library("dslabs")
data(package="dslabs")
list.files(system.file("script", package = "dslabs"))
## [1] "make-admissions.R"
## [2] "make-brca.R"
## [3] "make-brexit_polls.R"
## [4] "make-death_prob.R"
## [5] "make-divorce_margarine.R"
## [6] "make-gapminder-rdas.R"
## [7] "make-greenhouse_gases.R"
## [8] "make-historic_co2.R"
## [9] "make-mnist_27.R"
## [10] "make-movielens.R"
## [11] "make-murders-rda.R"
## [12] "make-na_example-rda.R"
## [13] "make-nyc_regents_scores.R"
## [14] "make-olive.R"
## [15] "make-outlier_example.R"
## [16] "make-polls_2008.R"
## [17] "make-polls_us_election_2016.R"
## [18] "make-reported_heights-rda.R"
## [19] "make-research_funding_rates.R"
## [20] "make-stars.R"
## [21] "make-temp_carbon.R"
## [22] "make-tissue-gene-expression.R"
## [23] "make-trump_tweets.R"
## [24] "make-weekly_us_contagious_diseases.R"
## [25] "save-gapminder-example-csv.R"
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.0.6 v dplyr 1.0.4
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggthemes)
library(ggrepel)
For this homework, I’m using us_contagious_diseases dataset.
Use filter to select Polio only and filter out NA values from Hawaii and Alaska
Mutate the rate of Polio
Polio <- us_contagious_diseases %>%
filter(disease == "Polio" & !state%in%c("Hawaii", "Alaska")) %>%
mutate(rate = count / population * 10000 * 52 / weeks_reporting) %>%
mutate(state = reorder(state, rate))
Draw a heatmap using ggplot and geom_tile
Draw a verticle line for 1955 which was the year Polio vaccine become available in the United States
Add theme to the graph
Add title and labels to the graph
Polio %>%
ggplot(aes(x = year, y = state, fill = rate)) +
geom_tile(color = "grey50") +
scale_x_continuous(expand=c(0,0))+
scale_fill_gradient(low = "white", high = "purple", space = "Lab", na.value = "grey50") +
geom_vline(xintercept = 1955, color = "red") +
theme_classic(base_size = 9)+
ggtitle("Heatmap for Polio in the US") +
labs(x = "Year", y = "State")
For the second graph, I’m using death_prob dataset.
library(highcharter)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Highcharts (www.highcharts.com) is a Highsoft software product which is
## not free for commercial and Governmental use
##
## Attaching package: 'highcharter'
## The following object is masked from 'package:dslabs':
##
## stars
library(RColorBrewer)
#view(greenhouse_gases)
Draw the area graph with highchart
Use RColorBrewer to set up the palette
Add x and y axis label
Change the legend position to upper right
Add the chart title
Customize the tooltips
highchart() %>%
hc_add_series(data = greenhouse_gases,
type = "area",
hcaes(x = year, y = concentration, group = gas)) %>%
hc_colors(brewer.pal(3, "Set2")) %>%
hc_xAxis(title = list(text = "Year")) %>%
hc_yAxis(title = list(text = "Gas Concentration (in ppm by volumn)")) %>%
hc_legend(align = "right", verticalAlign = "top") %>%
hc_title(text = "Greenhouse Gas Concentration") %>%
hc_tooltip(shared = TRUE,
borderColor = "black")