South ural state university, Chelyabinsk, Russian federation
#Import
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2 3.3.2 v fma 2.4
## v forecast 8.13 v expsmooth 2.3
##
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package: markovchain
## Version: 0.8.5-3
## Date: 2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
library(ascii)
library(pander)
##
## Attaching package: 'pander'
## The following object is masked from 'package:ascii':
##
## Pandoc
##Global vriable##
Full_original_data <- read.csv("data.csv") # path of your data ( time series data)
original_data<-Full_original_data$Brazil
y_lab <- "Cumulative Covid 19 Infection cases in Brazil" # input name of data
Actual_date_interval <- c("2020/01/03","2021/01/10")
Forecast_date_interval <- c("2021/01/11","2021/01/17")
validation_data_days <-7
Number_Neural<-5 # Number of Neural For model NNAR Model
NNAR_Model<- FALSE #create new model (TRUE/FALSE)
frequency<-"days"
Population <-213376438 # population in Brazil for SIR Model
country.name <- "Brazil"
# Data Preparation & calculate some of statistics measures
summary(original_data) # Summary your time series
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 9362 1613170 2549528 4992806 8013708
# calculate standard deviation
data.frame(kurtosis=kurtosis(original_data)) # calculate Cofficient of kurtosis
## kurtosis
## 1 1.773888
data.frame(skewness=skewness(original_data)) # calculate Cofficient of skewness
## skewness
## 1 0.5166867
data.frame(Standard.deviation =sd(original_data))
## Standard.deviation
## 1 2626118
#processing on data (input data)
rows <- NROW(original_data) # calculate number of rows in time series (number of days)
training_data<-original_data[1:(rows-validation_data_days)] # Training data
testing_data<-original_data[(rows-validation_data_days+1):rows] #testing data
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency) #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency) #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) #calculate number of days that you want to forecasting
validation_dates<-tail(AD,validation_data_days) # select validation_dates
validation_data_by_name<-weekdays(validation_dates) # put names of validation dates
forecasting_data_by_name<-weekdays(FD) # put names of Forecasting dates
#NNAR Model
if(NNAR_Model==TRUE){
data_series<-ts(training_data)
model_NNAR<-nnetar(data_series, size = Number_Neural)
saveRDS(model_NNAR, file = "model_NNAR.RDS")
my_model <- readRDS("model_NNAR.RDS")
accuracy(model_NNAR) # accuracy on training data #Print Model Parameters
model_NNAR
}
if(NNAR_Model==FALSE){
data_series<-ts(training_data)
#model_NNAR<-nnetar(data_series, size = Number_Numeral)
model_NNAR <- readRDS("model_NNAR.RDS")
accuracy(model_NNAR) # accuracy on training data #Print Model Parameters
model_NNAR
}
## Series: data_series
## Model: NNAR(1,5)
## Call: nnetar(y = data_series, size = 5)
##
## Average of 20 networks, each of which is
## a 1-5-1 network with 16 weights
## options were - linear output units
##
## sigma^2 estimated as 90425403
# Testing Data Evaluation
forecasting_NNAR <- forecast(model_NNAR, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_NNAR$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using NNAR Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using NNAR Model for ==> Cumulative Covid 19 Infection cases in Brazil"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_Mean_All_NNAR<-round(mean(MAPE_Per_Day),3)
MAPE_NNAR<-paste(round(MAPE_Per_Day,3),"%")
MAPE_NNAR_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in NNAR Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in NNAR Model for ==> Cumulative Covid 19 Infection cases in Brazil"
paste(MAPE_Mean_All,"%")
## [1] "0.511 % MAPE 7 days Cumulative Covid 19 Infection cases in Brazil %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in NNAR Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in NNAR Model for ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(date_NNAR=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_NNAR=validation_forecast,MAPE_NNAR_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_NNAR | validation_data_by_name | actual_data | forecasting_NNAR | MAPE_NNAR_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-01-04 | Monday | 7716405.00 | 7737748.70 | 0.277 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-01-05 | Tuesday | 7733746.00 | 7773937.77 | 0.52 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-01-06 | Wednesday | 7753752.00 | 7809089.02 | 0.714 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-01-07 | Thursday | 7810400.00 | 7843152.57 | 0.419 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 5 | 2021-01-08 | Friday | 7873830.00 | 7876085.32 | 0.029 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 6 | 2021-01-09 | Saturday | 7961673.00 | 7907851.25 | 0.676 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 7 | 2021-01-10 | Sunday | 8013708.00 | 7938421.70 | 0.939 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+
## | | FD | forecating_date | forecasting_by_NNAR |
## +===+============+=================+=====================+
## | 1 | 2021-01-11 | Monday | 7967775.37 |
## +---+------------+-----------------+---------------------+
## | 2 | 2021-01-12 | Tuesday | 7995898.34 |
## +---+------------+-----------------+---------------------+
## | 3 | 2021-01-13 | Wednesday | 8022783.83 |
## +---+------------+-----------------+---------------------+
## | 4 | 2021-01-14 | Thursday | 8048432.01 |
## +---+------------+-----------------+---------------------+
## | 5 | 2021-01-15 | Friday | 8072849.55 |
## +---+------------+-----------------+---------------------+
## | 6 | 2021-01-16 | Saturday | 8096049.24 |
## +---+------------+-----------------+---------------------+
## | 7 | 2021-01-17 | Sunday | 8118049.43 |
## +---+------------+-----------------+---------------------+
plot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

##bats model
# Data Modeling
data_series<-ts(training_data) # make your data to time series
autoplot(data_series ,xlab=paste ("Time in", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 641.5894 8698.253 5471.335 NaN Inf 0.2600465 0.01545096
# Print Model Parameters
model_bats
## BATS(1, {0,0}, 1, -)
##
## Call: bats(y = data_series)
##
## Parameters
## Alpha: 1.507906
## Beta: 0.1643973
## Damping Parameter: 1
##
## Seed States:
## [,1]
## [1,] -45.610897
## [2,] 8.731625
##
## Sigma: 8698.253
## AIC: 8833.292
#ploting BATS Model
plot(model_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "))

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Cumulative Covid 19 Infection cases in Brazil"
MAPE_Mean_All.bats_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.bats<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Cumulative Covid 19 Infection cases in Brazil"
paste(MAPE_Mean_All.bats,"%")
## [1] "0.412 % MAPE 7 days Cumulative Covid 19 Infection cases in Brazil %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_bats | validation_data_by_name | actual_data | forecasting_bats | MAPE_bats_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-01-04 | Monday | 7716405.00 | 7726003.15 | 0.124 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-01-05 | Tuesday | 7733746.00 | 7764721.40 | 0.401 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-01-06 | Wednesday | 7753752.00 | 7803439.66 | 0.641 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-01-07 | Thursday | 7810400.00 | 7842157.92 | 0.407 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 5 | 2021-01-08 | Friday | 7873830.00 | 7880876.18 | 0.089 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 6 | 2021-01-09 | Saturday | 7961673.00 | 7919594.43 | 0.529 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 7 | 2021-01-10 | Sunday | 8013708.00 | 7958312.69 | 0.691 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | | FD | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+============+============+============+============+
## | 1 | 2021-01-11 | Monday | 7997030.95 | 7931477.54 | 7896775.66 | 7931477.54 | 7896775.66 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 2 | 2021-01-12 | Tuesday | 8035749.21 | 7963033.40 | 7924539.98 | 7963033.40 | 7924539.98 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 3 | 2021-01-13 | Wednesday | 8074467.46 | 7994488.55 | 7952150.26 | 7994488.55 | 7952150.26 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 4 | 2021-01-14 | Thursday | 8113185.72 | 8025829.65 | 7979586.15 | 8025829.65 | 7979586.15 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 5 | 2021-01-15 | Friday | 8151903.98 | 8057047.93 | 8006834.17 | 8057047.93 | 8006834.17 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 6 | 2021-01-16 | Saturday | 8190622.24 | 8088137.56 | 8033885.45 | 8088137.56 | 8033885.45 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 7 | 2021-01-17 | Sunday | 8229340.49 | 8119094.80 | 8060734.26 | 8119094.80 | 8060734.26 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

## TBATS Model
# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE, seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 633.1078 8567.274 5667.245 NaN Inf 0.2693579 0.01600741
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
##
## Call: NULL
##
## Parameters
## Alpha: 1.514693
## Beta: 0.1664232
## Damping Parameter: 1
## Gamma-1 Values: -0.002481143
## Gamma-2 Values: 0.004364751
##
## Seed States:
## [,1]
## [1,] 48.43941
## [2,] -34.39969
## [3,] -699.63011
## [4,] 454.63022
## [5,] -767.45649
## [6,] 85.79901
##
## Sigma: 8567.274
## AIC: 8834.155
plot(model_TBATS,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using TBATS Model for ==> Cumulative Covid 19 Infection cases in Brazil"
MAPE_Mean_All.TBATS_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.TBATS<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in TBATS Model for ==> Cumulative Covid 19 Infection cases in Brazil"
paste(MAPE_Mean_All.TBATS,"%")
## [1] "0.407 % MAPE 7 days Cumulative Covid 19 Infection cases in Brazil %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in TBATS Model for ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | | date_TBATS | validation_data_by_name | actual_data | forecasting_TBATS | MAPE_TBATS_Model |
## +===+============+=========================+=============+===================+==================+
## | 1 | 2021-01-04 | Monday | 7716405.00 | 7723780.03 | 0.096 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 2 | 2021-01-05 | Tuesday | 7733746.00 | 7763074.33 | 0.379 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 3 | 2021-01-06 | Wednesday | 7753752.00 | 7804200.30 | 0.651 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 4 | 2021-01-07 | Thursday | 7810400.00 | 7841213.62 | 0.395 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 5 | 2021-01-08 | Friday | 7873830.00 | 7879535.59 | 0.072 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 6 | 2021-01-09 | Saturday | 7961673.00 | 7919130.33 | 0.534 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 7 | 2021-01-10 | Sunday | 8013708.00 | 7955584.76 | 0.725 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | | FD | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+======================+============+============+============+============+
## | 1 | 2021-01-11 | Monday | 7994879.05 | 7949801.42 | 7925938.77 | 8039956.68 | 8063819.34 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 2 | 2021-01-12 | Tuesday | 8036005.02 | 7988031.15 | 7962635.33 | 8083978.88 | 8109374.71 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 3 | 2021-01-13 | Wednesday | 8073018.34 | 8022313.41 | 7995471.84 | 8123723.28 | 8150564.85 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 4 | 2021-01-14 | Thursday | 8111340.32 | 8058038.91 | 8029822.85 | 8164641.72 | 8192857.78 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 5 | 2021-01-15 | Friday | 8150935.05 | 8095203.17 | 8065700.49 | 8206666.94 | 8236169.62 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 6 | 2021-01-16 | Saturday | 8187389.48 | 8129344.01 | 8098616.60 | 8245434.94 | 8276162.36 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 7 | 2021-01-17 | Sunday | 8226683.78 | 8166393.92 | 8134478.39 | 8286973.64 | 8318889.16 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph2

## Holt's linear trend
# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -467.1298 10003.29 6482.739 Inf Inf 0.3081175 0.3828341
# Print Model Parameters
summary(model_holt$model)
## Holt's method
##
## Call:
## holt(y = data_series, h = N_forecasting_days + validation_data_days,
##
## Call:
## lambda = "auto")
##
## Box-Cox transformation: lambda= 0.4566
##
## Smoothing parameters:
## alpha = 0.9999
## beta = 0.1548
##
## Initial states:
## l = -3.0736
## b = -1.0619
##
## sigma: 3.6118
##
## AIC AICc BIC
## 3115.860 3116.026 3135.387
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -467.1298 10003.29 6482.739 Inf Inf 0.3081175 0.3828341
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using holt Model for ==> Cumulative Covid 19 Infection cases in Brazil"
MAPE_Mean_All.Holt_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.Holt<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in holt Model for ==> Cumulative Covid 19 Infection cases in Brazil"
paste(MAPE_Mean_All.Holt,"%")
## [1] "0.492 % MAPE 7 days Cumulative Covid 19 Infection cases in Brazil %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in holt Model for ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_holt | validation_data_by_name | actual_data | forecasting_holt | MAPE_holt_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-01-04 | Monday | 7716405.00 | 7741394.38 | 0.324 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-01-05 | Tuesday | 7733746.00 | 7782326.11 | 0.628 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-01-06 | Wednesday | 7753752.00 | 7823375.16 | 0.898 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-01-07 | Thursday | 7810400.00 | 7864541.59 | 0.693 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 5 | 2021-01-08 | Friday | 7873830.00 | 7905825.45 | 0.406 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 6 | 2021-01-09 | Saturday | 7961673.00 | 7947226.79 | 0.181 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 7 | 2021-01-10 | Sunday | 8013708.00 | 7988745.66 | 0.311 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | | FD | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+============+============+============+============+
## | 1 | 2021-01-11 | Monday | 8030382.12 | 7913810.37 | 7852475.80 | 8147880.74 | 8210456.35 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 2 | 2021-01-12 | Tuesday | 8072136.22 | 7941483.73 | 7872789.22 | 8203948.06 | 8274194.89 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 3 | 2021-01-13 | Wednesday | 8114008.02 | 7968837.75 | 7892565.43 | 8260603.55 | 8338784.23 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 4 | 2021-01-14 | Thursday | 8155997.57 | 7995867.28 | 7911797.46 | 8317854.72 | 8404236.76 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 5 | 2021-01-15 | Friday | 8198104.91 | 8022570.64 | 7930483.59 | 8375705.64 | 8470559.60 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 6 | 2021-01-16 | Saturday | 8240330.11 | 8048948.29 | 7948625.43 | 8434158.21 | 8537756.56 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 7 | 2021-01-17 | Sunday | 8282673.21 | 8075002.05 | 7966226.65 | 8493213.02 | 8605829.43 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph3

#Auto arima model
##################
require(tseries) # need to install tseries tj test Stationarity in time series
paste ("tests For Check Stationarity in series ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series ==> Cumulative Covid 19 Infection cases in Brazil"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: data_series
## KPSS Level = 5.9017, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series) # applay pp test
##
## Phillips-Perron Unit Root Test
##
## data: data_series
## Dickey-Fuller Z(alpha) = -1.7739, Truncation lag parameter = 5, p-value
## = 0.9751
## alternative hypothesis: stationary
adf.test(data_series) # applay adf test
##
## Augmented Dickey-Fuller Test
##
## data: data_series
## Dickey-Fuller = -3.1481, Lag order = 7, p-value = 0.09694
## alternative hypothesis: stationary
ndiffs(data_series) # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main = "1nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in ==> Cumulative Covid 19 Infection cases in Brazil"
kpss.test(diff1_x1) # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff1_x1
## KPSS Level = 4.3318, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1) # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff1_x1
## Dickey-Fuller Z(alpha) = -83.636, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff1_x1) # applay adf test after taking first differences
##
## Augmented Dickey-Fuller Test
##
## data: diff1_x1
## Dickey-Fuller = -1.3113, Lag order = 7, p-value = 0.8676
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab ,main = "2nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Cumulative Covid 19 Infection cases in Brazil"
kpss.test(diff2_x1) # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff2_x1
## KPSS Level = 0.03997, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1) # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff2_x1
## Dickey-Fuller Z(alpha) = -217.44, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1) # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff2_x1
## Dickey-Fuller = -8.8838, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp")) #applaying auto arima
##
## ARIMA(0,2,0) : 7781.254
## ARIMA(0,2,1) : 7783.125
## ARIMA(0,2,2) : 7666.805
## ARIMA(0,2,3) : 7667.607
## ARIMA(0,2,4) : 7647.428
## ARIMA(0,2,5) : 7630.406
## ARIMA(1,2,0) : 7783.215
## ARIMA(1,2,1) : 7699.599
## ARIMA(1,2,2) : 7668.17
## ARIMA(1,2,3) : 7669.045
## ARIMA(1,2,4) : 7632.891
## ARIMA(2,2,0) : 7753.15
## ARIMA(2,2,1) : 7645.097
## ARIMA(2,2,2) : 7585.275
## ARIMA(2,2,3) : Inf
## ARIMA(3,2,0) : 7740.24
## ARIMA(3,2,1) : 7631.318
## ARIMA(3,2,2) : 7572.113
## ARIMA(4,2,0) : 7682.875
## ARIMA(4,2,1) : 7574.361
## ARIMA(5,2,0) : 7553.166
##
##
##
## Best model: ARIMA(5,2,0)
model1 # show the result of autoarima
## Series: data_series
## ARIMA(5,2,0)
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5
## -0.3625 -0.5278 -0.4630 -0.4729 -0.5639
## s.e. 0.0439 0.0409 0.0438 0.0413 0.0444
##
## sigma^2 estimated as 55286712: log likelihood=-3770.47
## AIC=7552.93 AICc=7553.17 BIC=7576.33
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE)
{
order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
m <- order[7]
result <- paste("ARIMA(", order[1], ",", order[2], ",",
order[3], ")", sep = "")
if (m > 1 && sum(order[4:6]) > 0) {
result <- paste(result, "(", order[4], ",", order[5],
",", order[6], ")[", m, "]", sep = "")
}
if (padding && m > 1 && sum(order[4:6]) == 0) {
result <- paste(result, " ", sep = "")
if (m <= 9) {
result <- paste(result, " ", sep = "")
}
else if (m <= 99) {
result <- paste(result, " ", sep = "")
}
else {
result <- paste(result, " ", sep = "")
}
}
if (!is.null(object$xreg)) {
if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
result <- paste(result, "with drift ")
}
else {
result <- paste("Regression with", result, "errors")
}
}
else {
if (is.element("constant", names(object$coef)) || is.element("intercept",
names(object$coef))) {
result <- paste(result, "with non-zero mean")
}
else if (order[2] == 0 && order[5] == 0) {
result <- paste(result, "with zero mean ")
}
else {
result <- paste(result, " ")
}
}
if (!padding) {
result <- gsub("[ ]*$", "", result)
}
return(result)
}
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 5 2 0
strtoi(bestmodel[3])
## [1] 0
#2. Using ACF and PACF Function
#par(mfrow=c(1,2)) # Code for making two plot in one graph
acf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" ") , ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast) # install library forecast
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima for forecasting
x1_model1 # Show result of best model of auto arima
##
## Call:
## arima(x = data_series, order = c(bestmodel))
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5
## -0.3625 -0.5278 -0.4630 -0.4729 -0.5639
## s.e. 0.0439 0.0409 0.0438 0.0413 0.0444
##
## sigma^2 estimated as 54529360: log likelihood = -3770.47, aic = 7552.93
paste ("accuracy of autoarima Model For ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For ==> Cumulative Covid 19 Infection cases in Brazil"
accuracy(x1_model1) # aacuracy of best model from auto arima
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 332.0835 7364.251 4605.471 1.111238 3.168168 0.218893 -0.2665656
x1_model1$x # show result of best model from auto arima
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab) # checkresiduals from best model from using auto arima

##
## Ljung-Box test
##
## data: Residuals from ARIMA(5,2,0)
## Q* = 89.025, df = 5, p-value < 2.2e-16
##
## Model df: 5. Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for ==> Cumulative Covid 19 Infection cases in Brazil"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box") # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
##
## Box-Ljung test
##
## data: x1_model1$residuals^2
## X-squared = 134.44, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals) # Do test jarque.bera.test
##
## Jarque Bera Test
##
## data: x1_model1$residuals
## X-squared = 219, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model
lines(fitted(x1_model1), col='black')

#Test data
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Cumulative Covid 19 Infection cases in Brazil"
MAPE_Mean_All.ARIMA_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.ARIMA<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Cumulative Covid 19 Infection cases in Brazil"
paste(MAPE_Mean_All.ARIMA,"%")
## [1] "0.262 % MAPE 7 days Cumulative Covid 19 Infection cases in Brazil %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)), type = "rest")
##
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | | date_auto.arima | validation_data_by_name | actual_data | forecasting_auto.arima | MAPE_auto.arima_Model |
## +===+=================+=========================+=============+========================+=======================+
## | 1 | 2021-01-04 | Monday | 7716405.00 | 7718451.95 | 0.027 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 2 | 2021-01-05 | Tuesday | 7733746.00 | 7735149.11 | 0.018 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 3 | 2021-01-06 | Wednesday | 7753752.00 | 7771917.04 | 0.234 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 4 | 2021-01-07 | Thursday | 7810400.00 | 7819726.72 | 0.119 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 5 | 2021-01-08 | Friday | 7873830.00 | 7874809.65 | 0.012 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 6 | 2021-01-09 | Saturday | 7961673.00 | 7916489.05 | 0.568 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 7 | 2021-01-10 | Sunday | 8013708.00 | 7945247.80 | 0.854 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | | FD | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+===========================+============+============+============+============+
## | 1 | 2021-01-11 | Monday | 7965856.26 | 7909825.60 | 7880164.76 | 8021886.91 | 8051547.75 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 2 | 2021-01-12 | Tuesday | 7992776.99 | 7927402.66 | 7892795.59 | 8058151.32 | 8092758.39 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 3 | 2021-01-13 | Wednesday | 8029930.45 | 7955173.09 | 7915598.94 | 8104687.80 | 8144261.95 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 4 | 2021-01-14 | Thursday | 8077485.83 | 7993653.92 | 7949275.99 | 8161317.74 | 8205695.67 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 5 | 2021-01-15 | Friday | 8124088.71 | 8032013.92 | 7983272.47 | 8216163.50 | 8264904.94 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 6 | 2021-01-16 | Saturday | 8162420.50 | 8062061.14 | 8008934.11 | 8262779.86 | 8315906.89 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 7 | 2021-01-17 | Sunday | 8191038.27 | 8081370.33 | 8023315.63 | 8300706.21 | 8358760.91 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph4

MAPE_Mean_All.ARIMA
## [1] "0.262 % MAPE 7 days Cumulative Covid 19 Infection cases in Brazil"
# SIR Model
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.012239536 0.006763319
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
MAPE_Mean_SIR<-round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3)
## forecasting by SIR model
Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.005859088 0.000000000
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR <-data.frame(out)
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)), type = "rest")
##
## +---+------------+-----------------+--------------------+
## | | FD | forecating_date | forecasting_by_SIR |
## +===+============+=================+====================+
## | 1 | 2021-01-11 | Monday | 7716405.00 |
## +---+------------+-----------------+--------------------+
## | 2 | 2021-01-12 | Tuesday | 7760099.84 |
## +---+------------+-----------------+--------------------+
## | 3 | 2021-01-13 | Wednesday | 7804032.71 |
## +---+------------+-----------------+--------------------+
## | 4 | 2021-01-14 | Thursday | 7848204.81 |
## +---+------------+-----------------+--------------------+
## | 5 | 2021-01-15 | Friday | 7892617.18 |
## +---+------------+-----------------+--------------------+
## | 6 | 2021-01-16 | Saturday | 7937271.22 |
## +---+------------+-----------------+--------------------+
## | 7 | 2021-01-17 | Sunday | 7982168.08 |
## +---+------------+-----------------+--------------------+
# Table for MAPE For counry
best_recommended_model <- min(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model,MAPE_Mean_SIR)
paste("System Choose Least Error ==> ( MAPE %) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> ", y_lab , sep=" ")
## [1] "System Choose Least Error ==> ( MAPE %) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> Cumulative Covid 19 Infection cases in Brazil"
best_recommended_model
## [1] 0.262
x1<-if(best_recommended_model >= MAPE_Mean_All.bats_Model) {paste("BATS Model")}
x2<-if(best_recommended_model >= MAPE_Mean_All.TBATS_Model) {paste("TBATS Model")}
x3<-if(best_recommended_model >= MAPE_Mean_All.Holt_Model) {paste("Holt Model")}
x4<-if(best_recommended_model >= MAPE_Mean_All.ARIMA_Model) {paste("ARIMA Model")}
x5<-if(best_recommended_model >= MAPE_Mean_All_NNAR) {paste("NNAR Model")}
x6<-if(best_recommended_model >= MAPE_Mean_SIR) {paste("SIR Model")}
panderOptions('table.split.table', Inf)
paste("Forecasting by using BATS Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using BATS Model ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | | FD | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+============+============+============+============+
## | 1 | 2021-01-11 | Monday | 7997030.95 | 7931477.54 | 7896775.66 | 7931477.54 | 7896775.66 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 2 | 2021-01-12 | Tuesday | 8035749.21 | 7963033.40 | 7924539.98 | 7963033.40 | 7924539.98 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 3 | 2021-01-13 | Wednesday | 8074467.46 | 7994488.55 | 7952150.26 | 7994488.55 | 7952150.26 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 4 | 2021-01-14 | Thursday | 8113185.72 | 8025829.65 | 7979586.15 | 8025829.65 | 7979586.15 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 5 | 2021-01-15 | Friday | 8151903.98 | 8057047.93 | 8006834.17 | 8057047.93 | 8006834.17 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 6 | 2021-01-16 | Saturday | 8190622.24 | 8088137.56 | 8033885.45 | 8088137.56 | 8033885.45 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 7 | 2021-01-17 | Sunday | 8229340.49 | 8119094.80 | 8060734.26 | 8119094.80 | 8060734.26 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
paste("Forecasting by using TBATS Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using TBATS Model ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | | FD | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+======================+============+============+============+============+
## | 1 | 2021-01-11 | Monday | 7994879.05 | 7949801.42 | 7925938.77 | 8039956.68 | 8063819.34 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 2 | 2021-01-12 | Tuesday | 8036005.02 | 7988031.15 | 7962635.33 | 8083978.88 | 8109374.71 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 3 | 2021-01-13 | Wednesday | 8073018.34 | 8022313.41 | 7995471.84 | 8123723.28 | 8150564.85 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 4 | 2021-01-14 | Thursday | 8111340.32 | 8058038.91 | 8029822.85 | 8164641.72 | 8192857.78 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 5 | 2021-01-15 | Friday | 8150935.05 | 8095203.17 | 8065700.49 | 8206666.94 | 8236169.62 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 6 | 2021-01-16 | Saturday | 8187389.48 | 8129344.01 | 8098616.60 | 8245434.94 | 8276162.36 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
## | 7 | 2021-01-17 | Sunday | 8226683.78 | 8166393.92 | 8134478.39 | 8286973.64 | 8318889.16 |
## +---+------------+-----------------+----------------------+------------+------------+------------+------------+
paste("Forecasting by using Holt's Linear Trend Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using Holt's Linear Trend Model ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | | FD | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+============+============+============+============+
## | 1 | 2021-01-11 | Monday | 8030382.12 | 7913810.37 | 7852475.80 | 8147880.74 | 8210456.35 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 2 | 2021-01-12 | Tuesday | 8072136.22 | 7941483.73 | 7872789.22 | 8203948.06 | 8274194.89 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 3 | 2021-01-13 | Wednesday | 8114008.02 | 7968837.75 | 7892565.43 | 8260603.55 | 8338784.23 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 4 | 2021-01-14 | Thursday | 8155997.57 | 7995867.28 | 7911797.46 | 8317854.72 | 8404236.76 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 5 | 2021-01-15 | Friday | 8198104.91 | 8022570.64 | 7930483.59 | 8375705.64 | 8470559.60 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 6 | 2021-01-16 | Saturday | 8240330.11 | 8048948.29 | 7948625.43 | 8434158.21 | 8537756.56 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
## | 7 | 2021-01-17 | Sunday | 8282673.21 | 8075002.05 | 7966226.65 | 8493213.02 | 8605829.43 |
## +---+------------+-----------------+---------------------+------------+------------+------------+------------+
paste("Forecasting by using ARIMA Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using ARIMA Model ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | | FD | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+===========================+============+============+============+============+
## | 1 | 2021-01-11 | Monday | 7965856.26 | 7909825.60 | 7880164.76 | 8021886.91 | 8051547.75 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 2 | 2021-01-12 | Tuesday | 7992776.99 | 7927402.66 | 7892795.59 | 8058151.32 | 8092758.39 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 3 | 2021-01-13 | Wednesday | 8029930.45 | 7955173.09 | 7915598.94 | 8104687.80 | 8144261.95 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 4 | 2021-01-14 | Thursday | 8077485.83 | 7993653.92 | 7949275.99 | 8161317.74 | 8205695.67 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 5 | 2021-01-15 | Friday | 8124088.71 | 8032013.92 | 7983272.47 | 8216163.50 | 8264904.94 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 6 | 2021-01-16 | Saturday | 8162420.50 | 8062061.14 | 8008934.11 | 8262779.86 | 8315906.89 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
## | 7 | 2021-01-17 | Sunday | 8191038.27 | 8081370.33 | 8023315.63 | 8300706.21 | 8358760.91 |
## +---+------------+-----------------+---------------------------+------------+------------+------------+------------+
paste("Forecasting by using NNAR Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using NNAR Model ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+
## | | FD | forecating_date | forecasting_by_NNAR |
## +===+============+=================+=====================+
## | 1 | 2021-01-11 | Monday | 7967775.37 |
## +---+------------+-----------------+---------------------+
## | 2 | 2021-01-12 | Tuesday | 7995898.34 |
## +---+------------+-----------------+---------------------+
## | 3 | 2021-01-13 | Wednesday | 8022783.83 |
## +---+------------+-----------------+---------------------+
## | 4 | 2021-01-14 | Thursday | 8048432.01 |
## +---+------------+-----------------+---------------------+
## | 5 | 2021-01-15 | Friday | 8072849.55 |
## +---+------------+-----------------+---------------------+
## | 6 | 2021-01-16 | Saturday | 8096049.24 |
## +---+------------+-----------------+---------------------+
## | 7 | 2021-01-17 | Sunday | 8118049.43 |
## +---+------------+-----------------+---------------------+
paste("Forecasting by using SIR Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using SIR Model ==> Cumulative Covid 19 Infection cases in Brazil"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)), type = "rest")
##
## +---+------------+-----------------+--------------------+
## | | FD | forecating_date | forecasting_by_SIR |
## +===+============+=================+====================+
## | 1 | 2021-01-11 | Monday | 7716405.00 |
## +---+------------+-----------------+--------------------+
## | 2 | 2021-01-12 | Tuesday | 7760099.84 |
## +---+------------+-----------------+--------------------+
## | 3 | 2021-01-13 | Wednesday | 7804032.71 |
## +---+------------+-----------------+--------------------+
## | 4 | 2021-01-14 | Thursday | 7848204.81 |
## +---+------------+-----------------+--------------------+
## | 5 | 2021-01-15 | Friday | 7892617.18 |
## +---+------------+-----------------+--------------------+
## | 6 | 2021-01-16 | Saturday | 7937271.22 |
## +---+------------+-----------------+--------------------+
## | 7 | 2021-01-17 | Sunday | 7982168.08 |
## +---+------------+-----------------+--------------------+
result<-c(x1,x2,x3,x4,x5,x6)
table.error<-data.frame(country.name,NNAR.model=MAPE_Mean_All_NNAR, BATS.Model=MAPE_Mean_All.bats_Model,TBATS.Model=MAPE_Mean_All.TBATS_Model,Holt.Model=MAPE_Mean_All.Holt_Model,ARIMA.Model=MAPE_Mean_All.ARIMA_Model,SIR.Model=MAPE_Mean_SIR,Best.Model=result)
library(ascii)
print(ascii(table(table.error)), type = "rest")
##
## +---+--------------+------------+------------+-------------+------------+-------------+-----------+-------------+------+
## | | country.name | NNAR.model | BATS.Model | TBATS.Model | Holt.Model | ARIMA.Model | SIR.Model | Best.Model | Freq |
## +===+==============+============+============+=============+============+=============+===========+=============+======+
## | 1 | Brazil | 0.511 | 0.412 | 0.407 | 0.492 | 0.262 | 3.284 | ARIMA Model | 1.00 |
## +---+--------------+------------+------------+-------------+------------+-------------+-----------+-------------+------+
MAPE.Value<-c(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model,MAPE_Mean_SIR)
Model<-c("NNAR.model","BATS.Model","TBATS.Model","Holt.Model","ARIMA.Model" ,"SIR Model")
channel_data<-data.frame(Model,MAPE.Value)
# Normally, the entire expression below would be assigned to an object, but we're
# going bare bones here.
ggplot(channel_data, aes(x = Model, y = MAPE.Value)) +
geom_bar(stat = "identity") +
geom_text(aes(label = MAPE.Value)) + # x AND y INHERITED. WE JUST NEED TO SPECIFY "label"
coord_flip() +
scale_y_continuous(expand = c(0, 0))

message("System finished Modelling and Forecasting by using BATS, TBATS, Holt's Linear Trend,ARIMA Model, and SIR Model ==>",y_lab, sep=" ")
## System finished Modelling and Forecasting by using BATS, TBATS, Holt's Linear Trend,ARIMA Model, and SIR Model ==>Cumulative Covid 19 Infection cases in Brazil
message(" Thank you for using our System For Modelling and Forecasting ==> ",y_lab, sep=" ")
## Thank you for using our System For Modelling and Forecasting ==> Cumulative Covid 19 Infection cases in Brazil