South ural state university, Chelyabinsk, Russian federation
#Import
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2 3.3.2 v fma 2.4
## v forecast 8.13 v expsmooth 2.3
##
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package: markovchain
## Version: 0.8.5-3
## Date: 2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
library(ascii)
library(pander)
##
## Attaching package: 'pander'
## The following object is masked from 'package:ascii':
##
## Pandoc
##Global vriable##
Full_original_data <- read.csv("data.csv") # path of your data ( time series data)
original_data<-Full_original_data$USA
y_lab <- "Cumulative Covid 19 Infection cases in USA" # input name of data
Actual_date_interval <- c("2020/01/03","2021/01/10")
Forecast_date_interval <- c("2021/01/11","2021/01/17")
validation_data_days <-7
Number_Neural<-5 # Number of Neural For model NNAR Model
NNAR_Model<- FALSE #create new model (TRUE/FALSE)
frequency<-"days"
Population <-332049624 # Population siaze in USA for Sir model
country.name <- "USA"
# Data Preparation & calculate some of statistics measures
summary(original_data) # Summary your time series
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 282186 2900335 4996211 7458574 21761186
# calculate standard deviation
data.frame(kurtosis=kurtosis(original_data)) # calculate Cofficient of kurtosis
## kurtosis
## 1 3.74154
data.frame(skewness=skewness(original_data)) # calculate Cofficient of skewness
## skewness
## 1 1.237707
data.frame(Standard.deviation =sd(original_data))
## Standard.deviation
## 1 5544147
#processing on data (input data)
rows <- NROW(original_data) # calculate number of rows in time series (number of days)
training_data<-original_data[1:(rows-validation_data_days)] # Training data
testing_data<-original_data[(rows-validation_data_days+1):rows] #testing data
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency) #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency) #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) #calculate number of days that you want to forecasting
validation_dates<-tail(AD,validation_data_days) # select validation_dates
validation_data_by_name<-weekdays(validation_dates) # put names of validation dates
forecasting_data_by_name<-weekdays(FD) # put names of Forecasting dates
#NNAR Model
if(NNAR_Model==TRUE){
data_series<-ts(training_data)
model_NNAR<-nnetar(data_series, size = Number_Neural)
saveRDS(model_NNAR, file = "model_NNAR.RDS")
my_model <- readRDS("model_NNAR.RDS")
accuracy(model_NNAR) # accuracy on training data #Print Model Parameters
model_NNAR
}
if(NNAR_Model==FALSE){
data_series<-ts(training_data)
#model_NNAR<-nnetar(data_series, size = Number_Numeral)
model_NNAR <- readRDS("model_NNAR.RDS")
accuracy(model_NNAR) # accuracy on training data #Print Model Parameters
model_NNAR
}
## Series: data_series
## Model: NNAR(1,5)
## Call: nnetar(y = data_series, size = 5)
##
## Average of 20 networks, each of which is
## a 1-5-1 network with 16 weights
## options were - linear output units
##
## sigma^2 estimated as 2.89e+08
# Testing Data Evaluation
forecasting_NNAR <- forecast(model_NNAR, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_NNAR$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using NNAR Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using NNAR Model for ==> Cumulative Covid 19 Infection cases in USA"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_Mean_All_NNAR<-round(mean(MAPE_Per_Day),3)
MAPE_NNAR<-paste(round(MAPE_Per_Day,3),"%")
MAPE_NNAR_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in NNAR Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in NNAR Model for ==> Cumulative Covid 19 Infection cases in USA"
paste(MAPE_Mean_All,"%")
## [1] "1.824 % MAPE 7 days Cumulative Covid 19 Infection cases in USA %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in NNAR Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in NNAR Model for ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(date_NNAR=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_NNAR=validation_forecast,MAPE_NNAR_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_NNAR | validation_data_by_name | actual_data | forecasting_NNAR | MAPE_NNAR_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-01-04 | Monday | 20258725.00 | 20134510.23 | 0.613 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-01-05 | Tuesday | 20470169.00 | 20287773.65 | 0.891 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-01-06 | Wednesday | 20643544.00 | 20434025.61 | 1.015 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-01-07 | Thursday | 20870913.00 | 20573142.05 | 1.427 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 5 | 2021-01-08 | Friday | 21170475.00 | 20705053.35 | 2.198 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 6 | 2021-01-09 | Saturday | 21447670.00 | 20829743.75 | 2.881 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 7 | 2021-01-10 | Sunday | 21761186.00 | 20947249.61 | 3.74 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+
## | | FD | forecating_date | forecasting_by_NNAR |
## +===+============+=================+=====================+
## | 1 | 2021-01-11 | Monday | 21057656.44 |
## +---+------------+-----------------+---------------------+
## | 2 | 2021-01-12 | Tuesday | 21161095.04 |
## +---+------------+-----------------+---------------------+
## | 3 | 2021-01-13 | Wednesday | 21257736.77 |
## +---+------------+-----------------+---------------------+
## | 4 | 2021-01-14 | Thursday | 21347788.37 |
## +---+------------+-----------------+---------------------+
## | 5 | 2021-01-15 | Friday | 21431486.41 |
## +---+------------+-----------------+---------------------+
## | 6 | 2021-01-16 | Saturday | 21509091.63 |
## +---+------------+-----------------+---------------------+
## | 7 | 2021-01-17 | Sunday | 21580883.38 |
## +---+------------+-----------------+---------------------+
plot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

##bats model
# Data Modeling
data_series<-ts(training_data) # make your data to time series
autoplot(data_series ,xlab=paste ("Time in", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 1544.871 15778.47 7448.289 -Inf Inf 0.1364783 0.006312369
# Print Model Parameters
model_bats
## BATS(1, {0,0}, 1, -)
##
## Call: bats(y = data_series)
##
## Parameters
## Alpha: 1.118853
## Beta: 0.3392747
## Damping Parameter: 1
##
## Seed States:
## [,1]
## [1,] -118.8717
## [2,] 212.7390
##
## Sigma: 15778.47
## AIC: 9270.407
#ploting BATS Model
plot(model_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "))

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Cumulative Covid 19 Infection cases in USA"
MAPE_Mean_All.bats_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.bats<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Cumulative Covid 19 Infection cases in USA"
paste(MAPE_Mean_All.bats,"%")
## [1] "0.972 % MAPE 7 days Cumulative Covid 19 Infection cases in USA %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_bats | validation_data_by_name | actual_data | forecasting_bats | MAPE_bats_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-01-04 | Monday | 20258725.00 | 20161996.11 | 0.477 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-01-05 | Tuesday | 20470169.00 | 20354566.61 | 0.565 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-01-06 | Wednesday | 20643544.00 | 20547137.11 | 0.467 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-01-07 | Thursday | 20870913.00 | 20739707.62 | 0.629 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 5 | 2021-01-08 | Friday | 21170475.00 | 20932278.12 | 1.125 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 6 | 2021-01-09 | Saturday | 21447670.00 | 21124848.62 | 1.505 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 7 | 2021-01-10 | Sunday | 21761186.00 | 21317419.13 | 2.039 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | | FD | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+=============+=============+=============+=============+
## | 1 | 2021-01-11 | Monday | 21509989.63 | 21371162.45 | 21297671.78 | 21371162.45 | 21297671.78 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 2 | 2021-01-12 | Tuesday | 21702560.13 | 21543561.86 | 21459393.27 | 21543561.86 | 21459393.27 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 3 | 2021-01-13 | Wednesday | 21895130.64 | 21715134.92 | 21619850.95 | 21715134.92 | 21619850.95 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 4 | 2021-01-14 | Thursday | 22087701.14 | 21885906.35 | 21779082.64 | 21885906.35 | 21779082.64 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 5 | 2021-01-15 | Friday | 22280271.64 | 22055900.02 | 21937124.86 | 22055900.02 | 21937124.86 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 6 | 2021-01-16 | Saturday | 22472842.15 | 22225138.60 | 22094012.26 | 22225138.60 | 22094012.26 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 7 | 2021-01-17 | Sunday | 22665412.65 | 22393643.37 | 22249777.40 | 22393643.37 | 22249777.40 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

## TBATS Model
# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE, seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 1538.606 15686.37 7886.49 NaN Inf 0.1445076 0.005151201
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
##
## Call: NULL
##
## Parameters
## Alpha: 1.117863
## Beta: 0.3415187
## Damping Parameter: 1
## Gamma-1 Values: -0.001567755
## Gamma-2 Values: 0.0001247185
##
## Seed States:
## [,1]
## [1,] 81.33683
## [2,] 140.94673
## [3,] 61.83254
## [4,] -607.04111
## [5,] -1449.16443
## [6,] 552.40239
##
## Sigma: 15686.37
## AIC: 9278.11
plot(model_TBATS,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using TBATS Model for ==> Cumulative Covid 19 Infection cases in USA"
MAPE_Mean_All.TBATS_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.TBATS<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in TBATS Model for ==> Cumulative Covid 19 Infection cases in USA"
paste(MAPE_Mean_All.TBATS,"%")
## [1] "0.961 % MAPE 7 days Cumulative Covid 19 Infection cases in USA %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in TBATS Model for ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | | date_TBATS | validation_data_by_name | actual_data | forecasting_TBATS | MAPE_TBATS_Model |
## +===+============+=========================+=============+===================+==================+
## | 1 | 2021-01-04 | Monday | 20258725.00 | 20162694.10 | 0.474 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 2 | 2021-01-05 | Tuesday | 20470169.00 | 20355038.15 | 0.562 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 3 | 2021-01-06 | Wednesday | 20643544.00 | 20548518.86 | 0.46 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 4 | 2021-01-07 | Thursday | 20870913.00 | 20744013.25 | 0.608 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 5 | 2021-01-08 | Friday | 21170475.00 | 20936502.61 | 1.105 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 6 | 2021-01-09 | Saturday | 21447670.00 | 21127621.42 | 1.492 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 7 | 2021-01-10 | Sunday | 21761186.00 | 21320608.59 | 2.025 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | | FD | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+======================+=============+=============+=============+=============+
## | 1 | 2021-01-11 | Monday | 21512952.63 | 21450515.98 | 21417464.01 | 21575389.29 | 21608441.25 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 2 | 2021-01-12 | Tuesday | 21706433.34 | 21640165.62 | 21605085.60 | 21772701.07 | 21807781.08 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 3 | 2021-01-13 | Wednesday | 21901927.73 | 21832038.63 | 21795041.57 | 21971816.84 | 22008813.89 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 4 | 2021-01-14 | Thursday | 22094417.10 | 22021089.52 | 21982272.25 | 22167744.68 | 22206561.95 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 5 | 2021-01-15 | Friday | 22285535.91 | 22208939.42 | 22168391.69 | 22362132.39 | 22402680.12 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 6 | 2021-01-16 | Saturday | 22478523.07 | 22398809.06 | 22356611.02 | 22558237.08 | 22600435.13 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 7 | 2021-01-17 | Sunday | 22670867.12 | 22588164.03 | 22544383.66 | 22753570.21 | 22797350.58 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph2

## Holt's linear trend
# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 466.398 16007.22 7811.952 NaN Inf 0.1431419 0.1840721
# Print Model Parameters
summary(model_holt$model)
## Holt's method
##
## Call:
## holt(y = data_series, h = N_forecasting_days + validation_data_days,
##
## Call:
## lambda = "auto")
##
## Box-Cox transformation: lambda= 0.5231
##
## Smoothing parameters:
## alpha = 0.9999
## beta = 0.2768
##
## Initial states:
## l = -2.3769
## b = -0.0404
##
## sigma: 12.574
##
## AIC AICc BIC
## 4031.462 4031.628 4050.989
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 466.398 16007.22 7811.952 NaN Inf 0.1431419 0.1840721
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using holt Model for ==> Cumulative Covid 19 Infection cases in USA"
MAPE_Mean_All.Holt_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.Holt<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in holt Model for ==> Cumulative Covid 19 Infection cases in USA"
paste(MAPE_Mean_All.Holt,"%")
## [1] "0.811 % MAPE 7 days Cumulative Covid 19 Infection cases in USA %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in holt Model for ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_holt | validation_data_by_name | actual_data | forecasting_holt | MAPE_holt_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-01-04 | Monday | 20258725.00 | 20172448.93 | 0.426 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-01-05 | Tuesday | 20470169.00 | 20371412.17 | 0.482 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-01-06 | Wednesday | 20643544.00 | 20571306.41 | 0.35 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-01-07 | Thursday | 20870913.00 | 20772131.21 | 0.473 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 5 | 2021-01-08 | Friday | 21170475.00 | 20973886.17 | 0.929 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 6 | 2021-01-09 | Saturday | 21447670.00 | 21176570.86 | 1.264 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 7 | 2021-01-10 | Sunday | 21761186.00 | 21380184.88 | 1.751 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | | FD | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+=============+=============+=============+=============+
## | 1 | 2021-01-11 | Monday | 21584727.81 | 21289417.06 | 21133874.45 | 21881977.90 | 22040117.20 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 2 | 2021-01-12 | Tuesday | 21790199.24 | 21451876.20 | 21273801.00 | 22131045.93 | 22312500.21 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 3 | 2021-01-13 | Wednesday | 21996598.77 | 21613254.93 | 21411626.27 | 22383155.14 | 22589085.27 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 4 | 2021-01-14 | Thursday | 22203925.99 | 21773584.39 | 21547401.62 | 22638282.10 | 22869840.17 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 5 | 2021-01-15 | Friday | 22412180.50 | 21932894.93 | 21681177.10 | 22896404.19 | 23154734.00 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 6 | 2021-01-16 | Saturday | 22621361.90 | 22091215.26 | 21813000.32 | 23157500.40 | 23443738.26 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 7 | 2021-01-17 | Sunday | 22831469.79 | 22248572.19 | 21942915.95 | 23421551.62 | 23736827.35 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph3

#Auto arima model
##################
require(tseries) # need to install tseries tj test Stationarity in time series
paste ("tests For Check Stationarity in series ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series ==> Cumulative Covid 19 Infection cases in USA"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: data_series
## KPSS Level = 5.323, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series) # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: data_series
## Dickey-Fuller Z(alpha) = 4.7393, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series) # applay adf test
## Warning in adf.test(data_series): p-value greater than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: data_series
## Dickey-Fuller = -0.27305, Lag order = 7, p-value = 0.99
## alternative hypothesis: stationary
ndiffs(data_series) # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main = "1nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in ==> Cumulative Covid 19 Infection cases in USA"
kpss.test(diff1_x1) # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff1_x1
## KPSS Level = 4.2066, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1) # applay pp test after taking first differences
##
## Phillips-Perron Unit Root Test
##
## data: diff1_x1
## Dickey-Fuller Z(alpha) = -25.067, Truncation lag parameter = 5, p-value
## = 0.02321
## alternative hypothesis: stationary
adf.test(diff1_x1) # applay adf test after taking first differences
##
## Augmented Dickey-Fuller Test
##
## data: diff1_x1
## Dickey-Fuller = -1.1075, Lag order = 7, p-value = 0.9205
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab ,main = "2nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Cumulative Covid 19 Infection cases in USA"
kpss.test(diff2_x1) # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff2_x1
## KPSS Level = 0.080196, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1) # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff2_x1
## Dickey-Fuller Z(alpha) = -398.14, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1) # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff2_x1
## Dickey-Fuller = -7.7882, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp")) #applaying auto arima
##
## ARIMA(0,2,0) : 8183.762
## ARIMA(0,2,1) : 8106.168
## ARIMA(0,2,2) : 8100.86
## ARIMA(0,2,3) : 8095.087
## ARIMA(0,2,4) : 8094.533
## ARIMA(0,2,5) : 8091.759
## ARIMA(1,2,0) : 8133.178
## ARIMA(1,2,1) : 8098.971
## ARIMA(1,2,2) : 8100.889
## ARIMA(1,2,3) : 8096.263
## ARIMA(1,2,4) : 8087.348
## ARIMA(2,2,0) : 8131.241
## ARIMA(2,2,1) : 8100.641
## ARIMA(2,2,2) : 8099.247
## ARIMA(2,2,3) : Inf
## ARIMA(3,2,0) : 8113.968
## ARIMA(3,2,1) : 8088.309
## ARIMA(3,2,2) : Inf
## ARIMA(4,2,0) : 8096.493
## ARIMA(4,2,1) : 8084.196
## ARIMA(5,2,0) : 8080.2
##
##
##
## Best model: ARIMA(5,2,0)
model1 # show the result of autoarima
## Series: data_series
## ARIMA(5,2,0)
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5
## -0.5276 -0.3099 -0.3863 -0.3463 -0.2273
## s.e. 0.0514 0.0560 0.0553 0.0570 0.0523
##
## sigma^2 estimated as 235605094: log likelihood=-4033.98
## AIC=8079.96 AICc=8080.2 BIC=8103.36
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE)
{
order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
m <- order[7]
result <- paste("ARIMA(", order[1], ",", order[2], ",",
order[3], ")", sep = "")
if (m > 1 && sum(order[4:6]) > 0) {
result <- paste(result, "(", order[4], ",", order[5],
",", order[6], ")[", m, "]", sep = "")
}
if (padding && m > 1 && sum(order[4:6]) == 0) {
result <- paste(result, " ", sep = "")
if (m <= 9) {
result <- paste(result, " ", sep = "")
}
else if (m <= 99) {
result <- paste(result, " ", sep = "")
}
else {
result <- paste(result, " ", sep = "")
}
}
if (!is.null(object$xreg)) {
if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
result <- paste(result, "with drift ")
}
else {
result <- paste("Regression with", result, "errors")
}
}
else {
if (is.element("constant", names(object$coef)) || is.element("intercept",
names(object$coef))) {
result <- paste(result, "with non-zero mean")
}
else if (order[2] == 0 && order[5] == 0) {
result <- paste(result, "with zero mean ")
}
else {
result <- paste(result, " ")
}
}
if (!padding) {
result <- gsub("[ ]*$", "", result)
}
return(result)
}
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 5 2 0
strtoi(bestmodel[3])
## [1] 0
#2. Using ACF and PACF Function
#par(mfrow=c(1,2)) # Code for making two plot in one graph
acf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" ") , ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast) # install library forecast
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima for forecasting
x1_model1 # Show result of best model of auto arima
##
## Call:
## arima(x = data_series, order = c(bestmodel))
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5
## -0.5276 -0.3099 -0.3863 -0.3463 -0.2273
## s.e. 0.0514 0.0560 0.0553 0.0570 0.0523
##
## sigma^2 estimated as 232377627: log likelihood = -4033.98, aic = 8079.96
paste ("accuracy of autoarima Model For ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For ==> Cumulative Covid 19 Infection cases in USA"
accuracy(x1_model1) # aacuracy of best model from auto arima
## ME RMSE MAE MPE MAPE MASE
## Training set 1445.599 15202.34 6877.758 0.9124656 3.277377 0.1260242
## ACF1
## Training set -0.03536632
x1_model1$x # show result of best model from auto arima
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab) # checkresiduals from best model from using auto arima

##
## Ljung-Box test
##
## data: Residuals from ARIMA(5,2,0)
## Q* = 8.5643, df = 5, p-value = 0.1278
##
## Model df: 5. Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for ==> Cumulative Covid 19 Infection cases in USA"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box") # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
##
## Box-Ljung test
##
## data: x1_model1$residuals^2
## X-squared = 52.732, df = 20, p-value = 8.897e-05
library(tseries)
jarque.bera.test(x1_model1$residuals) # Do test jarque.bera.test
##
## Jarque Bera Test
##
## data: x1_model1$residuals
## X-squared = 51183, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model
lines(fitted(x1_model1), col='black')

#Test data
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Cumulative Covid 19 Infection cases in USA"
MAPE_Mean_All.ARIMA_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.ARIMA<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Cumulative Covid 19 Infection cases in USA"
paste(MAPE_Mean_All.ARIMA,"%")
## [1] "1.102 % MAPE 7 days Cumulative Covid 19 Infection cases in USA %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)), type = "rest")
##
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | | date_auto.arima | validation_data_by_name | actual_data | forecasting_auto.arima | MAPE_auto.arima_Model |
## +===+=================+=========================+=============+========================+=======================+
## | 1 | 2021-01-04 | Monday | 20258725.00 | 20147554.76 | 0.549 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 2 | 2021-01-05 | Tuesday | 20470169.00 | 20321108.51 | 0.728 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 3 | 2021-01-06 | Wednesday | 20643544.00 | 20509920.02 | 0.647 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 4 | 2021-01-07 | Thursday | 20870913.00 | 20710166.92 | 0.77 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 5 | 2021-01-08 | Friday | 21170475.00 | 20911420.06 | 1.224 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 6 | 2021-01-09 | Saturday | 21447670.00 | 21101338.46 | 1.615 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 7 | 2021-01-10 | Sunday | 21761186.00 | 21287129.92 | 2.178 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | | FD | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+===========================+=============+=============+=============+=============+
## | 1 | 2021-01-11 | Monday | 21470794.70 | 21339220.32 | 21269569.05 | 21602369.08 | 21672020.35 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 2 | 2021-01-12 | Tuesday | 21658291.62 | 21506269.56 | 21425793.95 | 21810313.68 | 21890789.29 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 3 | 2021-01-13 | Wednesday | 21849716.60 | 21676598.42 | 21584955.20 | 22022834.78 | 22114478.00 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 4 | 2021-01-14 | Thursday | 22042708.52 | 21848060.68 | 21745020.35 | 22237356.35 | 22340396.69 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 5 | 2021-01-15 | Friday | 22233850.54 | 22017154.34 | 21902442.30 | 22450546.73 | 22565258.77 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 6 | 2021-01-16 | Saturday | 22423121.77 | 22183484.58 | 22056628.32 | 22662758.95 | 22789615.21 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 7 | 2021-01-17 | Sunday | 22611116.69 | 22347584.20 | 22208078.53 | 22874649.18 | 23014154.85 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph4

MAPE_Mean_All.ARIMA
## [1] "1.102 % MAPE 7 days Cumulative Covid 19 Infection cases in USA"
# SIR Model
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.017059499 0.006290767
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
MAPE_Mean_SIR<-round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3)
## forecasting by SIR model
Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.0120714 0.0000000
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR <-data.frame(out)
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)), type = "rest")
##
## +---+------------+-----------------+--------------------+
## | | FD | forecating_date | forecasting_by_SIR |
## +===+============+=================+====================+
## | 1 | 2021-01-11 | Monday | 20258725.00 |
## +---+------------+-----------------+--------------------+
## | 2 | 2021-01-12 | Tuesday | 20489578.19 |
## +---+------------+-----------------+--------------------+
## | 3 | 2021-01-13 | Wednesday | 20722887.15 |
## +---+------------+-----------------+--------------------+
## | 4 | 2021-01-14 | Thursday | 20958674.00 |
## +---+------------+-----------------+--------------------+
## | 5 | 2021-01-15 | Friday | 21196958.20 |
## +---+------------+-----------------+--------------------+
## | 6 | 2021-01-16 | Saturday | 21437765.75 |
## +---+------------+-----------------+--------------------+
## | 7 | 2021-01-17 | Sunday | 21681118.19 |
## +---+------------+-----------------+--------------------+
# Table for MAPE For counry
best_recommended_model <- min(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model,MAPE_Mean_SIR)
paste("System Choose Least Error ==> ( MAPE %) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> ", y_lab , sep=" ")
## [1] "System Choose Least Error ==> ( MAPE %) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> Cumulative Covid 19 Infection cases in USA"
best_recommended_model
## [1] 0.811
x1<-if(best_recommended_model >= MAPE_Mean_All.bats_Model) {paste("BATS Model")}
x2<-if(best_recommended_model >= MAPE_Mean_All.TBATS_Model) {paste("TBATS Model")}
x3<-if(best_recommended_model >= MAPE_Mean_All.Holt_Model) {paste("Holt Model")}
x4<-if(best_recommended_model >= MAPE_Mean_All.ARIMA_Model) {paste("ARIMA Model")}
x5<-if(best_recommended_model >= MAPE_Mean_All_NNAR) {paste("NNAR Model")}
x6<-if(best_recommended_model >= MAPE_Mean_SIR) {paste("SIR Model")}
panderOptions('table.split.table', Inf)
paste("Forecasting by using BATS Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using BATS Model ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | | FD | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+=============+=============+=============+=============+
## | 1 | 2021-01-11 | Monday | 21509989.63 | 21371162.45 | 21297671.78 | 21371162.45 | 21297671.78 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 2 | 2021-01-12 | Tuesday | 21702560.13 | 21543561.86 | 21459393.27 | 21543561.86 | 21459393.27 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 3 | 2021-01-13 | Wednesday | 21895130.64 | 21715134.92 | 21619850.95 | 21715134.92 | 21619850.95 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 4 | 2021-01-14 | Thursday | 22087701.14 | 21885906.35 | 21779082.64 | 21885906.35 | 21779082.64 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 5 | 2021-01-15 | Friday | 22280271.64 | 22055900.02 | 21937124.86 | 22055900.02 | 21937124.86 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 6 | 2021-01-16 | Saturday | 22472842.15 | 22225138.60 | 22094012.26 | 22225138.60 | 22094012.26 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 7 | 2021-01-17 | Sunday | 22665412.65 | 22393643.37 | 22249777.40 | 22393643.37 | 22249777.40 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
paste("Forecasting by using TBATS Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using TBATS Model ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | | FD | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+======================+=============+=============+=============+=============+
## | 1 | 2021-01-11 | Monday | 21512952.63 | 21450515.98 | 21417464.01 | 21575389.29 | 21608441.25 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 2 | 2021-01-12 | Tuesday | 21706433.34 | 21640165.62 | 21605085.60 | 21772701.07 | 21807781.08 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 3 | 2021-01-13 | Wednesday | 21901927.73 | 21832038.63 | 21795041.57 | 21971816.84 | 22008813.89 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 4 | 2021-01-14 | Thursday | 22094417.10 | 22021089.52 | 21982272.25 | 22167744.68 | 22206561.95 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 5 | 2021-01-15 | Friday | 22285535.91 | 22208939.42 | 22168391.69 | 22362132.39 | 22402680.12 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 6 | 2021-01-16 | Saturday | 22478523.07 | 22398809.06 | 22356611.02 | 22558237.08 | 22600435.13 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
## | 7 | 2021-01-17 | Sunday | 22670867.12 | 22588164.03 | 22544383.66 | 22753570.21 | 22797350.58 |
## +---+------------+-----------------+----------------------+-------------+-------------+-------------+-------------+
paste("Forecasting by using Holt's Linear Trend Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using Holt's Linear Trend Model ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | | FD | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+=============+=============+=============+=============+
## | 1 | 2021-01-11 | Monday | 21584727.81 | 21289417.06 | 21133874.45 | 21881977.90 | 22040117.20 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 2 | 2021-01-12 | Tuesday | 21790199.24 | 21451876.20 | 21273801.00 | 22131045.93 | 22312500.21 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 3 | 2021-01-13 | Wednesday | 21996598.77 | 21613254.93 | 21411626.27 | 22383155.14 | 22589085.27 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 4 | 2021-01-14 | Thursday | 22203925.99 | 21773584.39 | 21547401.62 | 22638282.10 | 22869840.17 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 5 | 2021-01-15 | Friday | 22412180.50 | 21932894.93 | 21681177.10 | 22896404.19 | 23154734.00 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 6 | 2021-01-16 | Saturday | 22621361.90 | 22091215.26 | 21813000.32 | 23157500.40 | 23443738.26 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
## | 7 | 2021-01-17 | Sunday | 22831469.79 | 22248572.19 | 21942915.95 | 23421551.62 | 23736827.35 |
## +---+------------+-----------------+---------------------+-------------+-------------+-------------+-------------+
paste("Forecasting by using ARIMA Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using ARIMA Model ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | | FD | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+===========================+=============+=============+=============+=============+
## | 1 | 2021-01-11 | Monday | 21470794.70 | 21339220.32 | 21269569.05 | 21602369.08 | 21672020.35 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 2 | 2021-01-12 | Tuesday | 21658291.62 | 21506269.56 | 21425793.95 | 21810313.68 | 21890789.29 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 3 | 2021-01-13 | Wednesday | 21849716.60 | 21676598.42 | 21584955.20 | 22022834.78 | 22114478.00 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 4 | 2021-01-14 | Thursday | 22042708.52 | 21848060.68 | 21745020.35 | 22237356.35 | 22340396.69 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 5 | 2021-01-15 | Friday | 22233850.54 | 22017154.34 | 21902442.30 | 22450546.73 | 22565258.77 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 6 | 2021-01-16 | Saturday | 22423121.77 | 22183484.58 | 22056628.32 | 22662758.95 | 22789615.21 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
## | 7 | 2021-01-17 | Sunday | 22611116.69 | 22347584.20 | 22208078.53 | 22874649.18 | 23014154.85 |
## +---+------------+-----------------+---------------------------+-------------+-------------+-------------+-------------+
paste("Forecasting by using NNAR Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using NNAR Model ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+
## | | FD | forecating_date | forecasting_by_NNAR |
## +===+============+=================+=====================+
## | 1 | 2021-01-11 | Monday | 21057656.44 |
## +---+------------+-----------------+---------------------+
## | 2 | 2021-01-12 | Tuesday | 21161095.04 |
## +---+------------+-----------------+---------------------+
## | 3 | 2021-01-13 | Wednesday | 21257736.77 |
## +---+------------+-----------------+---------------------+
## | 4 | 2021-01-14 | Thursday | 21347788.37 |
## +---+------------+-----------------+---------------------+
## | 5 | 2021-01-15 | Friday | 21431486.41 |
## +---+------------+-----------------+---------------------+
## | 6 | 2021-01-16 | Saturday | 21509091.63 |
## +---+------------+-----------------+---------------------+
## | 7 | 2021-01-17 | Sunday | 21580883.38 |
## +---+------------+-----------------+---------------------+
paste("Forecasting by using SIR Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using SIR Model ==> Cumulative Covid 19 Infection cases in USA"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)), type = "rest")
##
## +---+------------+-----------------+--------------------+
## | | FD | forecating_date | forecasting_by_SIR |
## +===+============+=================+====================+
## | 1 | 2021-01-11 | Monday | 20258725.00 |
## +---+------------+-----------------+--------------------+
## | 2 | 2021-01-12 | Tuesday | 20489578.19 |
## +---+------------+-----------------+--------------------+
## | 3 | 2021-01-13 | Wednesday | 20722887.15 |
## +---+------------+-----------------+--------------------+
## | 4 | 2021-01-14 | Thursday | 20958674.00 |
## +---+------------+-----------------+--------------------+
## | 5 | 2021-01-15 | Friday | 21196958.20 |
## +---+------------+-----------------+--------------------+
## | 6 | 2021-01-16 | Saturday | 21437765.75 |
## +---+------------+-----------------+--------------------+
## | 7 | 2021-01-17 | Sunday | 21681118.19 |
## +---+------------+-----------------+--------------------+
result<-c(x1,x2,x3,x4,x5,x6)
table.error<-data.frame(country.name,NNAR.model=MAPE_Mean_All_NNAR, BATS.Model=MAPE_Mean_All.bats_Model,TBATS.Model=MAPE_Mean_All.TBATS_Model,Holt.Model=MAPE_Mean_All.Holt_Model,ARIMA.Model=MAPE_Mean_All.ARIMA_Model,SIR.Model=MAPE_Mean_SIR,Best.Model=result)
library(ascii)
print(ascii(table(table.error)), type = "rest")
##
## +---+--------------+------------+------------+-------------+------------+-------------+-----------+------------+------+
## | | country.name | NNAR.model | BATS.Model | TBATS.Model | Holt.Model | ARIMA.Model | SIR.Model | Best.Model | Freq |
## +===+==============+============+============+=============+============+=============+===========+============+======+
## | 1 | USA | 1.824 | 0.972 | 0.961 | 0.811 | 1.102 | 7.415 | Holt Model | 1.00 |
## +---+--------------+------------+------------+-------------+------------+-------------+-----------+------------+------+
MAPE.Value<-c(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model,MAPE_Mean_SIR)
Model<-c("NNAR.model","BATS.Model","TBATS.Model","Holt.Model","ARIMA.Model" ,"SIR Model")
channel_data<-data.frame(Model,MAPE.Value)
# Normally, the entire expression below would be assigned to an object, but we're
# going bare bones here.
ggplot(channel_data, aes(x = Model, y = MAPE.Value)) +
geom_bar(stat = "identity") +
geom_text(aes(label = MAPE.Value)) + # x AND y INHERITED. WE JUST NEED TO SPECIFY "label"
coord_flip() +
scale_y_continuous(expand = c(0, 0))

message("System finished Modelling and Forecasting by using BATS, TBATS, Holt's Linear Trend,ARIMA Model, and SIR Model ==>",y_lab, sep=" ")
## System finished Modelling and Forecasting by using BATS, TBATS, Holt's Linear Trend,ARIMA Model, and SIR Model ==>Cumulative Covid 19 Infection cases in USA
message(" Thank you for using our System For Modelling and Forecasting ==> ",y_lab, sep=" ")
## Thank you for using our System For Modelling and Forecasting ==> Cumulative Covid 19 Infection cases in USA