1 Set up R environment.

library(tidyverse)
library(ggplot2)
library(ggpubr)
library(plyr)
library(magick)
library(png)
library(lme4)
library(lmerTest)
library(irrNA)
library(psy)
library(coefficientalpha)
library(parameters)
library(dplyr)

2 Meta-cognitive judgments of change detection ability.

2.1 New subjects.

2.1.1 Rensink.

2.1.1.1 Read-in datafiles.

rensink_new <- list.files(path = "/Users/adambarnas/Box/MetaAwareness/data/Rensink_New", pattern = "*.csv", full.names = T, ignore.case = F) %>%
  map_df(~read.csv(., colClasses=c("gender..m.f."="character", "a"="character", "tp_a"="character")))

Get a count of the number of new subjects.

nrow(rensink_new %>% distinct(workerId,.keep_all = FALSE))
## [1] 36

2.1.1.2 Analyze catch trials.

rensink_new_bad_catch <- rensink_new %>% 
  group_by(workerId) %>% 
  filter(any(Cow_resp.keys < 4) | (any(Garden_resp.keys > 2)))
nrow(rensink_new_bad_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 15
rensink_new_good_catch <- rensink_new %>% 
  group_by(workerId) %>% 
  filter(any(Cow_resp.keys >= 4) & (any(Garden_resp.keys <= 2) | is.na(any(Garden_resp.keys))))
nrow(rensink_new_good_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 21

2.1.1.3 Count number of ratings.

rensink_new_good_catch = subset(rensink_new_good_catch, select = c(user_resp.keys,user_resp.rt,workerId,image_a))
col_idx <- grep("workerId", names(rensink_new_good_catch))
rensink_new_good_catch <- rensink_new_good_catch[, c(col_idx, (1:ncol(rensink_new_good_catch))[-col_idx])]
rensink_new_good_catch <- data.frame(na.omit(rensink_new_good_catch))
rensink_new_good_catch <- rensink_new_good_catch %>%
separate(image_a,into=c('database', 'image'), sep = "([\\_])", extra = "merge")
rensink_new_good_catch$image <- lapply(rensink_new_good_catch$image, gsub, pattern='-a_w_outline.jpg', replacement='')
rensink_new_good_catch <- rensink_new_good_catch %>%  
    mutate(image = as.character(image))

colnames(rensink_new_good_catch) <- c("workerId", "likelihood_rating", "likelihood_rating_rt", "stim_set", "image")

rensink_new_good_catch <- rensink_new_good_catch %>%
  drop_na(image)

rensink_new_good_catch_likelihood_count <- rensink_new_good_catch %>% 
  group_by(workerId,image) %>% 
  dplyr::summarize(counts = n()) %>%
  spread(image,counts) %>%
  mutate(sum = rowSums(.[-1], na.rm = TRUE))
#head(tbl_all_counts,10)

rensink_new_good_catch_likelihood_count <- data.frame(count = colSums(rensink_new_good_catch_likelihood_count[,2:49], na.rm = TRUE))
rensink_new_good_catch_likelihood_count <- tibble::rownames_to_column(rensink_new_good_catch_likelihood_count, "image")
rensink_new_good_catch_likelihood_count
##          image count
## 1        Amish    13
## 2         Army    16
## 3        Barns    13
## 4    BarnTrack    15
## 5      Barrels    13
## 6        Beach    14
## 7        Birds    14
## 8         Boat    12
## 9          Bus    14
## 10      Cactus    15
## 11       Camel    11
## 12 CanalBridge    10
## 13      Castle     7
## 14     Chopper    13
## 15     Cockpit    13
## 16 Description    12
## 17      Dinner    16
## 18       Diver    13
## 19      Eating    15
## 20       Egypt    14
## 21  FarmByPond    15
## 22      Farmer    12
## 23     Fishing    15
## 24  Floatplane    10
## 25    Fountain    14
## 26      Harbor    12
## 27     Horizon    12
## 28         Ice    11
## 29       Kayak    14
## 30     Kayaker    14
## 31        Kids    16
## 32        Lake    15
## 33      Market    12
## 34     Marling    12
## 35      Mosque    15
## 36   NotreDame    17
## 37      Nurses    14
## 38     Obelisk    12
## 39  OtherDiver    10
## 40      Pilots    15
## 41        Seal    12
## 42    Soldiers    13
## 43     Station    10
## 44  SummerLake    14
## 45      Turtle    12
## 46       Water     8
## 47      Window    15
## 48        Wine    16

2.1.1.4 Plot.

rensink_new_good_catch <- rensink_new_good_catch %>%
  drop_na()
rensink_new_good_catch %>% 
  ggbarplot(x = "image", y = "likelihood_rating", ylab = "Mean Likelihood of Detecting Change", ylim = c(1,5), xlab = "Image", fill = "#f7a800", add = "mean_se", font.xtickslab = 8, sort.val = c("asc")) + rotate_x_text() + theme(legend.position = "none")

2.1.2 Ma.

2.1.2.1 Read-in datafiles.

ma_new <- list.files(path = "/Users/adambarnas/Box/MetaAwareness/data/Ma_New", pattern = "*.csv", full.names = T, ignore.case = F) %>%
  map_df(~read.csv(., colClasses=c("gender..m.f."="character", "a"="character", "tp_a"="character")))

Get a count of the number of new subjects.

nrow(ma_new %>% distinct(workerId,.keep_all = FALSE))
## [1] 45

2.1.2.2 Analyze catch trials.

ma_new_bad_catch <- ma_new %>% 
  group_by(workerId) %>% 
  filter(any(Cow_resp.keys < 4) | (any(Garden_resp.keys > 2)))
nrow(ma_new_bad_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 13
ma_new_good_catch <- ma_new %>% 
  group_by(workerId) %>% 
  filter(any(Cow_resp.keys >= 4) & (any(Garden_resp.keys <= 2) | is.na(any(Garden_resp.keys))))
nrow(ma_new_good_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 32

2.1.2.3 Count number of ratings.

ma_new_good_catch = subset(ma_new_good_catch, select = c(user_resp.keys,user_resp.rt,workerId,image_a))
col_idx <- grep("workerId", names(ma_new_good_catch))
ma_new_good_catch <- ma_new_good_catch[, c(col_idx, (1:ncol(ma_new_good_catch))[-col_idx])]
ma_new_good_catch <- data.frame(na.omit(ma_new_good_catch))
ma_new_good_catch <- ma_new_good_catch %>%
separate(image_a,into=c('database', 'image'), sep = "([\\_])", extra = "merge")
ma_new_good_catch$image <- lapply(ma_new_good_catch$image, gsub, pattern='-a_w_outline.jpg', replacement='')
ma_new_good_catch <- ma_new_good_catch %>%  
    mutate(image = as.character(image))

colnames(ma_new_good_catch) <- c("workerId", "likelihood_rating", "likelihood_rating_rt", "stim_set", "image")

ma_new_good_catch <- ma_new_good_catch %>%
  drop_na(image)

ma_new_good_catch_likelihood_count <- ma_new_good_catch %>% 
  group_by(workerId,image) %>% 
  dplyr::summarize(counts = n()) %>%
  spread(image,counts) %>%
  mutate(sum = rowSums(.[-1], na.rm = TRUE))
#head(tbl_all_counts,10)

ma_new_good_catch_likelihood_count <- data.frame(count = colSums(ma_new_good_catch_likelihood_count[,2:70], na.rm = TRUE))
ma_new_good_catch_likelihood_count <- tibble::rownames_to_column(ma_new_good_catch_likelihood_count, "image")
ma_new_good_catch_likelihood_count
##       image count
## 1  10504629    19
## 2  10810329    11
## 3   1191801    15
## 4  12115280    14
## 5  12178414    12
## 6  13141692    14
## 7   1383096    12
## 8  13873251    12
## 9  16527526    13
## 10 18169626    15
## 11 18345691    13
## 12 22020472    12
## 13 23024660    16
## 14 23199105    17
## 15 24383097    13
## 16 25107991    12
## 17 27857618    13
## 18  3099758    10
## 19 31236119    15
## 20 32289063    11
## 21 38466626    14
## 22 38546029    16
## 23 42429798    20
## 24  4247084    17
## 25 44993860    11
## 26 45525109    15
## 27 46475259    12
## 28 46635293    18
## 29 48384711    11
## 30 48486405    22
## 31 51537628     9
## 32 51856108     9
## 33 55174490    14
## 34 56835136    15
## 35 57861456    14
## 36 61118260    13
## 37 62096551    13
## 38 62224663    15
## 39 67862299    17
## 40 69128765    14
## 41 70687495    12
## 42 72488522    14
## 43 73637203    13
## 44 74173745    10
## 45 75081153    15
## 46 75958241    18
## 47 77345858    10
## 48 77574131    17
## 49 77793328    16
## 50 79191795    14
## 51 79222679    11
## 52 79241011     9
## 53 79573638    12
## 54  8197559    15
## 55 81993755    15
## 56 83536470    12
## 57 83691215    10
## 58 83785171    11
## 59 85741618    13
## 60 86520382    17
## 61 87983207    14
## 62 88767165    17
## 63 89354846    16
## 64  8974554    16
## 65 90405028     9
## 66 95091295    16
## 67 97475929    15
## 68 98156944    18
## 69 98265889    17

2.1.2.4 Plot.

ma_new_good_catch <- ma_new_good_catch %>%
  drop_na()
ma_new_good_catch %>% 
  ggbarplot(x = "image", y = "likelihood_rating", ylab = "Mean Likelihood of Detecting Change", ylim = c(1,5), xlab = "Image", fill = "#f7a800", add = "mean_se", font.xtickslab = 6, sort.val = c("asc")) + rotate_x_text() + theme(legend.position = "none")

2.1.3 Wolfe1.

2.1.3.1 Read-in datafiles.

wolfe1_new <- list.files(path = "/Users/adambarnas/Box/MetaAwareness/data/Wolfe1_New", pattern = "*.csv", full.names = T, ignore.case = F) %>%
  map_df(~read.csv(., colClasses=c("gender..m.f."="character", "a"="character", "tp_a"="character")))

Get a count of the number of new subjects.

nrow(wolfe1_new %>% distinct(workerId,.keep_all = FALSE))
## [1] 88

2.1.3.2 Analyze catch trials.

wolfe1_new_bad_catch <- wolfe1_new %>% 
  group_by(workerId) %>% 
  filter(any(Cow_resp.keys < 4) | (any(Garden_resp.keys > 2)))
nrow(wolfe1_new_bad_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 29
wolfe1_new_good_catch <- wolfe1_new %>% 
  group_by(workerId) %>% 
  filter(any(Cow_resp.keys >= 4) & (any(Garden_resp.keys <= 2) | is.na(any(Garden_resp.keys))))
nrow(wolfe1_new_good_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 59

2.1.3.3 Count number of ratings.

wolfe1_new_good_catch = subset(wolfe1_new_good_catch, select = c(user_resp.keys,user_resp.rt,workerId,image_a))
col_idx <- grep("workerId", names(wolfe1_new_good_catch))
wolfe1_new_good_catch <- wolfe1_new_good_catch[, c(col_idx, (1:ncol(wolfe1_new_good_catch))[-col_idx])]
wolfe1_new_good_catch <- data.frame(na.omit(wolfe1_new_good_catch))
wolfe1_new_good_catch <- wolfe1_new_good_catch %>%
separate(image_a,into=c('database', 'image'), sep = "([\\_])", extra = "merge")
wolfe1_new_good_catch$image <- lapply(wolfe1_new_good_catch$image, gsub, pattern='-a_w_outline.jpg', replacement='')
wolfe1_new_good_catch <- wolfe1_new_good_catch %>%  
    mutate(image = as.character(image))

colnames(wolfe1_new_good_catch) <- c("workerId", "likelihood_rating", "likelihood_rating_rt", "stim_set", "image")
wolfe1_new_good_catch$stim_set = "wolfe1"

wolfe1_new_good_catch <- wolfe1_new_good_catch %>%
  drop_na(image)

wolfe1_new_good_catch_likelihood_count <- wolfe1_new_good_catch %>% 
  group_by(workerId,image) %>% 
  dplyr::summarize(counts = n()) %>%
  spread(image,counts) %>%
  mutate(sum = rowSums(.[-1], na.rm = TRUE))
#head(tbl_all_counts,10)

wolfe1_new_good_catch_likelihood_count <- data.frame(count = colSums(wolfe1_new_good_catch_likelihood_count[,2:112], na.rm = TRUE))
wolfe1_new_good_catch_likelihood_count <- tibble::rownames_to_column(wolfe1_new_good_catch_likelihood_count, "image")
wolfe1_new_good_catch_likelihood_count
##         image count
## 1   image-001    18
## 2   image-002    17
## 3   image-003    14
## 4   image-004    24
## 5   image-005    13
## 6   image-006    13
## 7   image-007    11
## 8   image-008    13
## 9   image-009    19
## 10  image-010    20
## 11  image-011    19
## 12  image-012    14
## 13  image-013    13
## 14  image-014    17
## 15  image-015    12
## 16  image-016    19
## 17  image-017    20
## 18  image-018    11
## 19  image-019    24
## 20  image-020    10
## 21  image-021    18
## 22  image-022    18
## 23  image-023    14
## 24  image-024    21
## 25  image-025    19
## 26  image-026    16
## 27  image-027    21
## 28  image-028    14
## 29  image-029    14
## 30  image-030    17
## 31  image-031    19
## 32  image-032    22
## 33  image-033    18
## 34  image-034    18
## 35  image-035    10
## 36  image-037    16
## 37  image-038    14
## 38  image-039    11
## 39  image-040    14
## 40  image-041    14
## 41  image-042    17
## 42  image-043    15
## 43  image-044    20
## 44  image-045    17
## 45  image-046    12
## 46  image-047    15
## 47  image-048    16
## 48  image-049    15
## 49  image-050    14
## 50  image-076    18
## 51  image-077    18
## 52  image-078    15
## 53  image-079    17
## 54  image-080    19
## 55  image-081    10
## 56  image-082    18
## 57  image-083    18
## 58  image-084    16
## 59  image-085    15
## 60  image-086    10
## 61  image-087    14
## 62  image-088    16
## 63  image-089    14
## 64  image-090    16
## 65  image-091    18
## 66  image-092    12
## 67  image-093    17
## 68  image-094    19
## 69  image-095    17
## 70  image-096    11
## 71  image-097    17
## 72  image-098    15
## 73  image-099    16
## 74  image-100    21
## 75  image-101    23
## 76  image-102    22
## 77  image-103    19
## 78  image-104    12
## 79  image-105    13
## 80  image-106    16
## 81  image-107    13
## 82  image-108    10
## 83  image-109    12
## 84  image-110    12
## 85  image-111    13
## 86  image-112    17
## 87  image-113    10
## 88  image-114    18
## 89  image-115    18
## 90  image-116    12
## 91  image-117    20
## 92  image-118    12
## 93  image-119    20
## 94  image-120    18
## 95  image-121    16
## 96  image-122    16
## 97  image-123    14
## 98  image-124    15
## 99  image-125    13
## 100 image-126    19
## 101 image-127    13
## 102 image-128    15
## 103 image-129    15
## 104 image-130    13
## 105 image-131    16
## 106 image-132    14
## 107 image-133    22
## 108 image-134    13
## 109 image-135    13
## 110 image-136    17
## 111 image-137    29

2.1.3.4 Plot.

wolfe1_new_good_catch <- wolfe1_new_good_catch %>%
  drop_na()
wolfe1_new_good_catch %>% 
  ggbarplot(x = "image", y = "likelihood_rating", ylab = "Mean Likelihood of Detecting Change", ylim = c(1,5), xlab = "Image", fill = "#f7a800", add = "mean_se", font.xtickslab = 4, sort.val = c("asc")) + rotate_x_text() + theme(legend.position = "none")

2.1.4 Wolfe2.

2.1.4.1 Read-in datafiles.

wolfe2_new <- list.files(path = "/Users/adambarnas/Box/MetaAwareness/data/Wolfe2_New", pattern = "*.csv", full.names = T, ignore.case = F) %>%
  map_df(~read.csv(., colClasses=c("gender..m.f."="character", "a"="character", "tp_a"="character")))

Get a count of the number of new subjects.

nrow(wolfe2_new %>% distinct(workerId,.keep_all = FALSE))
## [1] 174

2.1.4.2 Analyze catch trials.

wolfe2_new_bad_catch <- wolfe2_new %>% 
  group_by(workerId) %>% 
  filter(any(Cow_resp.keys < 4) | (any(Garden_resp.keys > 2)))
nrow(wolfe2_new_bad_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 66
wolfe2_new_good_catch <- wolfe2_new %>% 
  group_by(workerId) %>% 
  filter(any(Cow_resp.keys >= 4) & (any(Garden_resp.keys <= 2) | is.na(any(Garden_resp.keys))))
nrow(wolfe2_new_good_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 108

2.1.4.3 Count number of ratings.

wolfe2_new_good_catch = subset(wolfe2_new_good_catch, select = c(user_resp.keys,user_resp.rt,workerId,image_a))
col_idx <- grep("workerId", names(wolfe2_new_good_catch))
wolfe2_new_good_catch <- wolfe2_new_good_catch[, c(col_idx, (1:ncol(wolfe2_new_good_catch))[-col_idx])]
wolfe2_new_good_catch <- data.frame(na.omit(wolfe2_new_good_catch))
wolfe2_new_good_catch <- wolfe2_new_good_catch %>%
separate(image_a,into=c('database', 'image'), sep = "([\\_])", extra = "merge")
wolfe2_new_good_catch$image <- lapply(wolfe2_new_good_catch$image, gsub, pattern='-a_w_outline.jpg', replacement='')
wolfe2_new_good_catch <- wolfe2_new_good_catch %>%  
    mutate(image = as.character(image))

colnames(wolfe2_new_good_catch) <- c("workerId", "likelihood_rating", "likelihood_rating_rt", "stim_set", "image")
wolfe2_new_good_catch$stim_set = "wolfe2"

wolfe2_new_good_catch <- wolfe2_new_good_catch %>%
  drop_na(image)

wolfe2_new_good_catch_likelihood_count <- wolfe2_new_good_catch %>% 
  group_by(workerId,image) %>% 
  dplyr::summarize(counts = n()) %>%
  spread(image,counts) %>%
  mutate(sum = rowSums(.[-1], na.rm = TRUE))
#head(tbl_all_counts,10)

wolfe2_new_good_catch_likelihood_count <- data.frame(count = colSums(wolfe2_new_good_catch_likelihood_count[,2:255], na.rm = TRUE))
wolfe2_new_good_catch_likelihood_count <- tibble::rownames_to_column(wolfe2_new_good_catch_likelihood_count, "image")
wolfe2_new_good_catch_likelihood_count
##                    image count
## 1           001_L_mirror    17
## 2           001_R_mirror    11
## 3           002_L_napkin    15
## 4           002_R_napkin     9
## 5            003_L_ducks    17
## 6            003_R_ducks    12
## 7   004_L_electricalgrid    17
## 8   004_R_electricalgrid    11
## 9           005_L_mirror    13
## 10          005_R_mirror    16
## 11            006_L_vase    13
## 12            006_R_vase    12
## 13            007_L_soap    11
## 14            007_R_soap    14
## 15          008_L_bottle    14
## 16          008_R_bottle    16
## 17          009_L_carpet    10
## 18          009_R_carpet    11
## 19          010_L_candle    10
## 20          010_R_candle    14
## 21          011_L_parfum    10
## 22          011_R_parfum     8
## 23     012_L_tubaccesory    11
## 24     012_R_tubaccesory    14
## 25            013_L_lamp    14
## 26            013_R_lamp    13
## 27            014_L_lamp    14
## 28            014_R_lamp    12
## 29    015_L_ceilinglight    10
## 30    015_R_ceilinglight    14
## 31             016_L_art    16
## 32             016_R_art    13
## 33            017_L_wood     9
## 34            017_R_wood    13
## 35           018_L_plant    15
## 36           018_R_plant    14
## 37      019_L_lamp_sized    11
## 38      019_R_lamp_sized    13
## 39        020_L_walldeco    14
## 40        020_R_walldeco    12
## 41        021_L_keyboard    14
## 42        021_R_keyboard     9
## 43            022_L_lamp    12
## 44            022_R_lamp     9
## 45          023_L_remote    12
## 46          023_R_remote    13
## 47          024_L_towels    16
## 48          024_R_towels     9
## 49            025_L_vase    11
## 50            025_R_vase     9
## 51            026_L_rack    15
## 52            026_R_rack    10
## 53        027_L_soapdish    17
## 54        027_R_soapdish    13
## 55            028_L_vase    17
## 56            028_R_vase     8
## 57           029_L_glass    20
## 58           029_R_glass     8
## 59          030_L_drawer    15
## 60          030_R_drawer     7
## 61             031_L_log    13
## 62             031_R_log    13
## 63          032_L_bottle    13
## 64          032_R_bottle    12
## 65            033_L_vase    17
## 66            033_R_vase    11
## 67          034_L_handle    16
## 68          034_R_handle     9
## 69           035_L_fruit    15
## 70           035_R_fruit    11
## 71            036_L_bowl    14
## 72            036_R_bowl    10
## 73           037_L_towel    12
## 74           037_R_towel    18
## 75             038_L_art    12
## 76             038_R_art    12
## 77      039_L_ventilator    20
## 78      039_R_ventilator     9
## 79        040_L_painting    15
## 80        040_R_painting    14
## 81           041_L_fruit    13
## 82           041_R_fruit    15
## 83             042_L_tap    21
## 84             042_R_tap     7
## 85           043_L_clock    10
## 86           043_R_clock     9
## 87           044_L_light    14
## 88           044_R_light     7
## 89       045_L_musicdock    14
## 90       045_R_musicdock    13
## 91          046_L_remote     8
## 92          046_R_remote    10
## 93          047_L_handle     9
## 94          047_R_handle    17
## 95             048_L_art    14
## 96             048_R_art    10
## 97        049_L_painting    15
## 98        049_R_painting    10
## 99            050_L_book    19
## 100           050_R_book    13
## 101            051_L_owl    14
## 102            051_R_owl    12
## 103        052_L_speaker    14
## 104        052_R_speaker    12
## 105         053_L_handle    14
## 106         053_R_handle    10
## 107       054_L_firewood    12
## 108       054_R_firewood    11
## 109         055_L_carpet    15
## 110         055_R_carpet    10
## 111      056_L_comforter     9
## 112      056_R_comforter    14
## 113            057_L_bin    13
## 114            057_R_bin     7
## 115         058_L_clutch    10
## 116         058_R_clutch    10
## 117            059_L_car    16
## 118            059_R_car    13
## 119         060_L_pillow    10
## 120         060_R_pillow    18
## 121          061_L_glass    19
## 122          061_R_glass     9
## 123        062_L_flowers     9
## 124        062_R_flowers     7
## 125         063_L_laptop     8
## 126         063_R_laptop    12
## 127        064_L_bottles    17
## 128        064_R_bottles     9
## 129             065_L_cd    15
## 130             065_R_cd    12
## 131           066_L_vase     7
## 132           066_R_vase    11
## 133       067_L_painting    14
## 134       067_R_painting     9
## 135         068_L_faucet    18
## 136         068_R_faucet    14
## 137         069_L_things    20
## 138         069_R_things    13
## 139           070_L_lamp    12
## 140           070_R_lamp    17
## 141            071_L_art    14
## 142            071_R_art    10
## 143         072_L_handle    14
## 144         072_R_handle    12
## 145      073_L_coffeemug    18
## 146      073_R_coffeemug    12
## 147           074_L_book    12
## 148           074_R_book    14
## 149          075_L_light    15
## 150          075_R_light    12
## 151           076_L_hook    13
## 152           076_R_hook    12
## 153       077_L_footrest    13
## 154       077_R_footrest    18
## 155         078_L_faucet    14
## 156         078_R_faucet    10
## 157           079_L_bowl    16
## 158           079_R_bowl    14
## 159          080_L_plant    13
## 160          080_R_plant     9
## 161       081_L_football    17
## 162       081_R_football     6
## 163           082_L_bowl    16
## 164           082_R_bowl     5
## 165           083_L_knob    15
## 166           083_R_knob     9
## 167          084_L_light    16
## 168          084_R_light    11
## 169    085_L_switchboard    19
## 170    085_R_switchboard    20
## 171           086_L_book    12
## 172           086_R_book     8
## 173    087_L_towelhandle    19
## 174    087_R_towelhandle    13
## 175          088_L_clock    14
## 176          088_R_clock    10
## 177         089_L_poster    17
## 178         089_R_poster    12
## 179           090_L_lamp    15
## 180           090_R_lamp    11
## 181   091_L_airfreshener    12
## 182   091_R_airfreshener    10
## 183        092_L_candles    15
## 184        092_R_candles     7
## 185         093_L_switch    17
## 186         093_R_switch    10
## 187         095_L_candle    16
## 188         095_R_candle    14
## 189       096_L_painting    15
## 190       096_R_painting    14
## 191          097_L_light    14
## 192          097_R_light    14
## 193       098_L_slippers    13
## 194       098_R_slippers    11
## 195         099_L_sconce    14
## 196         099_R_sconce    13
## 197         100_L_mirror    13
## 198         100_R_mirror    16
## 199            101_L_cup    15
## 200            101_R_cup    11
## 201    102_L_shoppingbag    12
## 202    102_R_shoppingbag    11
## 203           103_L_hook     9
## 204           103_R_hook    13
## 205         104_L_bottle    14
## 206         104_R_bottle     9
## 207            105_L_hat    11
## 208            105_R_hat    12
## 209 106_L_toweldispenser    11
## 210 106_R_toweldispenser    10
## 211         107_L_shirts    15
## 212         107_R_shirts    10
## 213            108_L_boa    15
## 214            108_R_boa    14
## 215         109_L_pillow    11
## 216         109_R_pillow    15
## 217          110_L_plant    12
## 218          110_R_plant    11
## 219            111_L_pot    13
## 220            111_R_pot    10
## 221         112_L_basket    16
## 222         112_R_basket    15
## 223          113_L_plant    15
## 224          113_R_plant    12
## 225           114_L_bird    11
## 226           114_R_bird    13
## 227            115_L_pot    10
## 228            115_R_pot    20
## 229         116_L_basket     8
## 230         116_R_basket    12
## 231    117_L_plant_sized    15
## 232    117_R_plant_sized    12
## 233          118_L_shoes    14
## 234          118_R_shoes    13
## 235       119_L_painting    14
## 236       119_R_painting     8
## 237            120_L_art    18
## 238            120_R_art    15
## 239            121_L_car    14
## 240            121_R_car     4
## 241          122_L_chair    12
## 242          122_R_chair     9
## 243            123_L_pot    11
## 244            123_R_pot     6
## 245           124_L_vase    13
## 246           124_R_vase    14
## 247           125_L_sofa    13
## 248           125_R_sofa    11
## 249        126_L_candles    20
## 250        126_R_candles     6
## 251          127_L_light    18
## 252          127_R_light    11
## 253            128_L_pot    19
## 254            128_R_pot    19

2.1.4.4 Plot.

wolfe2_new_good_catch <- wolfe2_new_good_catch %>%
  drop_na()
wolfe2_new_good_catch %>% 
  ggbarplot(x = "image", y = "likelihood_rating", ylab = "Mean Likelihood of Detecting Change", ylim = c(1,5), xlab = "Image", fill = "#f7a800", add = "mean_se", font.xtickslab = 2, sort.val = c("asc")) + rotate_x_text() + theme(legend.position = "none")

2.1.5 Combined analyses.

Initial sample size.

nrow(rensink_new %>% distinct(workerId,.keep_all = FALSE)) + nrow(ma_new %>% distinct(workerId,.keep_all = FALSE)) + nrow(wolfe1_new %>% distinct(workerId,.keep_all = FALSE)) + nrow(wolfe2_new %>% distinct(workerId,.keep_all = FALSE))
## [1] 343

Number of subjects who missed a catch trial.

nrow(rensink_new_bad_catch %>% distinct(workerId,.keep_all = FALSE)) + nrow(ma_new_bad_catch %>% distinct(workerId,.keep_all = FALSE)) + nrow(wolfe1_new_bad_catch %>% distinct(workerId,.keep_all = FALSE)) + nrow(wolfe2_new_bad_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 123

Number of subjects in final sample.

nrow(rensink_new_good_catch %>% distinct(workerId,.keep_all = FALSE)) + nrow(ma_new_good_catch %>% distinct(workerId,.keep_all = FALSE)) + nrow(wolfe1_new_good_catch %>% distinct(workerId,.keep_all = FALSE)) + nrow(wolfe2_new_good_catch %>% distinct(workerId,.keep_all = FALSE))
## [1] 220

Compute average likelihood rating.

new_ratings <- rbind(rensink_new_good_catch, ma_new_good_catch, wolfe1_new_good_catch, wolfe2_new_good_catch)

new_ratings_changetype_avg <- new_ratings %>%
  group_by(workerId,image) %>%
  dplyr::summarize(average = mean(likelihood_rating)) %>%
  spread(image,average) %>% 
  mutate(subj_avg = rowMeans(.[-1], na.rm = TRUE))
mean(new_ratings_changetype_avg$subj_avg)
## [1] 2.977727
sd(new_ratings_changetype_avg$subj_avg)
## [1] 0.713872
range(new_ratings_changetype_avg$subj_avg)
## [1] 1.3 5.0
new_ratings_changetype_count <- new_ratings %>% 
  group_by(workerId,image) %>% 
  dplyr::summarize(counts = n()) %>%
  spread(image,counts) %>%
  mutate(sum = rowSums(.[-1], na.rm = TRUE))
#head(tbl_all_counts,10)

new_ratings_changetype_count <- data.frame(count = colSums(new_ratings_changetype_count[,2:483], na.rm = TRUE))
new_ratings_changetype_count <- tibble::rownames_to_column(new_ratings_changetype_count, "image")
new_ratings_changetype_count
##                    image count
## 1           001_L_mirror    17
## 2           001_R_mirror    11
## 3           002_L_napkin    15
## 4           002_R_napkin     9
## 5            003_L_ducks    17
## 6            003_R_ducks    12
## 7   004_L_electricalgrid    17
## 8   004_R_electricalgrid    11
## 9           005_L_mirror    13
## 10          005_R_mirror    16
## 11            006_L_vase    13
## 12            006_R_vase    12
## 13            007_L_soap    11
## 14            007_R_soap    14
## 15          008_L_bottle    14
## 16          008_R_bottle    16
## 17          009_L_carpet    10
## 18          009_R_carpet    11
## 19          010_L_candle    10
## 20          010_R_candle    14
## 21          011_L_parfum    10
## 22          011_R_parfum     8
## 23     012_L_tubaccesory    11
## 24     012_R_tubaccesory    14
## 25            013_L_lamp    14
## 26            013_R_lamp    13
## 27            014_L_lamp    14
## 28            014_R_lamp    12
## 29    015_L_ceilinglight    10
## 30    015_R_ceilinglight    14
## 31             016_L_art    16
## 32             016_R_art    13
## 33            017_L_wood     9
## 34            017_R_wood    13
## 35           018_L_plant    15
## 36           018_R_plant    14
## 37      019_L_lamp_sized    11
## 38      019_R_lamp_sized    13
## 39        020_L_walldeco    14
## 40        020_R_walldeco    12
## 41        021_L_keyboard    14
## 42        021_R_keyboard     9
## 43            022_L_lamp    12
## 44            022_R_lamp     9
## 45          023_L_remote    12
## 46          023_R_remote    13
## 47          024_L_towels    16
## 48          024_R_towels     9
## 49            025_L_vase    11
## 50            025_R_vase     9
## 51            026_L_rack    15
## 52            026_R_rack    10
## 53        027_L_soapdish    17
## 54        027_R_soapdish    13
## 55            028_L_vase    17
## 56            028_R_vase     8
## 57           029_L_glass    20
## 58           029_R_glass     8
## 59          030_L_drawer    15
## 60          030_R_drawer     7
## 61             031_L_log    13
## 62             031_R_log    13
## 63          032_L_bottle    13
## 64          032_R_bottle    12
## 65            033_L_vase    17
## 66            033_R_vase    11
## 67          034_L_handle    16
## 68          034_R_handle     9
## 69           035_L_fruit    15
## 70           035_R_fruit    11
## 71            036_L_bowl    14
## 72            036_R_bowl    10
## 73           037_L_towel    12
## 74           037_R_towel    18
## 75             038_L_art    12
## 76             038_R_art    12
## 77      039_L_ventilator    20
## 78      039_R_ventilator     9
## 79        040_L_painting    15
## 80        040_R_painting    14
## 81           041_L_fruit    13
## 82           041_R_fruit    15
## 83             042_L_tap    21
## 84             042_R_tap     7
## 85           043_L_clock    10
## 86           043_R_clock     9
## 87           044_L_light    14
## 88           044_R_light     7
## 89       045_L_musicdock    14
## 90       045_R_musicdock    13
## 91          046_L_remote     8
## 92          046_R_remote    10
## 93          047_L_handle     9
## 94          047_R_handle    17
## 95             048_L_art    14
## 96             048_R_art    10
## 97        049_L_painting    15
## 98        049_R_painting    10
## 99            050_L_book    19
## 100           050_R_book    13
## 101            051_L_owl    14
## 102            051_R_owl    12
## 103        052_L_speaker    14
## 104        052_R_speaker    12
## 105         053_L_handle    14
## 106         053_R_handle    10
## 107       054_L_firewood    12
## 108       054_R_firewood    11
## 109         055_L_carpet    15
## 110         055_R_carpet    10
## 111      056_L_comforter     9
## 112      056_R_comforter    14
## 113            057_L_bin    13
## 114            057_R_bin     7
## 115         058_L_clutch    10
## 116         058_R_clutch    10
## 117            059_L_car    16
## 118            059_R_car    13
## 119         060_L_pillow    10
## 120         060_R_pillow    18
## 121          061_L_glass    19
## 122          061_R_glass     9
## 123        062_L_flowers     9
## 124        062_R_flowers     7
## 125         063_L_laptop     8
## 126         063_R_laptop    12
## 127        064_L_bottles    17
## 128        064_R_bottles     9
## 129             065_L_cd    15
## 130             065_R_cd    12
## 131           066_L_vase     7
## 132           066_R_vase    11
## 133       067_L_painting    14
## 134       067_R_painting     9
## 135         068_L_faucet    18
## 136         068_R_faucet    14
## 137         069_L_things    20
## 138         069_R_things    13
## 139           070_L_lamp    12
## 140           070_R_lamp    17
## 141            071_L_art    14
## 142            071_R_art    10
## 143         072_L_handle    14
## 144         072_R_handle    12
## 145      073_L_coffeemug    18
## 146      073_R_coffeemug    12
## 147           074_L_book    12
## 148           074_R_book    14
## 149          075_L_light    15
## 150          075_R_light    12
## 151           076_L_hook    13
## 152           076_R_hook    12
## 153       077_L_footrest    13
## 154       077_R_footrest    18
## 155         078_L_faucet    14
## 156         078_R_faucet    10
## 157           079_L_bowl    16
## 158           079_R_bowl    14
## 159          080_L_plant    13
## 160          080_R_plant     9
## 161       081_L_football    17
## 162       081_R_football     6
## 163           082_L_bowl    16
## 164           082_R_bowl     5
## 165           083_L_knob    15
## 166           083_R_knob     9
## 167          084_L_light    16
## 168          084_R_light    11
## 169    085_L_switchboard    19
## 170    085_R_switchboard    20
## 171           086_L_book    12
## 172           086_R_book     8
## 173    087_L_towelhandle    19
## 174    087_R_towelhandle    13
## 175          088_L_clock    14
## 176          088_R_clock    10
## 177         089_L_poster    17
## 178         089_R_poster    12
## 179           090_L_lamp    15
## 180           090_R_lamp    11
## 181   091_L_airfreshener    12
## 182   091_R_airfreshener    10
## 183        092_L_candles    15
## 184        092_R_candles     7
## 185         093_L_switch    17
## 186         093_R_switch    10
## 187         095_L_candle    16
## 188         095_R_candle    14
## 189       096_L_painting    15
## 190       096_R_painting    14
## 191          097_L_light    14
## 192          097_R_light    14
## 193       098_L_slippers    13
## 194       098_R_slippers    11
## 195         099_L_sconce    14
## 196         099_R_sconce    13
## 197         100_L_mirror    13
## 198         100_R_mirror    16
## 199            101_L_cup    15
## 200            101_R_cup    11
## 201    102_L_shoppingbag    12
## 202    102_R_shoppingbag    11
## 203           103_L_hook     9
## 204           103_R_hook    13
## 205         104_L_bottle    14
## 206         104_R_bottle     9
## 207            105_L_hat    11
## 208            105_R_hat    12
## 209             10504629    19
## 210 106_L_toweldispenser    11
## 211 106_R_toweldispenser    10
## 212         107_L_shirts    15
## 213         107_R_shirts    10
## 214            108_L_boa    15
## 215            108_R_boa    14
## 216             10810329    11
## 217         109_L_pillow    11
## 218         109_R_pillow    15
## 219          110_L_plant    12
## 220          110_R_plant    11
## 221            111_L_pot    13
## 222            111_R_pot    10
## 223         112_L_basket    16
## 224         112_R_basket    15
## 225          113_L_plant    15
## 226          113_R_plant    12
## 227           114_L_bird    11
## 228           114_R_bird    13
## 229            115_L_pot    10
## 230            115_R_pot    20
## 231         116_L_basket     8
## 232         116_R_basket    12
## 233    117_L_plant_sized    15
## 234    117_R_plant_sized    12
## 235          118_L_shoes    14
## 236          118_R_shoes    13
## 237       119_L_painting    14
## 238       119_R_painting     8
## 239              1191801    15
## 240            120_L_art    18
## 241            120_R_art    15
## 242            121_L_car    14
## 243            121_R_car     4
## 244             12115280    14
## 245             12178414    12
## 246          122_L_chair    12
## 247          122_R_chair     9
## 248            123_L_pot    11
## 249            123_R_pot     6
## 250           124_L_vase    13
## 251           124_R_vase    14
## 252           125_L_sofa    13
## 253           125_R_sofa    11
## 254        126_L_candles    20
## 255        126_R_candles     6
## 256          127_L_light    18
## 257          127_R_light    11
## 258            128_L_pot    19
## 259            128_R_pot    19
## 260             13141692    14
## 261              1383096    12
## 262             13873251    12
## 263             16527526    13
## 264             18169626    15
## 265             18345691    13
## 266             22020472    12
## 267             23024660    16
## 268             23199105    17
## 269             24383097    13
## 270             25107991    12
## 271             27857618    13
## 272              3099758    10
## 273             31236119    15
## 274             32289063    11
## 275             38466626    14
## 276             38546029    16
## 277             42429798    20
## 278              4247084    17
## 279             44993860    11
## 280             45525109    15
## 281             46475259    12
## 282             46635293    18
## 283             48384711    11
## 284             48486405    22
## 285             51537628     9
## 286             51856108     9
## 287             55174490    14
## 288             56835136    15
## 289             57861456    14
## 290             61118260    13
## 291             62096551    13
## 292             62224663    15
## 293             67862299    17
## 294             69128765    14
## 295             70687495    12
## 296             72488522    14
## 297             73637203    13
## 298             74173745    10
## 299             75081153    15
## 300             75958241    18
## 301             77345858    10
## 302             77574131    17
## 303             77793328    16
## 304             79191795    14
## 305             79222679    11
## 306             79241011     9
## 307             79573638    12
## 308              8197559    15
## 309             81993755    15
## 310             83536470    12
## 311             83691215    10
## 312             83785171    11
## 313             85741618    13
## 314             86520382    17
## 315             87983207    14
## 316             88767165    17
## 317             89354846    16
## 318              8974554    16
## 319             90405028     9
## 320             95091295    16
## 321             97475929    15
## 322             98156944    18
## 323             98265889    17
## 324                Amish    13
## 325                 Army    16
## 326                Barns    13
## 327            BarnTrack    15
## 328              Barrels    13
## 329                Beach    14
## 330                Birds    14
## 331                 Boat    12
## 332                  Bus    14
## 333               Cactus    15
## 334                Camel    11
## 335          CanalBridge    10
## 336               Castle     7
## 337              Chopper    13
## 338              Cockpit    13
## 339          Description    12
## 340               Dinner    16
## 341                Diver    13
## 342               Eating    15
## 343                Egypt    14
## 344           FarmByPond    15
## 345               Farmer    12
## 346              Fishing    15
## 347           Floatplane    10
## 348             Fountain    14
## 349               Harbor    12
## 350              Horizon    12
## 351                  Ice    11
## 352            image-001    18
## 353            image-002    17
## 354            image-003    14
## 355            image-004    24
## 356            image-005    13
## 357            image-006    13
## 358            image-007    11
## 359            image-008    13
## 360            image-009    19
## 361            image-010    20
## 362            image-011    19
## 363            image-012    14
## 364            image-013    13
## 365            image-014    17
## 366            image-015    12
## 367            image-016    19
## 368            image-017    20
## 369            image-018    11
## 370            image-019    24
## 371            image-020    10
## 372            image-021    18
## 373            image-022    18
## 374            image-023    14
## 375            image-024    21
## 376            image-025    19
## 377            image-026    16
## 378            image-027    21
## 379            image-028    14
## 380            image-029    14
## 381            image-030    17
## 382            image-031    19
## 383            image-032    22
## 384            image-033    18
## 385            image-034    18
## 386            image-035    10
## 387            image-037    16
## 388            image-038    14
## 389            image-039    11
## 390            image-040    14
## 391            image-041    14
## 392            image-042    17
## 393            image-043    15
## 394            image-044    20
## 395            image-045    17
## 396            image-046    12
## 397            image-047    15
## 398            image-048    16
## 399            image-049    15
## 400            image-050    14
## 401            image-076    18
## 402            image-077    18
## 403            image-078    15
## 404            image-079    17
## 405            image-080    19
## 406            image-081    10
## 407            image-082    18
## 408            image-083    18
## 409            image-084    16
## 410            image-085    15
## 411            image-086    10
## 412            image-087    14
## 413            image-088    16
## 414            image-089    14
## 415            image-090    16
## 416            image-091    18
## 417            image-092    12
## 418            image-093    17
## 419            image-094    19
## 420            image-095    17
## 421            image-096    11
## 422            image-097    17
## 423            image-098    15
## 424            image-099    16
## 425            image-100    21
## 426            image-101    23
## 427            image-102    22
## 428            image-103    19
## 429            image-104    12
## 430            image-105    13
## 431            image-106    16
## 432            image-107    13
## 433            image-108    10
## 434            image-109    12
## 435            image-110    12
## 436            image-111    13
## 437            image-112    17
## 438            image-113    10
## 439            image-114    18
## 440            image-115    18
## 441            image-116    12
## 442            image-117    20
## 443            image-118    12
## 444            image-119    20
## 445            image-120    18
## 446            image-121    16
## 447            image-122    16
## 448            image-123    14
## 449            image-124    15
## 450            image-125    13
## 451            image-126    19
## 452            image-127    13
## 453            image-128    15
## 454            image-129    15
## 455            image-130    13
## 456            image-131    16
## 457            image-132    14
## 458            image-133    22
## 459            image-134    13
## 460            image-135    13
## 461            image-136    17
## 462            image-137    29
## 463                Kayak    14
## 464              Kayaker    14
## 465                 Kids    16
## 466                 Lake    15
## 467               Market    12
## 468              Marling    12
## 469               Mosque    15
## 470            NotreDame    17
## 471               Nurses    14
## 472              Obelisk    12
## 473           OtherDiver    10
## 474               Pilots    15
## 475                 Seal    12
## 476             Soldiers    13
## 477              Station    10
## 478           SummerLake    14
## 479               Turtle    12
## 480                Water     8
## 481               Window    15
## 482                 Wine    16
mean(new_ratings_changetype_count$count)
## [1] 13.69295
sd(new_ratings_changetype_count$count)
## [1] 3.376744
range(new_ratings_changetype_count$count)
## [1]  4 29

3 Result #7.

Do image-related properties (size of box, size of change, eccentricity, and change type) predict likelihood ratings? No, image-related properties do not predict likelihood ratings.

Box_and_change_info <- read_csv("/Users/adambarnas/Box/MetaAwareness/data/Box_and_change_info.csv")
Box_and_change_info <- Box_and_change_info %>% 
  filter(!grepl('catch', image)) %>% 
  separate(image,into=c('database', 'image'), sep = "([\\_])", extra = "merge")
Box_and_change_info$image <- lapply(Box_and_change_info$image, gsub, pattern='-a', replacement='')
Box_and_change_info$image <- as.character(Box_and_change_info$image)

new_changetype_boxsize_changesize_eccentricity <- left_join(new_ratings, Box_and_change_info, by = "image")

result_7.1 <- lmer(likelihood_rating ~ change_percent + eccentricity + (1 | workerId) + (1 | image) + (1 | stim_set), data=new_changetype_boxsize_changesize_eccentricity)
summary(result_7.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: likelihood_rating ~ change_percent + eccentricity + (1 | workerId) +  
##     (1 | image) + (1 | stim_set)
##    Data: new_changetype_boxsize_changesize_eccentricity
## 
## REML criterion at convergence: 19167.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5261 -0.6203  0.0103  0.6295  3.9241 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  image    (Intercept) 6.016e-01 0.775637
##  workerId (Intercept) 4.746e-01 0.688922
##  stim_set (Intercept) 9.078e-06 0.003013
##  Residual             8.145e-01 0.902511
## Number of obs: 6600, groups:  image, 482; workerId, 220; stim_set, 4
## 
## Fixed effects:
##                 Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    2.852e+00  1.058e-01 6.434e+02  26.965   <2e-16 ***
## change_percent 2.808e-02  1.627e-02 6.296e+02   1.726   0.0849 .  
## eccentricity   4.101e-04  4.405e-04 4.781e+02   0.931   0.3524    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) chng_p
## chang_prcnt -0.198       
## eccentricty -0.798 -0.021
## convergence code: 0
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 1 negative eigenvalues
ci(result_7.1)
##        Parameter CI        CI_low     CI_high
## 1    (Intercept) 95  2.6445380151 3.059103183
## 2 change_percent 95 -0.0038095698 0.059968756
## 3   eccentricity 95 -0.0004533531 0.001273555

3.0.1 Some dataframe manipulation.

all_CB_MC_changetype_boxsize_changesize_eccentricity <- read_csv("/Users/adambarnas/Box/MetaAwareness/all_CB_MC_changetype_boxsize_changesize_eccentricity.csv", col_types = cols())
all_CB_MC_changetype_boxsize_changesize_eccentricity_condensed <- all_CB_MC_changetype_boxsize_changesize_eccentricity[, -c(7,8,9,10,11,12,13,15,16,18,19,20,21,22,23)]
all_CB_MC_changetype_boxsize_changesize_eccentricity_condensed$group = "Original"

return_log_avg <- all_CB_MC_changetype_boxsize_changesize_eccentricity_condensed %>% 
  group_by(workerId,image) %>%
  dplyr::summarize(log_rt = mean(log_rt)) %>%
  spread(image,log_rt) %>% 
  mutate(subj_avg = rowMeans(.[-1], na.rm = TRUE))

return_log_avg <- data.frame(log_rt = colMeans(return_log_avg[,2:482], na.rm = TRUE))
return_log_avg <- tibble::rownames_to_column(return_log_avg, "image")


return_likelihood_avg <- all_CB_MC_changetype_boxsize_changesize_eccentricity_condensed %>% 
  group_by(workerId,image) %>%
  dplyr::summarize(likelihood_rating = mean(likelihood_rating)) %>%
  spread(image,likelihood_rating) %>% 
  mutate(subj_avg = rowMeans(.[-1], na.rm = TRUE))

return_likelihood_avg <- data.frame(likelihood_rating = colMeans(return_likelihood_avg[,2:482], na.rm = TRUE))
return_likelihood_avg <- tibble::rownames_to_column(return_likelihood_avg, "image")


return <- left_join(return_log_avg, return_likelihood_avg, by = "image")
return$group = "Original"

return_corr <- cor.test(return$log_rt, return$likelihood_rating, method = c("pearson"))
return_corr
## 
##  Pearson's product-moment correlation
## 
## data:  return$log_rt and return$likelihood_rating
## t = -7.1917, df = 479, p-value = 2.478e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3906785 -0.2291642
## sample estimates:
##        cor 
## -0.3121753
new_ratings <- left_join(new_ratings, return_log_avg, by = "image")

new_changetype_boxsize_changesize_eccentricity <- left_join(new_ratings, Box_and_change_info, by = "image")
new_changetype_boxsize_changesize_eccentricity_condensed <- new_changetype_boxsize_changesize_eccentricity[, -c(7,8,9,10,11,12,13,15,16,18,19,20,21,22,23)]

new_likelihood_avg <- new_changetype_boxsize_changesize_eccentricity_condensed %>% 
  group_by(workerId,image) %>%
  dplyr::summarize(likelihood_rating = mean(likelihood_rating)) %>%
  spread(image,likelihood_rating) %>% 
  mutate(subj_avg = rowMeans(.[-1], na.rm = TRUE))

new_likelihood_avg <- data.frame(likelihood_rating = colMeans(new_likelihood_avg[,2:483], na.rm = TRUE))
new_likelihood_avg <- tibble::rownames_to_column(new_likelihood_avg, "image")

new <- left_join(return_log_avg, new_likelihood_avg, by = "image")
new$group = "New"

new_corr <- cor.test(new$log_rt, new$likelihood_rating, method = c("pearson"))
new_corr
## 
##  Pearson's product-moment correlation
## 
## data:  new$log_rt and new$likelihood_rating
## t = -8.2151, df = 479, p-value = 1.993e-15
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4273951 -0.2705081
## sample estimates:
##        cor 
## -0.3514162
return_new_comparison <- rbind.fill(new, return)

all_change_type<- read_csv("/Users/adambarnas/Box/MetaAwareness/data/All_change_type.csv", col_types = cols())
new_changetype_boxsize_changesize_eccentricity_condensed <- left_join(new_changetype_boxsize_changesize_eccentricity_condensed, all_change_type, by = "image")
new_changetype_boxsize_changesize_eccentricity_condensed$group = "New"

return_new <- rbind.fill(all_CB_MC_changetype_boxsize_changesize_eccentricity_condensed, new_changetype_boxsize_changesize_eccentricity_condensed)
return_new <- return_new[, -c(11)]

nrow(return_new %>% distinct(workerId,.keep_all = FALSE))
## [1] 436
write.csv(return_new, "return_new.csv", row.names=FALSE)

4 Result #8.

dplyr::group_by(return_new, group) %>%
  dplyr::summarise(
    count = n(),
    mean = mean(likelihood_rating, na.rm = TRUE),
    sd = sd(likelihood_rating, na.rm = TRUE),
    se = sd/sqrt(count)
  )
## # A tibble: 2 x 5
##   group    count  mean    sd     se
##   <chr>    <int> <dbl> <dbl>  <dbl>
## 1 New       6600  2.98  1.37 0.0169
## 2 Original  5027  3.06  1.33 0.0187
result_7.2 <- lmer(likelihood_rating ~ (eccentricity + change_percent)*group + (1|workerId) + (1|image) + (1|stim_set), data=return_new)
summary(result_7.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: likelihood_rating ~ (eccentricity + change_percent) * group +  
##     (1 | workerId) + (1 | image) + (1 | stim_set)
##    Data: return_new
## 
## REML criterion at convergence: 32592
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0654 -0.6298  0.0178  0.6328  4.2929 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  image    (Intercept) 6.554e-01 8.096e-01
##  workerId (Intercept) 4.551e-01 6.746e-01
##  stim_set (Intercept) 1.064e-10 1.032e-05
##  Residual             7.648e-01 8.746e-01
## Number of obs: 11627, groups:  image, 482; workerId, 436; stim_set, 4
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   2.827e+00  1.081e-01  7.153e+02  26.148  < 2e-16
## eccentricity                  4.290e-04  4.558e-04  5.129e+02   0.941  0.34703
## change_percent                4.370e-02  1.592e-02  7.171e+02   2.744  0.00621
## groupOriginal                 1.396e-01  7.827e-02  7.827e+02   1.784  0.07479
## eccentricity:groupOriginal   -4.811e-04  2.011e-04  1.082e+04  -2.392  0.01678
## change_percent:groupOriginal -2.185e-02  7.972e-03  1.106e+04  -2.741  0.00613
##                                 
## (Intercept)                  ***
## eccentricity                    
## change_percent               ** 
## groupOriginal                .  
## eccentricity:groupOriginal   *  
## change_percent:groupOriginal ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) eccntr chng_p grpOrg eccn:O
## eccentricty -0.808                            
## chang_prcnt -0.192 -0.017                     
## groupOrignl -0.339  0.092  0.025              
## eccntrcty:O  0.152 -0.188  0.006 -0.490       
## chng_prcn:O  0.048  0.005 -0.252 -0.142 -0.022
## convergence code: 0
## boundary (singular) fit: see ?isSingular
ci(result_7.2)
##                      Parameter CI        CI_low       CI_high
## 1                  (Intercept) 95  2.6153196761  3.039165e+00
## 2                 eccentricity 95 -0.0004643152  1.322296e-03
## 3               change_percent 95  0.0124923531  7.491074e-02
## 4                groupOriginal 95 -0.0137602955  2.930355e-01
## 5   eccentricity:groupOriginal 95 -0.0008752597 -8.687267e-05
## 6 change_percent:groupOriginal 95 -0.0374795320 -6.228879e-03
result_8 <- lmer(log_rt ~ (likelihood_rating + eccentricity + change_percent)*group + (1|workerId) + (1|image) + (1|stim_set), data=return_new)
summary(result_8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: log_rt ~ (likelihood_rating + eccentricity + change_percent) *  
##     group + (1 | workerId) + (1 | image) + (1 | stim_set)
##    Data: return_new
## 
## REML criterion at convergence: -21221.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9305 -0.2143 -0.0166  0.1463  8.0206 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  image    (Intercept) 0.0061206 0.07823 
##  workerId (Intercept) 0.0049910 0.07065 
##  stim_set (Intercept) 0.0009816 0.03133 
##  Residual             0.0073978 0.08601 
## Number of obs: 11612, groups:  image, 481; workerId, 436; stim_set, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      9.436e-01  1.971e-02  5.136e+00  47.884
## likelihood_rating               -2.283e-03  1.086e-03  1.153e+04  -2.103
## eccentricity                     1.316e-04  4.422e-05  4.978e+02   2.977
## change_percent                  -4.966e-03  1.841e-03  2.800e+02  -2.698
## groupOriginal                   -7.234e-03  9.088e-03  1.166e+03  -0.796
## likelihood_rating:groupOriginal  2.822e-04  1.412e-03  1.107e+04   0.200
## eccentricity:groupOriginal       2.387e-06  1.979e-05  1.080e+04   0.121
## change_percent:groupOriginal     4.281e-04  7.869e-04  1.108e+04   0.544
##                                 Pr(>|t|)    
## (Intercept)                     5.23e-08 ***
## likelihood_rating                0.03551 *  
## eccentricity                     0.00306 ** 
## change_percent                   0.00741 ** 
## groupOriginal                    0.42616    
## likelihood_rating:groupOriginal  0.84156    
## eccentricity:groupOriginal       0.90397    
## change_percent:groupOriginal     0.58645    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lklhd_ eccntr chng_p grpOrg lkl_:O eccn:O
## liklhd_rtng -0.157                                          
## eccentricty -0.418 -0.011                                   
## chang_prcnt -0.201 -0.017 -0.031                            
## groupOrignl -0.210  0.239  0.077  0.020                     
## lklhd_rtn:O  0.083 -0.539  0.007  0.008 -0.465              
## eccntrcty:O  0.078  0.025 -0.191  0.004 -0.409 -0.012       
## chng_prcn:O  0.021  0.025  0.005 -0.212 -0.118 -0.006 -0.021
ci(result_8)
##                         Parameter CI        CI_low       CI_high
## 1                     (Intercept) 95  9.049928e-01  9.822403e-01
## 2               likelihood_rating 95 -4.411785e-03 -1.550392e-04
## 3                    eccentricity 95  4.495692e-05  2.182931e-04
## 4                  change_percent 95 -8.573699e-03 -1.357878e-03
## 5                   groupOriginal 95 -2.504605e-02  1.057719e-02
## 6 likelihood_rating:groupOriginal 95 -2.484617e-03  3.049017e-03
## 7      eccentricity:groupOriginal 95 -3.639685e-05  4.117155e-05
## 8    change_percent:groupOriginal 95 -1.114152e-03  1.970252e-03
return_new_comparison %>% 
  ggscatter(y = "log_rt", x = "likelihood_rating", color = "group", ylab = "Log CB Duration", xlab = "Likelihood of Detecting Change", palette = c("#c5050c", "#282728"), add = "reg.line", conf.int = TRUE, xlim = c(1, 5), ylim = c(0.75, 1.5), alpha = 0.5, legend = c(.1,0.9)) + theme(legend.title=element_blank())

ggsave("MS_fig_3.jpg")

return_new_corr <- return_new %>% 
  group_by(image,group) %>% 
  dplyr::summarize(likelihood_rating = mean(likelihood_rating)) %>%
  spread(group,likelihood_rating) 

return_new_corr %>%
  ggscatter(y = "Original", x = "New", ylab = "Original Subject Rating", xlab = "New Subject Rating", add = "reg.line", conf.int = TRUE, xlim = c(1, 5), ylim = c(1, 5))