Health and income outcomes for 184 countries from 1960 to 2016. Also includes two character vectors, oecd and opec, with the names of OECD and OPEC countries from 2016.
Created two charts using functions of the ggplot,ggthemes,ggrepel and tidyverse.
library(ggthemes)
library(ggrepel)
## Loading required package: ggplot2
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ tibble 3.0.6 ✓ dplyr 1.0.4
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.1
## ✓ purrr 0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dslabs)
list.files(system.file("script", package = "dslabs"))
## [1] "make-admissions.R"
## [2] "make-brca.R"
## [3] "make-brexit_polls.R"
## [4] "make-death_prob.R"
## [5] "make-divorce_margarine.R"
## [6] "make-gapminder-rdas.R"
## [7] "make-greenhouse_gases.R"
## [8] "make-historic_co2.R"
## [9] "make-mnist_27.R"
## [10] "make-movielens.R"
## [11] "make-murders-rda.R"
## [12] "make-na_example-rda.R"
## [13] "make-nyc_regents_scores.R"
## [14] "make-olive.R"
## [15] "make-outlier_example.R"
## [16] "make-polls_2008.R"
## [17] "make-polls_us_election_2016.R"
## [18] "make-reported_heights-rda.R"
## [19] "make-research_funding_rates.R"
## [20] "make-stars.R"
## [21] "make-temp_carbon.R"
## [22] "make-tissue-gene-expression.R"
## [23] "make-trump_tweets.R"
## [24] "make-weekly_us_contagious_diseases.R"
## [25] "save-gapminder-example-csv.R"
wrangle_files <- list.files(system.file("script", package = "dslabs"), full.names = TRUE)
wrangle_files[[25]]
## [1] "/Library/Frameworks/R.framework/Versions/4.0/Resources/library/dslabs/script/save-gapminder-example-csv.R"
data("gapminder", package = "dslabs")
gapminder <- gapminder %>% as_tibble
gapminder <- gapminder %>% as_tibble()
gapminder %>% head(2)
## # A tibble: 2 x 9
## country year infant_mortality life_expectancy fertility population gdp
## <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Albania 1960 115. 62.9 6.19 1636054 NA
## 2 Algeria 1960 148. 47.5 7.65 11124892 1.38e10
## # … with 2 more variables: continent <fct>, region <fct>
####Chunk4 - Summarizing fertility and life expectancy of the continents and labeling years using ggrepel
years <- c("1960", "1970", "1980", "1990", "2000", "2010")
plot <- gapminder %>%
dplyr::filter(year %in% years) %>%
group_by(continent, year) %>%
summarise(mean_life_expectancy = mean(life_expectancy),
mean_fertility = mean(fertility)) %>%
ggplot(aes(x = mean_fertility,
y = mean_life_expectancy)) +
ggtitle("Summarizing mean of fertility and life expectancy of the continents ")+
geom_point(aes(colour = continent), alpha = 0.7) +
geom_label_repel(aes(label=year), size = 2.5, box.padding = .5) +
guides(colour = guide_legend(override.aes = list(alpha = 1)))
## `summarise()` has grouped output by 'continent'. You can override using the `.groups` argument.
plot+theme_dark()
plot2 <- gapminder %>%
dplyr::group_by(continent, year) %>%
dplyr::filter(year %in% years) %>%
summarise(sum_population = sum(population, na.rm = TRUE),
mean_life_exp = mean(life_expectancy, na.rm = TRUE)) %>%
ggplot(aes(x = year,
y = log10(sum_population))) +
geom_point(aes(colour = continent,
size = mean_life_exp,
alpha = 0.5)) +
geom_line(aes(group = continent,
colour = continent)) +
guides(colour = guide_legend(override.aes = list(alpha = 1)))+
ggtitle("Summarizing mean life expectancy of total population per year of the continents ")
## `summarise()` has grouped output by 'continent'. You can override using the `.groups` argument.
plot2+theme_linedraw()