##R語言資料分析期中考:
##輸入學號:1130730205 和名字:嘉威
##壹、自建資料與圖表(請見社團範例)
#(1-1)建立一個data frame,包括brand品牌與market_share市站率
brand <- c("sansung", "apple","oppo")
market_share<- c(31.7,22.8,9.3)
data <- data.frame(brand,market_share)
#(1-2)畫長條圖
barplot(sort(data$market_share, decreasing = TRUE),main = "Global Smartphone Market Share", sub = "By Willy ", names.arg = data$brand,xlab = "brand",ylab = "market_share",col =c("red","blue","black"))

#貳、比較gender 性別與lunch 營養午餐類型
#讀入外部資料
sp <- read.csv(file = "StudentsPerformance.csv", stringsAsFactors = TRUE)
summary(sp)
## gender race.ethnicity parental.level.of.education lunch
## female:518 group A: 89 associate's degree:222 free/reduced:355
## male :482 group B:190 bachelor's degree :118 standard :645
## group C:319 high school :196
## group D:262 master's degree : 59
## group E:140 some college :226
## some high school :179
## test.preparation.course math.score reading.score writing.score
## completed:358 Min. : 0.00 Min. : 17.00 Min. : 10.00
## none :642 1st Qu.: 57.00 1st Qu.: 59.00 1st Qu.: 57.75
## Median : 66.00 Median : 70.00 Median : 69.00
## Mean : 66.09 Mean : 69.17 Mean : 68.05
## 3rd Qu.: 77.00 3rd Qu.: 79.00 3rd Qu.: 79.00
## Max. :100.00 Max. :100.00 Max. :100.00
#欄位名稱------------------------------------------
# gender 性別
# race.ethnicity 種族分群
# parental.level.of.education 父母教育程度
# lunch 營養午餐類型(free/reduced免費或減免餐費,standard為一般類別)
# test.preparation.course
# math.score 數學成績
# reading.score 閱讀成績
# writing.score 寫作成績
#(2-1)計算不同gender 性別與lunch 營養午餐人數的比例(交叉分析表)
t <- table(sp$gender,sp$lunch)
t
##
## free/reduced standard
## female 189 329
## male 166 316
p.t <- prop.table(t)
p.t
##
## free/reduced standard
## female 0.189 0.329
## male 0.166 0.316
p.t <- p.t*100
#(2-2)呈現gender 性別與lunch 營養午餐人數的圖表
rownames(p.t)
## [1] "female" "male"
label <- rownames(p.t)
barplot(p.t,
beside =TRUE,
legend.text =label,
col = c(11,28),
main = "Gender/Lunch",
sub = "By Willy")

#參、math.score 數學成績的直方圖與盒狀圖
par(mfrow = c(1,2))
hist(sp$math.score,col=c(11),main="Math Score Hist",sub="By Willy")
boxplot(sp$math.score,col=c(11),main="Math Score Boxlot",sub="By Willy")

#肆、math.score 數學成績的最大值、最小值、平均數、中位數、標準差
max(sp$math.score)
## [1] 100
min(sp$math.score)
## [1] 0
mean(sp$math.score)
## [1] 66.089
median(sp$math.score)
## [1] 66
sd(sp$math.score)
## [1] 15.16308
#五、呈現以下兩組關係的散佈圖
#(1)math.score 數學成績與與writing.score 寫作成績
par(mfrow = c(1,2))#(係數,欄數)
plot(sp$math.score,sp$writing.score,col="blue")
#(2)reading.score 閱讀成績與writing.score 寫作成績
plot(sp$reading.score,sp$writing.score,col="red")

#六、計算以下兩組關係的相關係數
#(1)reading.score 閱讀成績與math.score 數學成績
cor(sp$reading.score,sp$math.score)
## [1] 0.8175797
#(2)writing.score 寫作成績與math.score 數學成績
cor(sp$writing.score,sp$math.score)
## [1] 0.802642
#七、計算不同gender 性別的math.score 數學成績並畫長條圖
par(mfrow = c(1,1))
x<-tapply(sp$math.score,sp$gender,mean)
x
## female male
## 63.63320 68.72822
barplot(sort(x,decreasing = TRUE),
main = "gender",
xlab="gender",
ylab="grade",
beside =TRUE ,
col =c(11:30),
sub = "Willy")
