2     2     1 61.802 -0.082  -0.080
## 153        SupG  ~1                 3     3     1 57.312  0.147   0.153
## 100  SupG_Infra  ~1                 2     2     1 55.237 -0.162  -0.162
## 151  SupG_Infra  ~1                 3     3     1 49.353  0.274   0.274
## 49   SupG_Infra  ~1                 1     1     1 29.213  0.124   0.124
## 101 SupG_Bestar  ~1                 2     2     1 22.125 -0.131  -0.131
## 152 SupG_Bestar  ~1                 3     3     1 16.523  0.205   0.205
## 51         SupG  ~1                 1     1     1 15.979  0.044   0.044
## 332    SupG_Ori  ~~    SupG_Mon     3     3     1 12.359  0.705   0.705
## 202  SupG_Infra  ~1                 4     4     1 11.882 -0.159  -0.159
## 319    SupG_Ori  ~~  SupG_Infra     2     2     1 11.617 -0.215  -0.215
## 193   SupG_Meta ~*~   SupG_Meta     4     4     1 10.990  0.118   0.118
## 92     SupG_Ori ~*~    SupG_Ori     2     2     1 10.499  0.044   0.044
## 313   SupG_Feed  ~~ SupG_Bestar     2     2     1  9.770  0.190   0.190
## 147   SupG_Feed  ~1                 3     3     1  9.587  0.163   0.163
## 312   SupG_Feed  ~~  SupG_Infra     2     2     1  8.187  0.163   0.163
## 146 SupG_Bestar ~*~ SupG_Bestar     3     3     1  7.733  0.115   0.115
## 304    SupG_Ori  ~~    SupG_Mon     1     1     1  5.919  0.241   0.241
## 143    SupG_Ori ~*~    SupG_Ori     3     3     1  5.796 -0.066  -0.066
## 310   SupG_Feed  ~~    SupG_Ori     2     2     1  5.330 -0.173  -0.173
## 90    SupG_Feed ~*~   SupG_Feed     2     2     1  5.215 -0.036  -0.036
## 340   SupG_Feed  ~~  SupG_Infra     4     4     1  5.124  0.380   0.380
## 96    SupG_Feed  ~1                 2     2     1  4.447 -0.059  -0.059
## 39    SupG_Feed ~*~   SupG_Feed     1     1     1  4.204  0.036   0.036
## 296   SupG_Feed  ~~    SupG_Ori     1     1     1  4.135 -0.177  -0.177
## 341   SupG_Feed  ~~ SupG_Bestar     4     4     1  3.788  0.334   0.334
## 322    SupG_Mon  ~~ SupG_Bestar     2     2     1  3.124 -0.125  -0.125
## 50  SupG_Bestar  ~1                 1     1     1  3.055  0.051   0.051
## 196  SupG_Infra ~*~  SupG_Infra     4     4     1  2.946 -0.059  -0.059
## 300   SupG_Meta  ~~    SupG_Ori     1     1     1  2.868  0.114   0.114
## 201    SupG_Mon  ~1                 4     4     1  2.864  0.144   0.144
## 297   SupG_Feed  ~~    SupG_Mon     1     1     1  2.846 -0.148  -0.148
## 345   SupG_Meta  ~~ SupG_Bestar     4     4     1  2.719 -0.206  -0.206
## 203 SupG_Bestar  ~1                 4     4     1  2.603  0.091   0.091
## 337   SupG_Feed  ~~   SupG_Meta     4     4     1  2.549 -0.219  -0.219
## 41     SupG_Ori ~*~    SupG_Ori     1     1     1  2.406 -0.023  -0.023
## 325   SupG_Feed  ~~    SupG_Mon     3     3     1  2.402 -0.261  -0.261
## 91    SupG_Meta ~*~   SupG_Meta     2     2     1  2.387 -0.032  -0.032
## 98     SupG_Ori  ~1                 2     2     1  2.337 -0.064  -0.064
## 331   SupG_Meta  ~~ SupG_Bestar     3     3     1  2.282 -0.147  -0.147
## 336    SupG_Mon  ~~ SupG_Bestar     3     3     1  2.218 -0.217  -0.217
## 328   SupG_Meta  ~~    SupG_Ori     3     3     1  2.089  0.194   0.194
## 47     SupG_Ori  ~1                 1     1     1  1.711  0.058   0.058
## 141   SupG_Feed ~*~   SupG_Feed     3     3     1  1.349  0.039   0.039
## 326   SupG_Feed  ~~  SupG_Infra     3     3     1  1.273  0.132   0.132
## 330   SupG_Meta  ~~  SupG_Infra     3     3     1  1.218 -0.100  -0.100
## 327   SupG_Feed  ~~ SupG_Bestar     3     3     1  1.170 -0.135  -0.135
## 97    SupG_Meta  ~1                 2     2     1  1.165 -0.027  -0.027
## 344   SupG_Meta  ~~  SupG_Infra     4     4     1  1.161 -0.132  -0.132
## 339   SupG_Feed  ~~    SupG_Mon     4     4     1  1.144 -0.232  -0.232
## 318    SupG_Ori  ~~    SupG_Mon     2     2     1  1.133  0.092   0.092
## 194    SupG_Ori ~*~    SupG_Ori     4     4     1  1.120 -0.024  -0.024
## 94   SupG_Infra ~*~  SupG_Infra     2     2     1  1.120  0.022   0.022
## 347    SupG_Ori  ~~  SupG_Infra     4     4     1  1.101  0.197   0.197
## 329   SupG_Meta  ~~    SupG_Mon     3     3     1  1.086  0.137   0.137
## 144    SupG_Mon ~*~    SupG_Mon     3     3     1  0.934 -0.027  -0.027
## 95  SupG_Bestar ~*~ SupG_Bestar     2     2     1  0.896 -0.018  -0.018
## 343   SupG_Meta  ~~    SupG_Mon     4     4     1  0.857 -0.146  -0.146
## 314   SupG_Meta  ~~    SupG_Ori     2     2     1  0.836  0.050   0.050
## 348    SupG_Ori  ~~ SupG_Bestar     4     4     1  0.835  0.175   0.175
## 346    SupG_Ori  ~~    SupG_Mon     4     4     1  0.835  0.221   0.221
## 197 SupG_Bestar ~*~ SupG_Bestar     4     4     1  0.755 -0.027  -0.027
## 298   SupG_Feed  ~~  SupG_Infra     1     1     1  0.697  0.054   0.054
## 308    SupG_Mon  ~~ SupG_Bestar     1     1     1  0.662 -0.064  -0.064
## 302   SupG_Meta  ~~  SupG_Infra     1     1     1  0.661 -0.041  -0.041
## 306    SupG_Ori  ~~ SupG_Bestar     1     1     1  0.651  0.062   0.062
## 48     SupG_Mon  ~1                 1     1     1  0.637 -0.036  -0.036
## 46    SupG_Meta  ~1                 1     1     1  0.500  0.019   0.019
## 317   SupG_Meta  ~~ SupG_Bestar     2     2     1  0.488  0.031   0.031
## 320    SupG_Ori  ~~ SupG_Bestar     2     2     1  0.483 -0.047  -0.047
## 148   SupG_Meta  ~1                 3     3     1  0.455  0.033   0.033
## 149    SupG_Ori  ~1                 3     3     1  0.444  0.056   0.056
## 315   SupG_Meta  ~~    SupG_Mon     2     2     1  0.435  0.038   0.038
## 342   SupG_Meta  ~~    SupG_Ori     4     4     1  0.408 -0.098  -0.098
## 305    SupG_Ori  ~~  SupG_Infra     1     1     1  0.296 -0.040  -0.040
## 301   SupG_Meta  ~~    SupG_Mon     1     1     1  0.276 -0.036  -0.036
## 198   SupG_Feed  ~1                 4     4     1  0.226  0.026   0.026
## 307    SupG_Mon  ~~  SupG_Infra     1     1     1  0.216  0.034   0.034
## 195    SupG_Mon ~*~    SupG_Mon     4     4     1  0.200  0.010   0.010
## 192   SupG_Feed ~*~   SupG_Feed     4     4     1  0.197 -0.012  -0.012
## 334    SupG_Ori  ~~ SupG_Bestar     3     3     1  0.191 -0.065  -0.065
## 338   SupG_Feed  ~~    SupG_Ori     4     4     1  0.168 -0.086  -0.086
## 324   SupG_Feed  ~~    SupG_Ori     3     3     1  0.161 -0.069  -0.069
## 150    SupG_Mon  ~1                 3     3     1  0.134  0.030   0.030
## 316   SupG_Meta  ~~  SupG_Infra     2     2     1  0.096 -0.013  -0.013
## 40    SupG_Meta ~*~   SupG_Meta     1     1     1  0.093 -0.007  -0.007
## 349    SupG_Mon  ~~  SupG_Infra     4     4     1  0.091  0.058   0.058
## 99     SupG_Mon  ~1                 2     2     1  0.083 -0.012  -0.012
## 93     SupG_Mon ~*~    SupG_Mon     2     2     1  0.077  0.004   0.004
## 321    SupG_Mon  ~~  SupG_Infra     2     2     1  0.068 -0.017  -0.017
## 45    SupG_Feed  ~1                 1     1     1  0.053  0.007   0.007
## 145  SupG_Infra ~*~  SupG_Infra     3     3     1  0.052 -0.010  -0.010
## 311   SupG_Feed  ~~    SupG_Mon     2     2     1  0.050 -0.018  -0.018
## 335    SupG_Mon  ~~  SupG_Infra     3     3     1  0.038  0.027   0.027
## 299   SupG_Feed  ~~ SupG_Bestar     1     1     1  0.020  0.010   0.010
## 323   SupG_Feed  ~~   SupG_Meta     3     3     1  0.020  0.016   0.016
## 199   SupG_Meta  ~1                 4     4     1  0.016  0.006   0.006
## 303   SupG_Meta  ~~ SupG_Bestar     1     1     1  0.010 -0.005  -0.005
## 295   SupG_Feed  ~~   SupG_Meta     1     1     1  0.009  0.006   0.006
## 309   SupG_Feed  ~~   SupG_Meta     2     2     1  0.008  0.004   0.004
## 142   SupG_Meta ~*~   SupG_Meta     3     3     1  0.006 -0.003  -0.003
## 200    SupG_Ori  ~1                 4     4     1  0.006 -0.006  -0.006
## 42     SupG_Mon ~*~    SupG_Mon     1     1     1  0.001 -0.001  -0.001
## 43   SupG_Infra ~*~  SupG_Infra     1     1     1  0.001 -0.001  -0.001
## 44  SupG_Bestar ~*~ SupG_Bestar     1     1     1  0.001 -0.001  -0.001
## 333    SupG_Ori  ~~  SupG_Infra     3     3     1  0.000 -0.002  -0.002
## 350    SupG_Mon  ~~ SupG_Bestar     4     4     1  0.000 -0.001  -0.001
## 204        SupG  ~1                 4     4     1  0.000  0.000   0.000
##     sepc.all sepc.nox
## 102   -0.080   -0.080
## 153    0.153    0.153
## 100   -0.109   -0.109
## 151    0.215    0.215
## 49     0.086    0.086
## 101   -0.083   -0.083
## 152    0.151    0.151
## 51     0.044    0.044
## 332    0.654    0.654
## 202   -0.094   -0.094
## 319   -0.225   -0.225
## 193    1.000    1.000
## 92     1.000    1.000
## 313    0.171    0.171
## 147    0.103    0.103
## 312    0.152    0.152
## 146    1.000    1.000
## 304    0.241    0.241
## 143   -1.000   -1.000
## 310   -0.182   -0.182
## 90    -1.000   -1.000
## 340    0.298    0.298
## 96    -0.034   -0.034
## 39     1.000    1.000
## 296   -0.177   -0.177
## 341    0.278    0.278
## 322   -0.105   -0.105
## 50     0.034    0.034
## 196   -1.000   -1.000
## 300    0.114    0.114
## 201    0.067    0.067
## 297   -0.148   -0.148
## 345   -0.198   -0.198
## 203    0.053    0.053
## 337   -0.229   -0.229
## 41    -1.000   -1.000
## 325   -0.301   -0.301
## 91    -1.000   -1.000
## 98    -0.034   -0.034
## 331   -0.198   -0.198
## 336   -0.268   -0.268
## 328    0.196    0.196
## 47     0.031    0.031
## 141    1.000    1.000
## 326    0.185    0.185
## 330   -0.139   -0.139
## 327   -0.184   -0.184
## 97    -0.021   -0.021
## 344   -0.119   -0.119
## 339   -0.204   -0.204
## 318    0.091    0.091
## 194   -1.000   -1.000
## 94     1.000    1.000
## 347    0.161    0.161
## 329    0.156    0.156
## 144   -1.000   -1.000
## 95    -1.000   -1.000
## 343   -0.148   -0.148
## 314    0.059    0.059
## 348    0.152    0.152
## 346    0.203    0.203
## 197   -1.000   -1.000
## 298    0.054    0.054
## 308   -0.064   -0.064
## 302   -0.041   -0.041
## 306    0.062    0.062
## 48    -0.019   -0.019
## 46     0.014    0.014
## 317    0.032    0.032
## 320   -0.047   -0.047
## 148    0.026    0.026
## 149    0.030    0.030
## 315    0.037    0.037
## 342   -0.107   -0.107
## 305   -0.040   -0.040
## 301   -0.036   -0.036
## 198    0.014    0.014
## 307    0.034    0.034
## 195    1.000    1.000
## 192   -1.000   -1.000
## 334   -0.071   -0.071
## 338   -0.082   -0.082
## 324   -0.071   -0.071
## 150    0.016    0.016
## 316   -0.014   -0.014
## 40    -1.000   -1.000
## 349    0.044    0.044
## 99    -0.006   -0.006
## 93     1.000    1.000
## 321   -0.015   -0.015
## 45     0.004    0.004
## 145   -1.000   -1.000
## 311   -0.015   -0.015
## 335    0.034    0.034
## 299    0.010    0.010
## 323    0.020    0.020
## 199    0.004    0.004
## 303   -0.005   -0.005
## 295    0.006    0.006
## 309    0.005    0.005
## 142   -1.000   -1.000
## 200   -0.003   -0.003
## 42    -1.000   -1.000
## 43    -1.000   -1.000
## 44    -1.000   -1.000
## 333   -0.003   -0.003
## 350   -0.001   -0.001
## 204    0.000    0.000
semTools::reliability(invariance$fit.means)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##             SupG
## alpha     0.8551
## alpha.ord 0.9046
## omega     0.8389
## omega2    0.8389
## omega3    0.8395
## avevar    0.6304
## 
## $`3`
##             SupG
## alpha     0.8629
## alpha.ord 0.9073
## omega     0.8390
## omega2    0.8390
## omega3    0.8362
## avevar    0.6341
## 
## $`1`
##             SupG
## alpha     0.8700
## alpha.ord 0.9117
## omega     0.8674
## omega2    0.8674
## omega3    0.8706
## avevar    0.6488
## 
## $`4`
##             SupG
## alpha     0.8764
## alpha.ord 0.9178
## omega     0.8419
## omega2    0.8419
## omega3    0.8359
## avevar    0.6596
7.1.1.7.5 Checking Latent Differences
partial<-partialInvarianceCat(invariance,type="means",return.fit = F)
partial
## $estimates
##        poolest mean:2   mean:3 mean:1   mean:4 std:2    std:3  std:1    std:4
## SupG~1       0      0 -0.06791 0.1136 -0.02939     0 -0.06719 0.1124 -0.02908
##        diff_std:3 vs. 2 diff_std:1 vs. 2 diff_std:4 vs. 2
## SupG~1         -0.06719           0.1124         -0.02908
## 
## $results
##        free.chi free.df free.p  free.cfi fix.chi fix.df  fix.p   fix.cfi
## SupG~1    5.413       3 0.1439 -0.002861   5.413      3 0.1439 -0.002861
##        wald.chi wald.df wald.p
## SupG~1       NA      NA     NA

7.1.2 Predicting Latent as Factor Scores

data_predict <- predict(fit)
data <- cbind(data,data_predict)
write.csv(data,"data.csv")
#names(data)

8 Item Reponse Theory

8.1 Subsetting Data

data<-data.matrix(TDados[,c(89:94)])

8.2 Descriptives

dsc<-descript(data)

8.3 Alpha - per excluded item

dsc$alpha
##                        value
## All Items             0.8600
## Excluding SupG_Feed   0.8314
## Excluding SupG_Meta   0.8533
## Excluding SupG_Ori    0.8340
## Excluding SupG_Mon    0.8355
## Excluding SupG_Infra  0.8359
## Excluding SupG_Bestar 0.8276

8.4 Correlation Itens

rcor.test(data, method = "kendall")
## 
##             SupG_Feed SupG_Meta SupG_Ori SupG_Mon SupG_Infra SupG_Bestar
## SupG_Feed    *****     0.443     0.497    0.507    0.475      0.485     
## SupG_Meta   <0.001     *****     0.497    0.482    0.358      0.385     
## SupG_Ori    <0.001    <0.001     *****    0.655    0.426      0.492     
## SupG_Mon    <0.001    <0.001    <0.001    *****    0.449      0.470     
## SupG_Infra  <0.001    <0.001    <0.001   <0.001    *****      0.583     
## SupG_Bestar <0.001    <0.001    <0.001   <0.001   <0.001      *****     
## 
## upper diagonal part contains correlation coefficient estimates 
## lower diagonal part contains corresponding p-values

8.5 Empirical Plots - Total Raw Score and Responses

empirical_plot(data, c(1,2,3,4,5,6), smooth = TRUE)

8.6 Firts Constrained Model

fit1<-ltm::grm(data,constrained = T, Hessian=T,IRT.param=T)
fit1
## 
## Call:
## ltm::grm(data = data, constrained = T, IRT.param = T, Hessian = T)
## 
## Coefficients:
##              Extrmt1  Extrmt2  Extrmt3  Extrmt4  Dscrmn
## SupG_Feed     -2.116   -1.448   -0.650    0.798   2.384
## SupG_Meta     -2.728   -1.894   -1.238    0.579   2.384
## SupG_Ori      -3.064   -2.300   -1.609    0.070   2.384
## SupG_Mon      -2.996   -2.359   -1.556    0.126   2.384
## SupG_Infra    -1.827   -1.155   -0.197    0.964   2.384
## SupG_Bestar   -2.185   -1.604   -0.774    0.496   2.384
## 
## Log.Lik: -45613
margins(fit1)
## 
## Call:
## ltm::grm(data = data, constrained = T, IRT.param = T, Hessian = T)
## 
## Fit on the Two-Way Margins
## 
##             SupG_Feed SupG_Meta SupG_Ori SupG_Mon SupG_Infra SupG_Bestar
## SupG_Feed   -         927.15    671.07   531.04   338.59     265.87     
## SupG_Meta   ***       -         580.61   557.31   762.42     599.88     
## SupG_Ori    ***       ***       -        881.66   556.79     403.31     
## SupG_Mon    ***       ***       ***      -        609.26     409.83     
## SupG_Infra  ***       ***       ***      ***      -          909.38     
## SupG_Bestar ***       ***       ***      ***      ***        -          
## 
## '***' denotes pairs of items with lack-of-fit
margins(fit1, "three")
## 
## Call:
## ltm::grm(data = data, constrained = T, IRT.param = T, Hessian = T)
## 
## Fit on the Three-Way Margins
## 
##    Item i Item j Item k (O-E)^2/E    
## 1       1      2      3      3291 ***
## 2       1      2      4      2756 ***
## 3       1      2      5      2747 ***
## 4       1      2      6      2256 ***
## 5       1      3      4      2399 ***
## 6       1      3      5      1875 ***
## 7       1      3      6      1575 ***
## 8       1      4      5      1716 ***
## 9       1      4      6      1474 ***
## 10      1      5      6      1659 ***
## 11      2      3      4      5560 ***
## 12      2      3      5      2629 ***
## 13      2      3      6      2188 ***
## 14      2      4      5      2422 ***
## 15      2      4      6      2029 ***
## 16      2      5      6      3473 ***
## 17      3      4      5      2610 ***
## 18      3      4      6      2213 ***
## 19      3      5      6      2213 ***
## 20      4      5      6      2421 ***
## 
## '***' denotes triplets of items with lack-of-fit

8.7 Unconstrained Model

fit2<-grm(data,constrained = F, Hessian=T,IRT.param=T)
fit2
## 
## Call:
## grm(data = data, constrained = F, IRT.param = T, Hessian = T)
## 
## Coefficients:
##              Extrmt1  Extrmt2  Extrmt3  Extrmt4  Dscrmn
## SupG_Feed     -2.110   -1.444   -0.647    0.809   2.370
## SupG_Meta     -3.147   -2.162   -1.390    0.669   1.812
## SupG_Ori      -2.736   -2.062   -1.456    0.056   3.204
## SupG_Mon      -2.710   -2.139   -1.423    0.110   3.073
## SupG_Infra    -1.914   -1.206   -0.199    1.023   2.118
## SupG_Bestar   -2.169   -1.595   -0.770    0.502   2.377
## 
## Log.Lik: -45394
margins(fit2)
## 
## Call:
## grm(data = data, constrained = F, IRT.param = T, Hessian = T)
## 
## Fit on the Two-Way Margins
## 
##             SupG_Feed SupG_Meta SupG_Ori SupG_Mon SupG_Infra SupG_Bestar
## SupG_Feed   -          713.75    726.12   553.25   318.87     266.27    
## SupG_Meta   ***       -          587.88   522.35   385.22     360.88    
## SupG_Ori    ***       ***       -         648.21   611.74     459.19    
## SupG_Mon    ***       ***       ***      -         631.18     507.61    
## SupG_Infra  ***       ***       ***      ***      -          1016.62    
## SupG_Bestar ***       ***       ***      ***      ***        -          
## 
## '***' denotes pairs of items with lack-of-fit
margins(fit2, "three")
## 
## Call:
## grm(data = data, constrained = F, IRT.param = T, Hessian = T)
## 
## Fit on the Three-Way Margins
## 
##    Item i Item j Item k (O-E)^2/E    
## 1       1      2      3      2282 ***
## 2       1      2      4      2107 ***
## 3       1      2      5      1649 ***
## 4       1      2      6      1421 ***
## 5       1      3      4      2849 ***
## 6       1      3      5      2397 ***
## 7       1      3      6      2007 ***
## 8       1      4      5      2002 ***
## 9       1      4      6      2026 ***
## 10      1      5      6      1728 ***
## 11      2      3      4      2352 ***
## 12      2      3      5      1825 ***
## 13      2      3      6      1577 ***
## 14      2      4      5      1826 ***
## 15      2      4      6      1782 ***
## 16      2      5      6      2090 ***
## 17      3      4      5      2469 ***
## 18      3      4      6      2505 ***
## 19      3      5      6      3414 ***
## 20      4      5      6      3695 ***
## 
## '***' denotes triplets of items with lack-of-fit

8.8 Comparisons Constrained and Uconstrained

anova(fit1,fit2)
## 
##  Likelihood Ratio Table
##        AIC   BIC log.Lik    LRT df p.value
## fit1 91276 91449  -45613                  
## fit2 90848 91056  -45394 438.16  5  <0.001

8.9 Unconstrained Model

8.9.1 Coeficients

coef(fit2, simplify = TRUE,standardized=T,prob=T,order=T)
##             Extrmt1 Extrmt2 Extrmt3 Extrmt4 Dscrmn
## SupG_Feed    -2.110  -1.444  -0.647   0.809  2.370
## SupG_Meta    -3.147  -2.162  -1.390   0.669  1.812
## SupG_Ori     -2.736  -2.062  -1.456   0.056  3.204
## SupG_Mon     -2.710  -2.139  -1.423   0.110  3.073
## SupG_Infra   -1.914  -1.206  -0.199   1.023  2.118
## SupG_Bestar  -2.169  -1.595  -0.770   0.502  2.377

8.9.2 Information

information(fit2, c(-4, 4), items = c(1:6))
## 
## Call:
## grm(data = data, constrained = F, IRT.param = T, Hessian = T)
## 
## Total Information = 44.07
## Information in (-4, 4) = 43.55 (98.81%)
## Based on items 1, 2, 3, 4, 5, 6

8.10 Item Response Category Characteristic Curves

op <- par(mfrow = c(2,2))
plot(fit2, lwd = 2, legend = TRUE, ncol = 2)

8.10.1 Item Information Curve

plot(fit2, type = "IIC")

8.10.2 Item Information Curve

plot(fit2, type = "IIC",item=0,zrange = c(-4, 4))

8.10.3 Item Information Curve - Standard Error of Measurement

vals <- plot(fit2, type = "IIC", items = 0, plot = FALSE)
plot(vals[,1], 1 / sqrt(vals[, 2]), type = "l", lwd = 2,
     xlab = "Ability", ylab = "Standard Error", 
     main = "Standard Error of Measurement")

8.10.4 Operational Characteristic Curve itens (upper)

op <- par(mfrow = c(2,2))
plot(fit2, type = "OCCu")

8.10.5 Operational Characteristic Curve itens (lower)

op <- par(mfrow = c(2,2))
plot(fit2,type='OCCl')

8.10.6 Person Parameters Factor Score

f.scores<-ltm::factor.scores(fit2)
plot(f.scores, main = "KDE for Person Parameters")