Chapter 9 - Markov Chain Monte Carlo

This chapter has been an informal introduction to Markov chain Monte Carlo (MCMC) estimation. The goal has been to introduce the purpose and approach MCMC algorithms. The major algorithms introduced were the Metropolis, Gibbs sampling, and Hamiltonian Monte Carlo algorithms. Each has its advantages and disadvantages. The ulam function in the rethinking package was introduced. It uses the Stan (mc-stan.org) Hamiltonian Monte Carlo engine to fit models as they are defined in this book. General advice about diagnosing poor MCMC fits was introduced by the use of a couple of pathological examples.

Place each answer inside the code chunk (grey box). The code chunks should contain a text response or a code that completes/answers the question or activity requested. Make sure to include plots if the question requests them. Problems are labeled Easy (E), Medium (M), and Hard(H).

Finally, upon completion, name your final output .html file as: YourName_ANLY505-Year-Semester.html and publish the assignment to your R Pubs account and submit the link to Canvas. Each question is worth 5 points.

Questions

9E1. Which of the following is a requirement of the simple Metropolis algorithm?

  1. The parameters must be discrete.
  2. The likelihood function must be Gaussian.
  3. The proposal distribution must be symmetric.
# 3. The proposal distribution must be symmetric.

9E2. Gibbs sampling is more efficient than the Metropolis algorithm. How does it achieve this extra efficiency? Are there any limitations to the Gibbs sampling strategy?

# Gibbs sampling uses conjugate priors which allows it to make smarter proposals and is thus more efficient. The downside to this, is that it uses conjugate priors which might not be a good or valid prior from a scientific perspective. Also, it becomes quite inefficient with complex models of hundreds or more parameter.

9E3. Which sort of parameters can Hamiltonian Monte Carlo not handle? Can you explain why?

# Hamiltonian Monte Carlo can not handle discrete parameter.
# Because it cannot glide through discrete parameters without slopes.

9E4. Explain the difference between the effective number of samples, n_eff as calculated by Stan, and the actual number of samples.

# N_effective aims to estimate the number of 'ideal' samples. Ideal samples are entirely uncorrelated. Due to way MCMC works each next sample is actually correlated with the previous one to some extent. 
# n_eff as calculted by Stan: an estimated of effective number of samples, for the purpose of estimating the posterior mean.
# The actual number of samples: samples we use for accurate inference.

9E5. Which value should Rhat approach, when a chain is sampling the posterior distribution correctly?

#Rhat should approach 1 when a chain is sampling the posterior distribution correctly.

9E6. Sketch a good trace plot for a Markov chain, one that is effectively sampling from the posterior distribution. What is good about its shape? Then sketch a trace plot for a malfunctioning Markov chain. What about its shape indicates malfunction?

library(rethinking)
data(rugged)
d <- rugged
d$log_gdp <- log(d$rgdppc_2000)
dd <- d[ complete.cases(d$rgdppc_2000) , ]
dd$log_gdp_std <- dd$log_gdp / mean(dd$log_gdp)
dd$rugged_std <- dd$rugged / max(dd$rugged)
dd$cid <- ifelse( dd$cont_africa == 1 , 1 , 2)
m9e6 <- quap(
            alist(
                log_gdp_std ~ dnorm(mu, sigma),
                mu <- a[cid] + b[cid]*( rugged_std - 0.215 ),
                a[cid] ~ dnorm(1, 0.1 ),
                b[cid] ~ dnorm(0, 0.3 ),
                sigma ~ dexp(1)), 
            data = dd)
precis(m9e6 , depth = 2)
##             mean          sd        5.5%       94.5%
## a[1]   0.8865625 0.015674453  0.86151166  0.91161327
## a[2]   1.0505688 0.009935809  1.03468943  1.06644811
## b[1]   0.1325063 0.074198790  0.01392226  0.25109025
## b[2]  -0.1425545 0.054745129 -0.23004781 -0.05506123
## sigma  0.1094852 0.005934095  0.10000140  0.11896906
dat_slim <- list(
                log_gdp_std = dd$log_gdp_std,
                rugged_std = dd$rugged_std,
                cid = as.integer( dd$cid ))
str(dat_slim)
## List of 3
##  $ log_gdp_std: num [1:170] 0.88 0.965 1.166 1.104 0.915 ...
##  $ rugged_std : num [1:170] 0.138 0.553 0.124 0.125 0.433 ...
##  $ cid        : int [1:170] 1 2 2 2 2 2 2 2 2 1 ...
m9.1 <- ulam(
    alist(
        log_gdp_std ~ dnorm( mu , sigma ) ,
        mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
        a[cid] ~ dnorm( 1 , 0.1 ) ,
        b[cid] ~ dnorm( 0 , 0.3 ) ,
        sigma ~ dexp( 1 )
    ) , data=dat_slim , chains=4 , cores=4 )

show( m9.1 )
## Hamiltonian Monte Carlo approximation
## 2000 samples from 4 chains
## 
## Sampling durations (seconds):
##         warmup sample total
## chain:1   0.65   0.34  0.99
## chain:2   0.55   0.54  1.08
## chain:3   0.53   0.39  0.92
## chain:4   0.48   0.40  0.88
## 
## Formula:
## log_gdp_std ~ dnorm(mu, sigma)
## mu <- a[cid] + b[cid] * (rugged_std - 0.215)
## a[cid] ~ dnorm(1, 0.1)
## b[cid] ~ dnorm(0, 0.3)
## sigma ~ dexp(1)
traceplot( m9.1 )

y <- c(-1,1)
set.seed(11)
m9.2 <- ulam(
    alist(
        y ~ dnorm( mu , sigma ) ,
         mu <- alpha ,
    alpha ~ dnorm( 0 , 1000 ) ,
    sigma ~ dexp( 0.0001 )
) , data=list(y=y) , chains=3 )
## 
## SAMPLING FOR MODEL 'd26c527083e7eda89b17a8c2eccd6019' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:   1 / 1000 [  0%]  (Warmup)
## Chain 1: Iteration: 100 / 1000 [ 10%]  (Warmup)
## Chain 1: Iteration: 200 / 1000 [ 20%]  (Warmup)
## Chain 1: Iteration: 300 / 1000 [ 30%]  (Warmup)
## Chain 1: Iteration: 400 / 1000 [ 40%]  (Warmup)
## Chain 1: Iteration: 500 / 1000 [ 50%]  (Warmup)
## Chain 1: Iteration: 501 / 1000 [ 50%]  (Sampling)
## Chain 1: Iteration: 600 / 1000 [ 60%]  (Sampling)
## Chain 1: Iteration: 700 / 1000 [ 70%]  (Sampling)
## Chain 1: Iteration: 800 / 1000 [ 80%]  (Sampling)
## Chain 1: Iteration: 900 / 1000 [ 90%]  (Sampling)
## Chain 1: Iteration: 1000 / 1000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.21 seconds (Warm-up)
## Chain 1:                0.017 seconds (Sampling)
## Chain 1:                0.227 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'd26c527083e7eda89b17a8c2eccd6019' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:   1 / 1000 [  0%]  (Warmup)
## Chain 2: Iteration: 100 / 1000 [ 10%]  (Warmup)
## Chain 2: Iteration: 200 / 1000 [ 20%]  (Warmup)
## Chain 2: Iteration: 300 / 1000 [ 30%]  (Warmup)
## Chain 2: Iteration: 400 / 1000 [ 40%]  (Warmup)
## Chain 2: Iteration: 500 / 1000 [ 50%]  (Warmup)
## Chain 2: Iteration: 501 / 1000 [ 50%]  (Sampling)
## Chain 2: Iteration: 600 / 1000 [ 60%]  (Sampling)
## Chain 2: Iteration: 700 / 1000 [ 70%]  (Sampling)
## Chain 2: Iteration: 800 / 1000 [ 80%]  (Sampling)
## Chain 2: Iteration: 900 / 1000 [ 90%]  (Sampling)
## Chain 2: Iteration: 1000 / 1000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.217 seconds (Warm-up)
## Chain 2:                0.048 seconds (Sampling)
## Chain 2:                0.265 seconds (Total)
## Chain 2: 
## 
## SAMPLING FOR MODEL 'd26c527083e7eda89b17a8c2eccd6019' NOW (CHAIN 3).
## Chain 3: 
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3: 
## Chain 3: 
## Chain 3: Iteration:   1 / 1000 [  0%]  (Warmup)
## Chain 3: Iteration: 100 / 1000 [ 10%]  (Warmup)
## Chain 3: Iteration: 200 / 1000 [ 20%]  (Warmup)
## Chain 3: Iteration: 300 / 1000 [ 30%]  (Warmup)
## Chain 3: Iteration: 400 / 1000 [ 40%]  (Warmup)
## Chain 3: Iteration: 500 / 1000 [ 50%]  (Warmup)
## Chain 3: Iteration: 501 / 1000 [ 50%]  (Sampling)
## Chain 3: Iteration: 600 / 1000 [ 60%]  (Sampling)
## Chain 3: Iteration: 700 / 1000 [ 70%]  (Sampling)
## Chain 3: Iteration: 800 / 1000 [ 80%]  (Sampling)
## Chain 3: Iteration: 900 / 1000 [ 90%]  (Sampling)
## Chain 3: Iteration: 1000 / 1000 [100%]  (Sampling)
## Chain 3: 
## Chain 3:  Elapsed Time: 0.214 seconds (Warm-up)
## Chain 3:                0.097 seconds (Sampling)
## Chain 3:                0.311 seconds (Total)
## Chain 3:
## Warning: There were 152 divergent transitions after warmup. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.08, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#tail-ess
show( m9.2 )
## Hamiltonian Monte Carlo approximation
## 1500 samples from 3 chains
## 
## Sampling durations (seconds):
##         warmup sample total
## chain:1   0.21   0.02  0.23
## chain:2   0.22   0.05  0.26
## chain:3   0.21   0.10  0.31
## 
## Formula:
## y ~ dnorm(mu, sigma)
## mu <- alpha
## alpha ~ dnorm(0, 1000)
## sigma ~ dexp(1e-04)
traceplot( m9.2 )

9E7. Repeat the problem above, but now for a trace rank plot.

trankplot( m9.1 )

trankplot( m9.2 )

9M1. Re-estimate the terrain ruggedness model from the chapter, but now using a uniform prior for the standard deviation, sigma. The uniform prior should be dunif(0,1). Visualize the priors. Use ulam to estimate the posterior. Visualize the posteriors for both models. Does the different prior have any detectible influence on the posterior distribution of sigma? Why or why not?

data(rugged)
d <- rugged
d$log_gdp <- log(d$rgdppc_2000)
dd <- d[ complete.cases(d$rgdppc_2000) , ]

dd$log_gdp_std <- dd$log_gdp/ mean(dd$log_gdp)
dd$rugged_std<- dd$rugged/max(dd$rugged)

dd$cid<-ifelse(dd$cont_africa==1,1,2)

m9.3 <- quap(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]* (rugged_std-0.215) ,
    a[cid] ~ dnorm(1,0.1),
    b[cid] ~ dnorm(0,0.3),
    sigma ~ dexp(1)
  ) , 
  data=dd)

precis(m9.3 , depth=2)
##             mean          sd        5.5%       94.5%
## a[1]   0.8865660 0.015675078  0.86151419  0.91161779
## a[2]   1.0505679 0.009936208  1.03468791  1.06644787
## b[1]   0.1325350 0.074201585  0.01394649  0.25112342
## b[2]  -0.1425568 0.054747270 -0.23005354 -0.05506012
## sigma  0.1094897 0.005934696  0.10000487  0.11897445
pairs(m9.3)

m9.3_unif <- quap(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]* (rugged_std-0.215) ,
    a[cid] ~ dnorm(1,0.1),
    b[cid] ~ dnorm(0,0.3),
    sigma ~ dunif(0,1)
  ) , 
  data=dd)

precis(m9.3_unif , depth=2)
##             mean          sd        5.5%       94.5%
## a[1]   0.8865646 0.015680645  0.86150390  0.91162530
## a[2]   1.0505685 0.009939796  1.03468276  1.06645419
## b[1]   0.1325028 0.074227013  0.01387368  0.25113189
## b[2]  -0.1425733 0.054766564 -0.23010089 -0.05504579
## sigma  0.1095296 0.005940112  0.10003617  0.11902306
pairs(m9.3_unif)

#No influence on the posterior distribution.

9M2. Modify the terrain ruggedness model again. This time, change the prior for b[cid] to dexp(0.3). What does this do to the posterior distribution? Can you explain it?

m9.3_exp <- quap(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]* (rugged_std-0.215) ,
    a[cid] ~ dnorm(1,0.1),
    b[cid] ~ dnorm(0,0.3),
    sigma ~ dexp(0.3)
  ) , 
  data=dd)

precis(m9.3_exp , depth=2)
##             mean          sd        5.5%       94.5%
## a[1]   0.8865649 0.015679232  0.86150647  0.91162335
## a[2]   1.0505696 0.009938884  1.03468537  1.06645388
## b[1]   0.1325026 0.074220566  0.01388385  0.25112145
## b[2]  -0.1425740 0.054761661 -0.23009371 -0.05505429
## sigma  0.1095195 0.005938737  0.10002822  0.11901072
pairs(m9.3_exp)

#Again no apparent difference in the posterior distribution

9M3. Re-estimate one of the Stan models from the chapter, but at different numbers of warmup iterations. Be sure to use the same number of sampling iterations in each case. Compare the n_eff values. How much warmup is enough?

m9.3 <- ulam(
    alist(
        log_gdp_std ~ dnorm( mu , sigma ) ,
        mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
        a[cid] ~ dnorm( 1 , 0.1 ) ,
        b[cid] ~ dnorm( 0 , 0.3 ) ,
        sigma ~ dexp( 1 )
    ) , data=dat_slim , chains=4 , cores=4, warmup=5, iter=1000 )
## Warning: There were 2463 divergent transitions after warmup. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: There were 3 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.89, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#tail-ess
precis( m9.3 , depth=2 )
##              mean          sd        5.5%     94.5% n_eff    Rhat4
## a[1]  0.866750646 0.041982732  0.80129303 0.9097514   NaN 2.885977
## a[2]  1.054476191 0.009899956  1.03937404 1.0653752   NaN 1.352973
## b[1]  0.167221061 0.272619673 -0.01984105 0.8207163   NaN 1.718707
## b[2]  0.001712412 0.261244648 -0.22077115 0.3949069   NaN 2.237177
## sigma 0.153691002 0.160433223  0.09874036 0.2458100   NaN 1.074891
pairs( m9.3 )

traceplot(m9.3)

9H1. Run the model below and then inspect the posterior distribution and explain what it is accomplishing.

mh <- ulam(
 alist(
   a ~ dnorm(0,1),
   b ~ dcauchy(0,1)
 ), data=list(y=1) , chains=1 )
## 
## SAMPLING FOR MODEL 'bcf56ee89f6cf2a4224a4139ff01c7d4' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:   1 / 1000 [  0%]  (Warmup)
## Chain 1: Iteration: 100 / 1000 [ 10%]  (Warmup)
## Chain 1: Iteration: 200 / 1000 [ 20%]  (Warmup)
## Chain 1: Iteration: 300 / 1000 [ 30%]  (Warmup)
## Chain 1: Iteration: 400 / 1000 [ 40%]  (Warmup)
## Chain 1: Iteration: 500 / 1000 [ 50%]  (Warmup)
## Chain 1: Iteration: 501 / 1000 [ 50%]  (Sampling)
## Chain 1: Iteration: 600 / 1000 [ 60%]  (Sampling)
## Chain 1: Iteration: 700 / 1000 [ 70%]  (Sampling)
## Chain 1: Iteration: 800 / 1000 [ 80%]  (Sampling)
## Chain 1: Iteration: 900 / 1000 [ 90%]  (Sampling)
## Chain 1: Iteration: 1000 / 1000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.068 seconds (Warm-up)
## Chain 1:                0.043 seconds (Sampling)
## Chain 1:                0.111 seconds (Total)
## Chain 1:
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#tail-ess
precis( mh , 2 )
##         mean       sd      5.5%    94.5%    n_eff     Rhat4
## a 0.01970059 1.003625 -1.588892 1.581670 166.3882 0.9997709
## b 0.31391634 4.154126 -3.900423 4.922082 212.4399 1.0062750
pairs( mh )

traceplot(mh)

Compare the samples for the parameters a and b. Can you explain the different trace plots? If you are unfamiliar with the Cauchy distribution, you should look it up. The key feature to attend to is that it has no expected value. Can you connect this fact to the trace plot?

#Plot a has a normal distribution and plot b has a Cauchy distribution because it has some extreme values.