wandervogel
2021-03-28
The created shiny app shows the diamonds data and a prediction model. For looking and using the app please follow this link: https://sora725.shinyapps.io/shiny_diamonds/.
The analyzed data is the diamonds data frame of the ggplot2 library.
library(ggplot2)
data(diamonds)
summary(diamonds)
carat cut color clarity depth
Min. :0.2000 Fair : 1610 D: 6775 SI1 :13065 Min. :43.00
1st Qu.:0.4000 Good : 4906 E: 9797 VS2 :12258 1st Qu.:61.00
Median :0.7000 Very Good:12082 F: 9542 SI2 : 9194 Median :61.80
Mean :0.7979 Premium :13791 G:11292 VS1 : 8171 Mean :61.75
3rd Qu.:1.0400 Ideal :21551 H: 8304 VVS2 : 5066 3rd Qu.:62.50
Max. :5.0100 I: 5422 VVS1 : 3655 Max. :79.00
J: 2808 (Other): 2531
table price x y
Min. :43.00 Min. : 326 Min. : 0.000 Min. : 0.000
1st Qu.:56.00 1st Qu.: 950 1st Qu.: 4.710 1st Qu.: 4.720
Median :57.00 Median : 2401 Median : 5.700 Median : 5.710
Mean :57.46 Mean : 3933 Mean : 5.731 Mean : 5.735
3rd Qu.:59.00 3rd Qu.: 5324 3rd Qu.: 6.540 3rd Qu.: 6.540
Max. :95.00 Max. :18823 Max. :10.740 Max. :58.900
z
Min. : 0.000
1st Qu.: 2.910
Median : 3.530
Mean : 3.539
3rd Qu.: 4.040
Max. :31.800
The app predicts diamond prices by carat.
The prediction can be done by all data points of the data set or by selection of data points with fair, good, very good, premium or ideal cuts. These can be selected via checkboxes. If a box is checked, the data points with the specific cut is hidden. Hiding all kind of cuts causes an error, but this makes no sense.
The used prediction model is a log converted linear regression model.
The red line in the following plot shows a expample prediction model.