OBJETIVOS

RESUMEN

En el mundo existe cierta preocupación por el alto índice de mortalidad de las de personas que contiene dentro de su cuerpo una de las enfermedades más difíciles de combatir, esta enfermedad es llamada cáncer y se clasifica en diferentes tipos de cáncer, los cuales tiene ciertas características que la diferencia de acuerdo a la parte del cuerpo en que se desarrolla esta enfermedad.

El siguiente informe realiza una aplicación del método de Análisis Factorial a una base de datos que contiene la información de 569 datos provenientes de un estudio realizado por el Instituto Nacional de Cancerología a 569 mujeres con cancer.

Las variables contenidas en la base de datos que se utilizaran para el siguiente análisis son:

INTRODUCCIÓN

El cáncer de mama hoy en día es una de las enfermedades mas peligrosas que ataca el cuerpo humano en especial a las mujeres, esta enfermedad se encuentra alrededor del mundo y la población más vulnerable son cierto porcentaje de mujeres que tiene que luchar con esta enfermedad.

Cada día, alrededor del mundo, se publica y se realiza nuevos estudios sobre las causas y tratamientos; sin embargo, todo coinciden que el punto crítico de estos estudios es la detección temprana.

La detección temprana es importante debido a que cuando un tejido anormal o cáncer es encontrado a tiempo, puede ser más fácil de tratar. Si no se detecta temprano, la persona perjudicada no podrá ser tratada y tendrá que sufrir consecuencias severas.

Para este trabajo se realizare una observación de una base de datos de cancer de mama, con 569 datos recogidos por el Instituto Nacional de Cancerologia, se analizara todo los datos adjuntos mediante el método de análisis factorial.

# Filtrando variables

datos<-datos[,c(3:9)]
datos
## # A tibble: 569 x 7
##    perimeter  area smoothness compactness concavity `concave points` symmetry
##        <dbl> <dbl>      <dbl>       <dbl>     <dbl>            <dbl>    <dbl>
##  1     123.  1001      0.118       0.278     0.300            0.147     0.242
##  2     133.  1326      0.0847      0.0786    0.0869           0.0702    0.181
##  3     130   1203      0.110       0.160     0.197            0.128     0.207
##  4      77.6  386.     0.142       0.284     0.241            0.105     0.260
##  5     135.  1297      0.100       0.133     0.198            0.104     0.181
##  6      82.6  477.     0.128       0.17      0.158            0.0809    0.209
##  7     120.  1040      0.0946      0.109     0.113            0.074     0.179
##  8      90.2  578.     0.119       0.164     0.0937           0.0598    0.220
##  9      87.5  520.     0.127       0.193     0.186            0.0935    0.235
## 10      84.0  476.     0.119       0.240     0.227            0.0854    0.203
## # ... with 559 more rows
# Resumen estadístico de la base de datos

summary(datos)
##    perimeter           area          smoothness       compactness     
##  Min.   : 43.79   Min.   : 143.5   Min.   :0.05263   Min.   :0.01938  
##  1st Qu.: 75.17   1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492  
##  Median : 86.24   Median : 551.1   Median :0.09587   Median :0.09263  
##  Mean   : 91.97   Mean   : 654.9   Mean   :0.09636   Mean   :0.10434  
##  3rd Qu.:104.10   3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040  
##  Max.   :188.50   Max.   :2501.0   Max.   :0.16340   Max.   :0.34540  
##    concavity       concave points       symmetry     
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.1060  
##  1st Qu.:0.02956   1st Qu.:0.02031   1st Qu.:0.1619  
##  Median :0.06154   Median :0.03350   Median :0.1792  
##  Mean   :0.08880   Mean   :0.04892   Mean   :0.1812  
##  3rd Qu.:0.13070   3rd Qu.:0.07400   3rd Qu.:0.1957  
##  Max.   :0.42680   Max.   :0.20120   Max.   :0.3040
# Estructura de la base de datos

str(datos)
## tibble [569 x 7] (S3: tbl_df/tbl/data.frame)
##  $ perimeter     : num [1:569] 122.8 132.9 130 77.6 135.1 ...
##  $ area          : num [1:569] 1001 1326 1203 386 1297 ...
##  $ smoothness    : num [1:569] 0.1184 0.0847 0.1096 0.1425 0.1003 ...
##  $ compactness   : num [1:569] 0.2776 0.0786 0.1599 0.2839 0.1328 ...
##  $ concavity     : num [1:569] 0.3001 0.0869 0.1974 0.2414 0.198 ...
##  $ concave points: num [1:569] 0.1471 0.0702 0.1279 0.1052 0.1043 ...
##  $ symmetry      : num [1:569] 0.242 0.181 0.207 0.26 0.181 ...
# Nombre de las variables

colnames(datos)
## [1] "perimeter"      "area"           "smoothness"     "compactness"   
## [5] "concavity"      "concave points" "symmetry"
# Dimensíón de la base de datos

dim(datos)
## [1] 569   7
boxplot(datos, las = 2, col = "red", cex.main=0.1)
title("boxplot de cada variable")

CORRELACIONES

# Matriz de correlación 

matriz_correlaciones <- cor(datos)

matriz_correlaciones
##                perimeter      area smoothness compactness concavity
## perimeter      1.0000000 0.9865068  0.2072782   0.5569362 0.7161357
## area           0.9865068 1.0000000  0.1770284   0.4985017 0.6859828
## smoothness     0.2072782 0.1770284  1.0000000   0.6591232 0.5219838
## compactness    0.5569362 0.4985017  0.6591232   1.0000000 0.8831207
## concavity      0.7161357 0.6859828  0.5219838   0.8831207 1.0000000
## concave points 0.8509770 0.8232689  0.5536952   0.8311350 0.9213910
## symmetry       0.1830272 0.1512931  0.5577748   0.6026410 0.5006666
##                concave points  symmetry
## perimeter           0.8509770 0.1830272
## area                0.8232689 0.1512931
## smoothness          0.5536952 0.5577748
## compactness         0.8311350 0.6026410
## concavity           0.9213910 0.5006666
## concave points      1.0000000 0.4624974
## symmetry            0.4624974 1.0000000
# Correlación entre variables 

ggpairs(datos) +
labs(title = "Diagrama de dispersión con correlaciones")+
theme_bw() +
theme(plot.title = element_text(hjust = 0.5)) 

# Grafico de las correlaciones
corrplot(cor(datos), order = "hclust", tl.col='black', tl.cex=1) 

PROCESO PARA VERIFICAR SI ES POSIBLE REALIZAR UN ANÁLISIS FACTORIAL A LA BASE DE DATOS.

det(matriz_correlaciones)
## [1] 2.987618e-05
Prueba de Hipotesis
  • H0: Las variables no estan correlacionadas

  • H1: las variables estan correlacionadas

# Calculo del estimador del Test de Bartlett

bartlett.test(datos)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  datos
## Bartlett's K-squared = 47426, df = 6, p-value < 2.2e-16
  • Como el p-value < 2.2e-16 < 0.05, rechazamos la hipotesis nula, a favor de la hipotesis alternativa, por lo tanto las variables estan correlacionadas.
# Test MSA o KMO: Medida de adecuación de la muestra MSA o KMO

KMO(datos)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = datos)
## Overall MSA =  0.77
## MSA for each item = 
##      perimeter           area     smoothness    compactness      concavity 
##           0.68           0.69           0.72           0.80           0.79 
## concave points       symmetry 
##           0.83           0.94
  • El anterior indicador nos dice como una variable puede ser explicada apartir de las demás. Puesto que cada variable tiene un valor mayor a 0.5, podemos concluir que es posible realizar el análisis factorial.

ANÁLISIS FACTORIAL:

Supuestos

  • Los datos no presentan valores atípicos muy influyentes.

  • El tamaño de la muestra es adecuado.

  • No hay multicolinealidad perfecta entre las variables.

  • Existe relación lineal entre las variables.

Prueba una solución factorial con 1 factor

datos.fa1<-factanal(datos,factors=1)

datos.fa1
## 
## Call:
## factanal(x = datos, factors = 1)
## 
## Uniquenesses:
##      perimeter           area     smoothness    compactness      concavity 
##          0.276          0.323          0.696          0.305          0.147 
## concave points       symmetry 
##          0.005          0.785 
## 
## Loadings:
##                Factor1
## perimeter      0.851  
## area           0.823  
## smoothness     0.551  
## compactness    0.833  
## concavity      0.923  
## concave points 0.998  
## symmetry       0.464  
## 
##                Factor1
## SS loadings      4.463
## Proportion Var   0.638
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 2449.98 on 14 degrees of freedom.
## The p-value is 0

Prueba una solución factorial con 2 factor

datos.fa2<-factanal(datos,factors=2)

datos.fa2
## 
## Call:
## factanal(x = datos, factors = 2)
## 
## Uniquenesses:
##      perimeter           area     smoothness    compactness      concavity 
##          0.018          0.005          0.458          0.110          0.096 
## concave points       symmetry 
##          0.034          0.566 
## 
## Loadings:
##                Factor1 Factor2
## perimeter      0.974   0.182  
## area           0.990   0.119  
## smoothness             0.731  
## compactness    0.403   0.853  
## concavity      0.604   0.735  
## concave points 0.756   0.628  
## symmetry               0.654  
## 
##                Factor1 Factor2
## SS loadings      3.041   2.671
## Proportion Var   0.434   0.382
## Cumulative Var   0.434   0.816
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 238.03 on 8 degrees of freedom.
## The p-value is 5.91e-47
  • La solución con dos factores resulta la más apropiada, por lo tanto trabajaremos con dos factores.
# Diagrama de arbol para interpretar el análisis de factores

modelo<-fa(matriz_correlaciones,rotate = "varimax",nfactors = 2,fm="minres")
fa.diagram(modelo)

# Fracción de la varianza total de la variable explicada por el factor.

apply(datos.fa2$loadings^2,1,sum)
##      perimeter           area     smoothness    compactness      concavity 
##      0.9822539      0.9950088      0.5421682      0.8895946      0.9040730 
## concave points       symmetry 
##      0.9658948      0.4333682
1-apply(datos.fa2$loadings^2,1,sum)
##      perimeter           area     smoothness    compactness      concavity 
##    0.017746149    0.004991218    0.457831833    0.110405437    0.095926956 
## concave points       symmetry 
##    0.034105180    0.566631804
Lambda<-datos.fa2$loadings
Psi<-diag(datos.fa2$uniquenesses)
S<-datos.fa2$correlation
Sigma<-Lambda%*%t(Lambda)+Psi


round(S-Sigma,6)
##                perimeter      area smoothness compactness concavity
## perimeter       0.000000  0.000026  -0.012306    0.008905 -0.005729
## area            0.000026 -0.000009   0.002451   -0.001886  0.001008
## smoothness     -0.012306  0.002451   0.000015    0.000070 -0.068575
## compactness     0.008905 -0.001886   0.000070    0.000004  0.013356
## concavity      -0.005729  0.001008  -0.068575    0.013356 -0.000003
## concave points  0.000074  0.000004   0.027609   -0.009080  0.003714
## symmetry       -0.006248  0.002430   0.073081    0.015666 -0.023489
##                concave points  symmetry
## perimeter            0.000074 -0.006248
## area                 0.000004  0.002430
## smoothness           0.027609  0.073081
## compactness         -0.009080  0.015666
## concavity            0.003714 -0.023489
## concave points       0.000000 -0.002799
## symmetry            -0.002799  0.000184
  • La matriz residual muestra números cercanos a 0, lo cual es una indicación que nuestro modelo factorial es una buena representación.

  • La unicidad corresponde a la proporción de variabilidad, que no puede explicarse mediante una combinación lineal de los factores y las cargas son la contribución de cada variable original al factor.

  • Como las variables tienen una baja unicidad, por lo tanto los factores dan cuenta de su varianza.

  • La variable perimeter tiene una carga alta, por lo tanto dicha variable esta bien explicada por el factor1.

  • La variable area tiene una carga alta, por lo tanto dicha variable esta bien explicada por el factor1.

  • La variable concave points_mean tiene una carga alta, por lo tanto dicha variable esta bien explicada por el factor1.

  • La variable compactness tiene una carga alta, por lo tanto dicha variable esta bien explicada por el factor2.

  • La variable smoothness tiene una carga alta, por lo tanto dicha variable estabien explicada por el factor2.

  • La variable concavity tiene una carga alta, por lo tanto dicha variable estabien explicada por el factor2.

  • La variable symmetry tiene una carga alta, por lo tanto dicha variable estabien explicada por el factor2.

  • Se observa que la mayoria de las variables tienen valores altos para la comunalidad.

  • Se observa que la mayoria de las variables tienen valores bajo de unicidad

  • Podemos concluir que nuestro modelo de factor es apropiado ya que posee valores bajos para la unicidad y valores altos para la comunalidad.

  • El Factor1 esta mas relacionado con las variables perimeter, area y concave points, así que este factor describe las dimensiones que compoenen el núcleo de las celulas cancerigenas.

  • El Factor2 esta mas relacionado con las variables smoothness, compactness, concavity, symmetry y concave points, así que este factor describe las irregularidades de la forma del núcleo de las celulas cancerigenas.

  • La variables smoothness no tienen relación con el Factor1.

  • Observamos que el Factor1 y el Factor2 estan explicando en total el 81,6% de la variación de los dtaos.

Prueba de Hipotesis
  • H0: El número de factores en el modelo, en nuestro caso dos factores no es suficiente para capturar la dimensionalidad completa del conjunto de datos.

  • H1: El número de factores en el modelo, en nuestro caso dos factores, es suficiente para capturar la dimensionalidad completa del conjunto de datos.

  • como el p-value < 5.91e-47 < 0.05, rechazamos la hipotesis nula, por lo tanto, el factor1 y el factor2 es suficiente para capturar la dimensionalidad del conjunto de datos.

Verificar si el número de factores es el apropiado.

REGLA DE Kaiser

Para determinar que efectivamente dos es el número de Factores adecuados, usaremos la regla de Kaiser la cual establece: calcular los valores propios de la matriz de correlación y conservar aquellos factores cuyos valores propios (eigenvalues) son mayores a la unidad.

# Determinar el número de Factores.

ev<-eigen(matriz_correlaciones)  # Obtención de loa autovalores.

ev
## eigen() decomposition
## $values
## [1] 4.649747861 1.452602451 0.448388433 0.315225609 0.088708521 0.035346390
## [7] 0.009980735
## 
## $vectors
##            [,1]        [,2]         [,3]        [,4]        [,5]        [,6]
## [1,] -0.3833763  0.44141012  0.069008751  0.25734309  0.23776895 -0.09734920
## [2,] -0.3689628  0.47146114  0.074613476  0.32868883  0.06500827 -0.27943272
## [3,] -0.2855983 -0.50206353 -0.628839424  0.49138106 -0.05324454 -0.15910908
## [4,] -0.4127042 -0.23127602 -0.089299016 -0.51369668  0.69955757 -0.02441467
## [5,] -0.4358866 -0.01545665 -0.008864521 -0.49027288 -0.62054082 -0.41701006
## [6,] -0.4533638  0.08655670 -0.076010918 -0.01972101 -0.24794623  0.84396877
## [7,] -0.2635566 -0.51922457  0.761840565  0.28220942 -0.02181364 -0.01865564
##             [,7]
## [1,]  0.72192876
## [2,] -0.66759163
## [3,]  0.03634291
## [4,] -0.11979649
## [5,]  0.10173297
## [6,] -0.08391664
## [7,]  0.00875683
  • Se observa que son dos los eigenvalues que están por encima de la unidad, por lo tanto efectivamente dos es el número adecuado de factores.
scree(matriz_correlaciones)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

  • En la gráfica se observa un punto de inflexión en la curva a apartir del factor dos.

Cálculo de las puntaciones Factoriales

scores <-factanal(datos, factors = 2, rotation = "none", scores = "regression")$scores

scores
##              Factor1      Factor2
##   [1,]  1.2999879918  2.898779293
##   [2,]  1.6978514807 -1.904311064
##   [3,]  1.6349806817  0.649366872
##   [4,] -0.3938940728  4.030544941
##   [5,]  1.7960571662 -0.335802412
##   [6,] -0.3021486754  2.046287636
##   [7,]  1.0534096817 -0.626711040
##   [8,] -0.1141611734  1.042307676
##   [9,] -0.1296666025  2.450596416
##  [10,] -0.2362588499  2.801687129
##  [11,]  0.2979460676 -1.331359383
##  [12,]  0.3958904110  0.125162412
##  [13,]  1.4914137176  1.187877578
##  [14,]  0.3594922541 -0.365630667
##  [15,]  0.0232139354  2.237794204
##  [16,]  0.1528992043  1.276858919
##  [17,]  0.0724450832 -0.336618764
##  [18,]  0.6068858920  1.663525427
##  [19,]  1.6310918667 -0.836874843
##  [20,] -0.2295002963  0.027713431
##  [21,] -0.3643360548  0.160105999
##  [22,] -1.1082792879  0.224040817
##  [23,]  0.3790560352  2.093649364
##  [24,]  1.9414998555 -1.561262863
##  [25,]  0.7783323718  0.645323769
##  [26,]  1.0131728038  2.537919086
##  [27,]  0.1642628897  1.602956342
##  [28,]  1.1993406024 -0.621623896
##  [29,]  0.3790604989  1.269765710
##  [30,]  0.8586940739 -0.274212701
##  [31,]  1.3790242475  1.264932568
##  [32,] -0.4991271728  1.334680193
##  [33,]  0.8907584501  1.634303477
##  [34,]  1.4067041296 -0.327571879
##  [35,]  0.5249547214  0.633933633
##  [36,]  0.6237763164 -0.075974905
##  [37,]  0.0036367986  0.414913019
##  [38,] -0.4280601115 -0.749710533
##  [39,]  0.0275571048 -1.166209314
##  [40,] -0.1921087041  0.599997587
##  [41,] -0.3321027110 -0.838547610
##  [42,] -0.6908450843  1.352400940
##  [43,]  1.3833418211  0.823858661
##  [44,] -0.2067818822  0.926634375
##  [45,] -0.2911585110  0.403164285
##  [46,]  1.2723315847  0.577068657
##  [47,] -1.3638776878  0.002407781
##  [48,] -0.2077847952  1.228500632
##  [49,] -0.5815260715  0.078222795
##  [50,] -0.2865498384 -0.381277788
##  [51,] -0.7228199181 -0.741481609
##  [52,] -0.3203654966 -1.086317819
##  [53,] -0.6885926340 -0.675941500
##  [54,]  1.1591571379  0.652541648
##  [55,]  0.0955882294 -0.899082867
##  [56,] -0.7347951375 -0.250231177
##  [57,]  1.3746472653 -0.399696527
##  [58,]  0.1360190234  1.071304519
##  [59,] -0.4873620763 -1.279706503
##  [60,] -1.2931216392 -0.016486001
##  [61,] -1.0123478902  0.247050423
##  [62,] -1.2722608026  0.478755109
##  [63,]  0.1827349785  1.891595208
##  [64,] -1.1234346459  0.522934983
##  [65,] -0.3194825785  1.172708366
##  [66,]  0.1976749850  1.262595584
##  [67,] -1.1307380546  0.180781046
##  [68,] -0.7819687164 -0.397381401
##  [69,] -0.9883288676  2.427538728
##  [70,] -0.4710918468 -0.481481718
##  [71,]  1.2714050653 -0.925853436
##  [72,] -1.1118430169  1.258968764
##  [73,]  0.8506314957  0.615485444
##  [74,] -0.1442335370  0.343026480
##  [75,] -0.5606744947 -0.404574030
##  [76,]  0.4562250187 -0.319966161
##  [77,] -0.1833941487  0.807896185
##  [78,]  1.1285779336  1.134461630
##  [79,]  2.0357465767  3.281758863
##  [80,] -0.4450894139 -0.267637671
##  [81,] -0.7264813411  0.149245747
##  [82,] -0.2341237666  1.300906915
##  [83,]  3.5202321957  0.786672239
##  [84,]  1.5359415344  1.277974111
##  [85,] -0.6366236576 -0.232139191
##  [86,]  1.1751409039 -0.331586063
##  [87,]  0.0163493758  0.156740211
##  [88,]  1.1801454012 -0.360328720
##  [89,] -0.5127273822  0.168536564
##  [90,]  0.0926666018  0.777056426
##  [91,] -0.0359606306 -0.789881473
##  [92,]  0.2783564135  0.267348556
##  [93,] -0.3576447782 -0.879158517
##  [94,] -0.3146352811 -0.423994093
##  [95,]  0.3051910797  1.236382347
##  [96,]  1.6503817503 -0.752016757
##  [97,] -0.5953928444 -0.136238223
##  [98,] -1.0970043628 -0.334365331
##  [99,] -0.6858283695  0.015825306
## [100,]  0.0232316038  0.299302076
## [101,] -0.1926595495 -0.042443095
## [102,] -1.5521001510  0.342286893
## [103,] -0.6268674196 -0.737943966
## [104,] -0.9863183435  0.668287240
## [105,] -0.9393378657  0.078229906
## [106,] -0.1045473875  2.421428672
## [107,] -0.6531007544  0.501737390
## [108,] -0.5826004733 -0.547837273
## [109,]  2.6754472974  2.590858246
## [110,] -0.7673308900 -0.255175183
## [111,] -1.0550346825  0.258769614
## [112,] -0.3869207011  0.908209344
## [113,]  0.1758863953  2.076056890
## [114,] -0.8623620741  0.852230829
## [115,] -1.2224501380  0.530915024
## [116,] -0.6482114991 -0.258074475
## [117,] -1.1339193651  0.848335102
## [118,]  0.2545837561  1.518155521
## [119,]  0.5410913215  1.538047236
## [120,]  0.8252487058 -1.189577663
## [121,] -0.7336678686 -0.134686983
## [122,]  1.1844177822 -0.278679905
## [123,]  3.3321909170  2.323526289
## [124,]  0.0148681778  0.310220778
## [125,] -0.3153088115 -0.524372992
## [126,] -0.2889720824 -1.137816272
## [127,] -0.2607934577 -0.419431357
## [128,]  1.2194345140 -1.539284476
## [129,]  0.2229704649  1.313677325
## [130,]  1.6050994255  0.652318731
## [131,] -0.5671062847  0.020513744
## [132,]  0.3670155705  0.713204856
## [133,]  0.4542843016 -0.040577652
## [134,]  0.3070636087 -0.295615971
## [135,]  1.1110226761 -0.917270728
## [136,] -0.4600417641 -0.489017756
## [137,] -0.6846748713 -0.241596018
## [138,] -0.7356798211 -0.037119924
## [139,]  0.2065203294  1.156270840
## [140,] -0.6992022360  0.807742508
## [141,] -1.1394669084 -0.502099043
## [142,]  0.4490312677 -0.206493578
## [143,] -0.7526490798 -0.046917028
## [144,] -0.4091309296 -0.169482072
## [145,] -0.9252794526 -0.603810676
## [146,] -0.6011161845  0.445790625
## [147,] -0.4328737790  2.117576121
## [148,]  0.0877004605 -0.363336340
## [149,] -0.0004403712  0.117695616
## [150,] -0.2904740941 -1.095112650
## [151,] -0.4125049897 -0.156739809
## [152,] -1.2431489817  1.346285076
## [153,] -0.7268803491  3.495112778
## [154,] -0.8247821211 -0.324069101
## [155,] -0.3217090168 -0.023085240
## [156,] -0.5859905959 -0.327341544
## [157,]  1.0051541184  0.956576687
## [158,]  0.5031509708 -1.547790155
## [159,] -0.6417012514 -0.568782710
## [160,] -0.9137535685 -0.839131581
## [161,] -0.6215479629  0.606311830
## [162,]  1.3960224689 -0.543307250
## [163,]  1.6847837551  0.890735619
## [164,] -0.5364824050  0.026843464
## [165,]  2.6560412496 -2.095861028
## [166,] -0.0143243318 -1.379776801
## [167,] -0.8902022523 -0.302858843
## [168,]  0.6307042906 -0.543484257
## [169,]  1.0388698670  0.835947696
## [170,]  0.0397917715 -0.713916896
## [171,] -0.5385934965  0.015319463
## [172,] -0.2869174790 -0.457113668
## [173,]  0.4496983605  1.801244816
## [174,] -0.8272391470 -0.135371241
## [175,] -0.9677982107 -0.703849148
## [176,] -1.3163273455 -0.337303384
## [177,] -0.9238745748  1.190637387
## [178,]  0.6334337016  0.849599868
## [179,] -0.5096615317 -1.625341468
## [180,] -0.5112347459 -1.063898360
## [181,]  4.3085739585 -0.915233586
## [182,]  2.0641023389  1.801191805
## [183,]  0.2881768923 -0.537748911
## [184,] -0.7293211166 -0.095639718
## [185,]  0.1158456214 -0.654888815
## [186,] -1.0544440063 -0.545203508
## [187,]  0.9895674850 -1.277411600
## [188,] -0.6759725597 -0.111547744
## [189,] -0.6988553143 -0.474569151
## [190,] -0.5907592548 -0.517664675
## [191,]  0.0593343290  1.952053709
## [192,] -0.4541936911 -0.467313516
## [193,] -1.1546993292 -0.796829984
## [194,] -0.4275029211  0.831564744
## [195,]  0.2539075878  1.604227469
## [196,] -0.4456264776 -0.649565006
## [197,] -0.0756865543  0.964268099
## [198,]  0.9548800073 -1.142866487
## [199,]  1.3264630799 -0.909468382
## [200,]  0.0379891128  0.484716752
## [201,] -0.5341162092  0.144063013
## [202,]  0.8426155836 -0.398266586
## [203,]  2.9730936948  0.785372621
## [204,]  0.0377062819  1.963130835
## [205,] -0.4567876662  0.353434678
## [206,]  0.1488468877 -0.539617442
## [207,] -1.0478661903  0.194660472
## [208,]  0.6310867056 -0.966813969
## [209,] -0.2683415031  0.723052437
## [210,]  0.1208542450 -1.103009690
## [211,]  1.7464318231 -0.652915502
## [212,] -0.6991494304 -0.505413249
## [213,]  4.7854233098 -2.278372732
## [214,]  0.8308586517 -0.300505669
## [215,] -0.0252660759  0.743046518
## [216,] -0.1201061600  0.795178468
## [217,] -0.6033418914  0.370842496
## [218,] -0.9944015451 -0.121897248
## [219,]  1.5549698291 -0.709974729
## [220,]  1.4649459252 -1.408426480
## [221,] -0.2824751166 -0.563146504
## [222,] -0.2193550793  0.335887416
## [223,] -0.9919505508  0.194511630
## [224,]  0.3487615581  0.210418751
## [225,] -0.3713653047 -0.805961764
## [226,] -0.0483991222 -0.257349901
## [227,] -0.9705169462 -0.107019648
## [228,]  0.0694701098 -0.416444704
## [229,] -0.4913446992 -0.510951149
## [230,] -0.2520729235  1.759129351
## [231,]  0.8448801535  1.236317939
## [232,] -0.8336944096 -0.880166497
## [233,] -0.8551401298 -0.809010612
## [234,]  1.7593382408 -1.228433042
## [235,] -1.1239157231 -0.230348437
## [236,] -0.2286146175 -0.999133318
## [237,]  2.7394045697 -0.893903799
## [238,]  1.6330548682 -2.055179749
## [239,] -0.0647969370 -0.094618795
## [240,]  0.8171959170  0.258573269
## [241,] -0.2498036590 -0.416160630
## [242,] -0.6035426497 -1.051438048
## [243,] -0.6851918129  0.950342464
## [244,] -0.2444084740 -0.761649588
## [245,]  1.4420446339  0.041183159
## [246,] -0.9025483880  0.247247859
## [247,] -0.4161600613 -1.101047451
## [248,] -0.3354572220  0.566726245
## [249,] -0.9120484934 -0.080454256
## [250,] -0.7076473679  0.103776280
## [251,]  2.0579217806  0.496702815
## [252,] -0.7435006901 -0.291959207
## [253,]  1.5977657512  0.351977925
## [254,]  0.8047108867 -0.057763712
## [255,]  1.4053361680 -0.592167724
## [256,] -0.0866482918  0.499554097
## [257,]  1.6471794387  0.486487732
## [258,]  0.4847747767  2.906312419
## [259,]  0.7429573885  3.686635793
## [260,]  0.4070130982  1.179871378
## [261,]  1.7109474143 -0.841103606
## [262,]  0.6197602323 -1.836852432
## [263,]  0.8331079032 -0.231135021
## [264,]  0.1865585491 -1.345730945
## [265,]  0.7338897554 -0.622845832
## [266,]  1.9729473571 -1.405085307
## [267,] -0.8506333487  0.547093845
## [268,] -0.3155485141 -0.672907205
## [269,] -0.4669251342 -0.593635954
## [270,] -0.8343419294  0.777509655
## [271,] -0.2169444715 -1.771311038
## [272,] -0.7664292100  0.034323725
## [273,]  2.3172997529 -0.393470877
## [274,] -1.0956437213 -0.149469587
## [275,]  0.8404606773 -1.532912564
## [276,] -0.5203574273  0.976158056
## [277,] -0.8323634816 -0.777004713
## [278,]  1.1202800231 -1.626028764
## [279,] -0.3435137497 -1.237353613
## [280,] -0.2084256281 -0.311209183
## [281,]  1.3945040357  0.096717804
## [282,] -0.6880962615 -0.384042306
## [283,]  1.4014983253 -0.079515646
## [284,]  0.5939576736  1.251509410
## [285,] -0.3717716440  0.004769673
## [286,] -0.5866023196 -1.157870091
## [287,] -0.5744191944  0.240151174
## [288,] -0.4945442390 -1.190451654
## [289,] -0.6400537970  1.103453655
## [290,] -0.7768460369 -0.310376149
## [291,]  0.1011929448  0.839362806
## [292,]  0.0906174960 -0.302482638
## [293,] -0.4039887863 -0.108392737
## [294,] -0.6723944962 -0.401104143
## [295,] -0.5072928086 -0.503950117
## [296,] -0.2864457009 -0.972126673
## [297,] -0.8918082839 -0.544904519
## [298,] -0.6494983495 -0.121858639
## [299,] -0.1755734923 -1.369640464
## [300,] -0.9421690672 -0.033050677
## [301,]  1.6169805400  0.317415267
## [302,] -0.5080670607  0.066796029
## [303,]  1.7798144827  0.821040691
## [304,] -0.9454905563 -0.080722980
## [305,] -0.7569807275 -0.355771754
## [306,] -0.7392477588 -0.587301579
## [307,] -0.4526313072 -1.242965494
## [308,] -1.2600709360 -0.504632188
## [309,] -0.3876280931 -1.532459320
## [310,] -0.4692391712 -1.255102887
## [311,] -0.7403595214 -0.590398171
## [312,] -0.0972202779 -1.471957933
## [313,] -0.4583593992 -0.404799768
## [314,] -0.7692091436 -0.601453647
## [315,] -1.3212153605 -0.033228817
## [316,] -0.6008856654 -1.181508379
## [317,] -0.6584250730 -1.104349429
## [318,]  1.0346031705 -0.451714124
## [319,] -0.9976310611  2.451307306
## [320,] -0.5879936398 -0.969429708
## [321,] -0.8859644928  0.857917871
## [322,]  1.6089031328 -1.466286331
## [323,] -0.4276703100 -0.078441697
## [324,]  1.8886905989  1.420005282
## [325,] -0.6161326681 -0.585405587
## [326,] -0.5065495656 -0.387075874
## [327,] -0.1863592948 -1.002018416
## [328,] -0.6994495147 -1.104199674
## [329,]  0.5514632445  0.698259267
## [330,]  0.5798443226  0.654949690
## [331,]  0.4571903440  0.270977851
## [332,] -0.3877339609  0.049212294
## [333,] -0.8269837762 -0.406750397
## [334,] -0.8500772569 -0.824798235
## [335,] -0.6369619080 -0.996935280
## [336,]  0.8224893372  0.404565687
## [337,] -0.4270876929 -0.350196425
## [338,]  1.1615393094 -0.822892826
## [339,] -1.0078159476  0.095871760
## [340,]  2.9443809493 -0.889341252
## [341,] -0.0240649952 -0.031828310
## [342,] -1.0527757201  0.586683517
## [343,] -0.7736067533  0.393840787
## [344,]  1.5613000344  0.083733003
## [345,] -0.6636423023  0.172135266
## [346,] -0.9573615034  0.205869146
## [347,] -0.6791436724 -0.827360052
## [348,] -0.0070464609 -0.741148865
## [349,] -0.7508965330 -0.298712891
## [350,] -0.6579917102  0.189542024
## [351,] -0.7516825341 -0.855395524
## [352,]  0.6233982962  2.947632673
## [353,]  3.8115364935  0.411241911
## [354,]  0.2189670110  0.192681165
## [355,] -0.8157433594 -0.392909671
## [356,] -0.4254537585  0.369654824
## [357,] -0.3079746891  0.868050722
## [358,] -0.2594061046 -1.065857446
## [359,] -1.1872365577  0.449276767
## [360,] -1.1230399545 -0.024257106
## [361,] -0.5860450792 -1.315338296
## [362,] -0.3613777527 -0.655887831
## [363,] -0.4971066648 -0.489956488
## [364,]  0.4610738111 -0.893127470
## [365,] -0.3769473366 -1.004921709
## [366,]  1.6732337389 -1.407868329
## [367,]  1.7116973120  0.337941009
## [368,] -0.5935545519 -0.347788759
## [369,]  2.2451889280 -2.099177904
## [370,]  2.4048202455  0.550651848
## [371,]  0.6439820606  0.855480522
## [372,]  0.0732467060 -1.140996226
## [373,]  2.0770640777 -0.095031072
## [374,]  1.8082855469 -1.136199087
## [375,] -0.2869224999 -0.863030071
## [376,]  0.3992066823 -0.114446503
## [377,] -0.7087997593  2.168618571
## [378,] -0.3707895688 -1.268824127
## [379,] -0.2608475470 -0.663800538
## [380,] -0.6263708696  2.433864460
## [381,] -0.6650220700  1.142662591
## [382,] -0.8272950141 -0.116212372
## [383,] -0.5698670590 -0.004088033
## [384,] -0.5188911854  0.311310524
## [385,] -0.3429293775 -0.405802759
## [386,]  0.0273650567 -0.331508290
## [387,] -0.5619790742 -0.202103536
## [388,] -0.2853499626 -1.372951048
## [389,] -0.7153624526  0.452008819
## [390,]  1.4936175374 -0.020789225
## [391,] -0.9729341123  0.062792185
## [392,] -1.2815701164 -0.026013796
## [393,]  0.4153044796  1.336935262
## [394,]  2.2677665649  1.241641281
## [395,] -0.5767410695  0.214560562
## [396,] -0.1883569527 -0.863086468
## [397,] -0.2078439283  0.482267969
## [398,] -0.3947682187  0.001211034
## [399,] -0.8639608603 -0.667648910
## [400,] -0.6876762385 -0.431595305
## [401,]  1.2344864513  2.333201053
## [402,] -0.6612550434 -0.576135475
## [403,] -0.4174737313 -0.615827673
## [404,] -0.4453444961 -0.328370407
## [405,] -0.5900606284 -0.693845645
## [406,] -0.8086637045  0.132791905
## [407,]  0.3596912509 -0.804883336
## [408,] -0.4441388796 -0.522668445
## [409,]  0.9882494292  0.031331603
## [410,] -0.5687341319 -0.323308768
## [411,] -0.7678166635 -0.377297965
## [412,] -0.8117770812  0.077229609
## [413,] -1.1637581727 -0.274394774
## [414,]  0.0898061155 -0.437478782
## [415,]  0.0802689725 -1.200586046
## [416,] -0.6550234302 -0.157364576
## [417,] -1.1415664236  0.085734655
## [418,]  0.5082855400  0.927426812
## [419,] -0.5045062701 -0.614908638
## [420,] -0.8449253703 -0.452512570
## [421,] -0.7307260731 -0.190297448
## [422,]  0.1343543679  1.069529655
## [423,] -0.6308348194  0.780992023
## [424,] -0.1741090085  0.294035430
## [425,] -1.0632536594  0.373672780
## [426,] -1.0771560242 -0.593759057
## [427,] -0.9048874501  0.431149889
## [428,] -0.8865896951 -0.229862904
## [429,] -0.8493958064 -0.659780013
## [430,] -0.5138038258 -0.931868442
## [431,]  0.3586411568  2.319666426
## [432,] -0.4970574007  0.380021630
## [433,]  1.7546043204  0.407106296
## [434,]  1.2843085437 -0.144115139
## [435,] -0.0185119931 -0.954375557
## [436,] -0.0683511244  0.616238721
## [437,] -0.4620605279 -0.522726055
## [438,] -0.1853936194 -0.815615899
## [439,] -0.2526478427 -0.953728901
## [440,] -0.2102905332 -0.985681545
## [441,] -0.7523998462  0.606114574
## [442,]  0.7367494196 -0.670578882
## [443,] -0.2986769466 -1.173442785
## [444,] -0.9560850682 -0.333737387
## [445,]  0.9135011362 -0.646120847
## [446,] -0.5683713717  0.364560245
## [447,]  0.9674885512  0.094158955
## [448,] -0.0120006276 -0.839862226
## [449,] -0.0302158600 -0.688257401
## [450,]  1.9975925445 -0.730289040
## [451,] -0.6275486126 -0.017838582
## [452,]  1.4714462133 -0.623312320
## [453,] -0.6444748764 -0.434750868
## [454,]  0.0212759066  0.190966026
## [455,] -0.5122007359 -0.597375593
## [456,] -0.3104264155 -0.547845588
## [457,] -0.6923205185  0.017010850
## [458,] -0.4017245566 -0.821352884
## [459,] -0.4620496521 -0.905290905
## [460,] -1.1029322413 -0.358940997
## [461,]  0.7442255980 -0.471357028
## [462,]  4.8306764406 -1.571147862
## [463,] -0.1287687438 -1.267006491
## [464,] -0.7355113574 -0.453841297
## [465,] -0.3755425531 -0.651018347
## [466,] -0.3030486353  0.017415659
## [467,] -0.3081845875  0.112153930
## [468,] -1.1245560543 -0.344914967
## [469,]  1.0569218841  0.987325685
## [470,] -0.5744777100  1.361773167
## [471,] -1.0824435906  0.077335164
## [472,] -0.6249614762 -0.409208038
## [473,]  0.0402649570 -0.773131894
## [474,] -0.6639399862 -1.234334448
## [475,] -0.8483969357  0.224110532
## [476,] -0.4276593431 -0.192961499
## [477,] -0.1244194433 -0.436451617
## [478,] -0.2606370344 -1.225069693
## [479,] -0.7269201904  0.001045890
## [480,]  0.6403118042  1.453321048
## [481,] -0.6154801266 -0.498668816
## [482,] -0.2356199337 -1.056924855
## [483,] -0.2494436853  0.392760667
## [484,] -0.2634472823 -0.392334300
## [485,]  0.3209520338  0.264239585
## [486,] -0.3878268492  1.148728674
## [487,] -0.0373730467 -0.946759160
## [488,]  1.5318223178  0.564099185
## [489,] -0.6554913049  0.246777980
## [490,]  0.4316970328 -1.625662398
## [491,] -0.6144073083 -0.833674346
## [492,]  0.7990835077 -1.838997508
## [493,]  0.9973577930 -0.218187130
## [494,] -0.5985458956 -1.034496493
## [495,] -0.4238302798 -1.063438686
## [496,]  0.0704854047 -0.369062510
## [497,] -0.3982285276  0.728454775
## [498,] -0.5276930923 -0.409240870
## [499,]  1.1852701857 -0.054871331
## [500,]  1.9008165144  0.074970633
## [501,]  0.1586353540  0.250553752
## [502,] -0.0277261858  1.314230005
## [503,] -0.4830993468  0.301771199
## [504,]  2.6720716198 -1.810643287
## [505,] -0.9863151527  2.639357749
## [506,] -0.8769862325  2.662785783
## [507,] -0.5591247315  0.313579808
## [508,] -0.7647457011  0.760936378
## [509,]  0.3966378923 -0.982523918
## [510,]  0.4014882536  1.512173662
## [511,] -0.6455180751  0.013264859
## [512,] -0.0213633601 -1.174129332
## [513,] -0.1082704432  1.518069444
## [514,]  0.0063020449 -0.246753080
## [515,]  0.1100263322 -0.503679868
## [516,] -0.7512800630  0.165150004
## [517,]  1.1568971743  0.061966279
## [518,]  1.5516774111 -0.484104287
## [519,] -0.3612715450  0.925044495
## [520,] -0.4503462608  0.155505556
## [521,] -1.1075948078  1.003394835
## [522,]  3.2576305876 -0.517242367
## [523,] -0.8473101960 -0.774417411
## [524,] -0.2291492235 -0.075135452
## [525,] -1.0392012097  0.192306548
## [526,] -1.2703349991  0.331142302
## [527,] -0.2941420888 -0.079769845
## [528,] -0.5623638660 -0.397613517
## [529,] -0.0873571816  0.679281908
## [530,] -0.5993026006  0.016316623
## [531,] -0.6141689092  0.456348729
## [532,] -0.6899070335  0.035152852
## [533,] -0.2977503515 -0.848552793
## [534,]  1.7746662083 -0.556625496
## [535,] -0.8082837569  0.291208519
## [536,]  1.9241479117  0.523181463
## [537,]  0.0187597030  0.653724338
## [538,] -0.6186867243  1.074765995
## [539,] -1.4627474507 -0.165170991
## [540,] -1.3869911597  1.007632624
## [541,] -0.6963318855  0.351054411
## [542,]  0.0206240224 -0.055481114
## [543,] -0.0231807319 -0.853840239
## [544,] -0.3600810029 -0.496879481
## [545,] -0.2346685832 -0.509117325
## [546,] -0.2913281547 -0.720079432
## [547,] -1.0150824283 -0.415685356
## [548,] -0.9547719264  0.190064851
## [549,] -1.1155974173 -0.277985537
## [550,] -0.9011260507 -0.407059934
## [551,] -0.9413047230 -0.875054103
## [552,] -0.7946874157  0.116371404
## [553,] -0.5035989883 -0.968746135
## [554,] -1.1584212379  0.017006944
## [555,] -0.4422775041 -0.571015787
## [556,] -0.9440384837  0.273334334
## [557,] -1.0254978502 -0.115832819
## [558,] -1.1887564392 -0.485435707
## [559,]  0.0248105542 -0.119883007
## [560,] -0.6526193497  0.596722078
## [561,] -0.1395103492 -0.110982164
## [562,] -0.8785107211 -1.123336374
## [563,]  0.4158601643  2.058378037
## [564,]  2.1339086183  1.463320125
## [565,]  2.3032883319 -0.146526268
## [566,]  1.6491806987 -0.770461437
## [567,]  0.5417678250 -0.669547448
## [568,]  1.9910994665  2.372715525
## [569,] -1.4657573224 -0.423154664
pairs(scores) 

scatterplot3d(scores, angle=35, col.grid="lightblue", main="Grafica de las
puntuaciones", pch=20)

CONCLUSIÓN

Mediante la técnica del análisis factorial podemos identificar como se puede diagnosticar que una celula sea cancerigena de acuerdo a las caracteristicas descritas anteriormente.

REFERENCIAS