attr_names <- EpiModelWHAMPDX::attr_names
suppressPackageStartupMessages(library(tidyverse))
suppressPackageStartupMessages(library(magrittr))
suppressPackageStartupMessages(library(cowplot))
suppressPackageStartupMessages(library(ggrepel))
library(EpiModelWHAMPDX)
sim_dat <- readRDS("../../EpiModel/AE/sim_epimodel3/sim_on_2021-04-02_at_2033.rds")
options(dplyr.summarise.inform = FALSE)
knitr::opts_chunk$set(echo = TRUE, message = FALSE,
warning = FALSE, fig.width = 8)
print_many_plots <- function(testing_plots, num_hash = 3,
targ_df = EpiModelWHAMPDX::WHAMP.targs){
big_temp <- paste0(c(rep("#", num_hash),
" %s {.tabset .tabset-fade .tabset-pills} ", "
", "
"), collapse = "")
sml_temp <- paste0(c("\n\n", rep("#", num_hash + 1), " %s ", "
", "
"), collapse = "")
for (ms_idx in 1:length(testing_plots)) {
sub_plot_info <- testing_plots[[ms_idx]]
if (is.null(sub_plot_info$plt_type)) {
plt_type <- "line"
}else{plt_type <- sub_plot_info$plt_type}
meas_data <- make_epi_plot_data(sim_dat, sub_plot_info)
if (!is.null(sub_plot_info$sec_title)) {
this_meas_name <- sub_plot_info$sec_title
}else{
this_meas_name <- sub_plot_info$plot_name
}
cat(sprintf(big_temp, this_meas_name))
this_targ <- targ_df %>%
filter(sub_plot_info$name == measure)
attrs_present <- unique(meas_data$epi_data$cat_name)
for (ct_idx in seq(attrs_present)) {
this_cat <- attrs_present[ct_idx]
cat(sprintf(sml_temp, this_cat))
print(EpiModelWHAMPDX::plot_epi(
meas_data, this_cat, this_targ,
plot_type = plt_type, year_range = c(1980, 2030)))
cat("\n\n")
}
}
}
cur_targs <- readRDS("../../Data/EpiModelSims/WHAMP.dx.targs.rds")
Model Validation
Data Validation
Participation in PrEP Drug Assitance Program (PDAP)
num.on.pdap <- list(
pdap.num = list(name = "num.pdap",
sec_title = "Number",
plot_name = "Number in PDAP",
plot_cap = "Among individuals taking PrEP",
plot_ylab = "Count",
plt_type = "line",
vars = c("num.pdap."),
sum_fun = function(x) { x }
),
pdap.prop = list(name = "prop.pdap",
sec_title = "Proportion of those on PrEP",
plot_name = "Proportion on PDAP",
plot_cap = "Among individuals taking PrEP",
plot_ylab = "Proportion",
plt_type = "line",
vars = c("num.pdap.", "neg.prep.num."),
sum_fun = function(x, y) { x / y }
),
pdap.prop = list(name = "prop.neg.pdap",
sec_title = "Proportion of HIV negatives",
plot_name = "Proportion on PDAP",
plot_cap = "Among HIV - individuals",
plot_ylab = "Proportion",
plt_type = "line",
vars = c("num.pdap.", "num.", "i.num."),
sum_fun = function(x, y, z) { x / (y - z) }
)
)
print_many_plots(num.on.pdap, targ_df = cur_targs, num_hash = 3)
Number
ovr

race

region

age.grp

snap5

insurance

Proportion of those on PrEP
ovr

race

region

age.grp

snap5

insurance

Proportion of HIV negatives
ovr

race

region

age.grp

snap5

Participation in ART Drug Assitance Program (ADAP)
num.on.adap <- list(
adap.num = list(name = "num.adap",
sec_title = "Number",
plot_name = "Number in ADAP",
plot_cap = "Among individuals taking PrEP",
plot_ylab = "Count",
plt_type = "line",
vars = c("num.adap."),
sum_fun = function(x) { x }
),
adap.prop = list(name = "prop.adap",
sec_title = "Proportion of ART users in ADAP",
plot_name = "Proportion in ADAP",
plot_cap = "Among ART users",
plot_ylab = "Proportion",
plt_type = "line",
vars = c("num.adap.", "tx.i.num."),
sum_fun = function(x, y) { x / y }
)#,
# adap.prop = list(name = "prop.adap.pos",
# sec_title = "Proportion of diagnosed in ADAP",
# plot_name = "Proportion in ADAP",
# plot_cap = "Among diagnosed individuals",
# plot_ylab = "Proportion",
# plt_type = "line",
# vars = c("num.adap.", "diag.i.num."),
# sum_fun = function(x, y) { x / y }
# )
)
print_many_plots(num.on.adap, targ_df = cur_targs, num_hash = 3)
Number
ovr

race

region

age.grp

snap5

insurance

Proportion of ART users in ADAP
ovr

race

region

age.grp

snap5

insurance
