DATA Advertising

library(mice)
## Warning: package 'mice' was built under R version 4.0.4
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
# Carga de los datos 
Advertising <- read.csv("C:/Users/HUAWEI/Downloads/9_A_PARTAGER-20210327T202526Z-001/9_A_PARTAGER/3_DatosPerdidos/Advertising.csv")

# Vista  de los datos 
dplyr::glimpse(Advertising)
## Rows: 200
## Columns: 5
## $ X         <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1~
## $ TV        <dbl> 230.1, 44.5, 17.2, 151.5, 180.8, 8.7, 57.5, 120.2, 8.6, 199.~
## $ Radio     <dbl> 37.8, 39.3, 45.9, 41.3, 10.8, 48.9, 32.8, 19.6, 2.1, 2.6, 5.~
## $ Newspaper <dbl> 69.2, 45.1, 69.3, 58.5, 58.4, 75.0, 23.5, 11.6, 1.0, 21.2, 2~
## $ Sales     <dbl> 22.1, 10.4, 9.3, 18.5, 12.9, 7.2, 11.8, 13.2, 4.8, 10.6, 8.6~
str(Advertising)
## 'data.frame':    200 obs. of  5 variables:
##  $ X        : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ TV       : num  230.1 44.5 17.2 151.5 180.8 ...
##  $ Radio    : num  37.8 39.3 45.9 41.3 10.8 48.9 32.8 19.6 2.1 2.6 ...
##  $ Newspaper: num  69.2 45.1 69.3 58.5 58.4 75 23.5 11.6 1 21.2 ...
##  $ Sales    : num  22.1 10.4 9.3 18.5 12.9 7.2 11.8 13.2 4.8 10.6 ...
#NA CREAR
publicidad <- Advertising
publicidad$TV[sample(1:200,10,replace=F)] <- NA
publicidad$Radio[sample(1:200,10,replace=F)] <- NA

# NA 

publicidad$TV[sample(1:200,3)] <- NA
publicidad$Radio[sample(1:200,3)] <- NA

# Vista de los NA
apply(publicidad, 2, function(x){sum(is.na(x))})
##         X        TV     Radio Newspaper     Sales 
##         0        13        13         0         0
summary(publicidad)
##        X                TV             Radio         Newspaper     
##  Min.   :  1.00   Min.   :  0.70   Min.   : 0.00   Min.   :  0.30  
##  1st Qu.: 50.75   1st Qu.: 74.05   1st Qu.: 9.45   1st Qu.: 12.75  
##  Median :100.50   Median :156.60   Median :21.30   Median : 25.75  
##  Mean   :100.50   Mean   :147.91   Mean   :22.92   Mean   : 30.55  
##  3rd Qu.:150.25   3rd Qu.:219.15   3rd Qu.:36.05   3rd Qu.: 45.10  
##  Max.   :200.00   Max.   :296.40   Max.   :49.60   Max.   :114.00  
##                   NA's   :13       NA's   :13                      
##      Sales      
##  Min.   : 1.60  
##  1st Qu.:10.38  
##  Median :12.90  
##  Mean   :14.02  
##  3rd Qu.:17.40  
##  Max.   :27.00  
## 
# Visualizar los valores Perdidos 

mice::md.pattern(publicidad, rotate.names=TRUE)

##     X Newspaper Sales TV Radio   
## 175 1         1     1  1     1  0
## 12  1         1     1  1     0  1
## 12  1         1     1  0     1  1
## 1   1         1     1  0     0  2
##     0         0     0 13    13 26
mice::md.pairs(publicidad) 
## $rr
##             X  TV Radio Newspaper Sales
## X         200 187   187       200   200
## TV        187 187   175       187   187
## Radio     187 175   187       187   187
## Newspaper 200 187   187       200   200
## Sales     200 187   187       200   200
## 
## $rm
##           X TV Radio Newspaper Sales
## X         0 13    13         0     0
## TV        0  0    12         0     0
## Radio     0 12     0         0     0
## Newspaper 0 13    13         0     0
## Sales     0 13    13         0     0
## 
## $mr
##            X TV Radio Newspaper Sales
## X          0  0     0         0     0
## TV        13  0    12        13    13
## Radio     13 12     0        13    13
## Newspaper  0  0     0         0     0
## Sales      0  0     0         0     0
## 
## $mm
##           X TV Radio Newspaper Sales
## X         0  0     0         0     0
## TV        0 13     1         0     0
## Radio     0  1    13         0     0
## Newspaper 0  0     0         0     0
## Sales     0  0     0         0     0
# Realizando Imputacion  - MEDIA

library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.0.3
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
publicidad_mean <- publicidad
publicidad_mean$TV_mean <- with(publicidad, impute(TV, mean))
publicidad_mean
##       X    TV Radio Newspaper Sales  TV_mean
## 1     1 230.1  37.8      69.2  22.1 230.1000
## 2     2  44.5  39.3      45.1  10.4  44.5000
## 3     3  17.2  45.9      69.3   9.3  17.2000
## 4     4 151.5  41.3      58.5  18.5 151.5000
## 5     5 180.8  10.8      58.4  12.9 180.8000
## 6     6   8.7  48.9      75.0   7.2   8.7000
## 7     7  57.5  32.8      23.5  11.8  57.5000
## 8     8 120.2  19.6      11.6  13.2 120.2000
## 9     9   8.6   2.1       1.0   4.8   8.6000
## 10   10 199.8    NA      21.2  10.6 199.8000
## 11   11  66.1   5.8      24.2   8.6  66.1000
## 12   12 214.7  24.0       4.0  17.4 214.7000
## 13   13    NA  35.1      65.9   9.2 147.9139
## 14   14  97.5   7.6       7.2   9.7  97.5000
## 15   15 204.1  32.9      46.0  19.0 204.1000
## 16   16 195.4  47.7      52.9  22.4 195.4000
## 17   17  67.8  36.6     114.0  12.5  67.8000
## 18   18 281.4  39.6      55.8  24.4 281.4000
## 19   19  69.2  20.5      18.3  11.3  69.2000
## 20   20 147.3  23.9      19.1  14.6 147.3000
## 21   21 218.4    NA      53.4  18.0 218.4000
## 22   22 237.4   5.1      23.5  12.5 237.4000
## 23   23  13.2  15.9      49.6   5.6  13.2000
## 24   24 228.3  16.9      26.2  15.5 228.3000
## 25   25    NA  12.6      18.3   9.7 147.9139
## 26   26 262.9   3.5      19.5  12.0 262.9000
## 27   27 142.9    NA      12.6  15.0 142.9000
## 28   28 240.1  16.7      22.9  15.9 240.1000
## 29   29 248.8  27.1      22.9  18.9 248.8000
## 30   30  70.6  16.0      40.8  10.5  70.6000
## 31   31 292.9  28.3      43.2  21.4 292.9000
## 32   32    NA  17.4      38.6  11.9 147.9139
## 33   33  97.2   1.5      30.0   9.6  97.2000
## 34   34 265.6  20.0       0.3  17.4 265.6000
## 35   35  95.7   1.4       7.4   9.5  95.7000
## 36   36 290.7   4.1       8.5  12.8 290.7000
## 37   37    NA  43.8       5.0  25.4 147.9139
## 38   38  74.7  49.4      45.7  14.7  74.7000
## 39   39  43.1  26.7      35.1  10.1  43.1000
## 40   40 228.0  37.7      32.0  21.5 228.0000
## 41   41 202.5    NA      31.6  16.6 202.5000
## 42   42 177.0  33.4      38.7  17.1 177.0000
## 43   43 293.6  27.7       1.8  20.7 293.6000
## 44   44 206.9   8.4      26.4  12.9 206.9000
## 45   45  25.1  25.7      43.3   8.5  25.1000
## 46   46 175.1  22.5      31.5  14.9 175.1000
## 47   47  89.7    NA      35.7  10.6  89.7000
## 48   48 239.9  41.5      18.5  23.2 239.9000
## 49   49 227.2  15.8      49.9  14.8 227.2000
## 50   50  66.9  11.7      36.8   9.7  66.9000
## 51   51 199.8   3.1      34.6  11.4 199.8000
## 52   52    NA   9.6       3.6  10.7 147.9139
## 53   53 216.4  41.7      39.6  22.6 216.4000
## 54   54 182.6  46.2      58.7  21.2 182.6000
## 55   55 262.7  28.8      15.9  20.2 262.7000
## 56   56 198.9  49.4      60.0  23.7 198.9000
## 57   57   7.3  28.1      41.4   5.5   7.3000
## 58   58 136.2  19.2      16.6  13.2 136.2000
## 59   59 210.8  49.6      37.7  23.8 210.8000
## 60   60 210.7  29.5       9.3  18.4 210.7000
## 61   61  53.5   2.0      21.4   8.1  53.5000
## 62   62 261.3  42.7      54.7  24.2 261.3000
## 63   63 239.3  15.5      27.3  15.7 239.3000
## 64   64    NA    NA       8.4  14.0 147.9139
## 65   65 131.1  42.8      28.9  18.0 131.1000
## 66   66  69.0   9.3       0.9   9.3  69.0000
## 67   67  31.5  24.6       2.2   9.5  31.5000
## 68   68 139.3  14.5      10.2  13.4 139.3000
## 69   69 237.4    NA      11.0  18.9 237.4000
## 70   70 216.8  43.9      27.2  22.3 216.8000
## 71   71 199.1  30.6      38.7  18.3 199.1000
## 72   72 109.8  14.3      31.7  12.4 109.8000
## 73   73  26.8  33.0      19.3   8.8  26.8000
## 74   74 129.4   5.7      31.3  11.0 129.4000
## 75   75 213.4  24.6      13.1  17.0 213.4000
## 76   76  16.9  43.7      89.4   8.7  16.9000
## 77   77  27.5   1.6      20.7   6.9  27.5000
## 78   78 120.5  28.5      14.2  14.2 120.5000
## 79   79   5.4  29.9       9.4   5.3   5.4000
## 80   80 116.0   7.7      23.1  11.0 116.0000
## 81   81  76.4  26.7      22.3  11.8  76.4000
## 82   82 239.8   4.1      36.9  12.3 239.8000
## 83   83    NA  20.3      32.5  11.3 147.9139
## 84   84  68.4  44.5      35.6  13.6  68.4000
## 85   85 213.5  43.0      33.8  21.7 213.5000
## 86   86 193.2  18.4      65.7  15.2 193.2000
## 87   87  76.3  27.5      16.0  12.0  76.3000
## 88   88 110.7  40.6      63.2  16.0 110.7000
## 89   89  88.3  25.5      73.4  12.9  88.3000
## 90   90 109.8  47.8      51.4  16.7 109.8000
## 91   91 134.3   4.9       9.3  11.2 134.3000
## 92   92  28.6   1.5      33.0   7.3  28.6000
## 93   93    NA  33.5      59.0  19.4 147.9139
## 94   94 250.9  36.5      72.3  22.2 250.9000
## 95   95 107.4  14.0      10.9  11.5 107.4000
## 96   96 163.3  31.6      52.9  16.9 163.3000
## 97   97 197.6   3.5       5.9  11.7 197.6000
## 98   98 184.9  21.0      22.0  15.5 184.9000
## 99   99 289.7  42.3      51.2  25.4 289.7000
## 100 100 135.2  41.7      45.9  17.2 135.2000
## 101 101 222.4   4.3      49.8  11.7 222.4000
## 102 102 296.4  36.3     100.9  23.8 296.4000
## 103 103    NA  10.1      21.4  14.8 147.9139
## 104 104 187.9  17.2      17.9  14.7 187.9000
## 105 105 238.2  34.3       5.3  20.7 238.2000
## 106 106 137.9  46.4      59.0  19.2 137.9000
## 107 107  25.0  11.0      29.7   7.2  25.0000
## 108 108  90.4   0.3      23.2   8.7  90.4000
## 109 109  13.1   0.4      25.6   5.3  13.1000
## 110 110 255.4  26.9       5.5  19.8 255.4000
## 111 111 225.8   8.2      56.5  13.4 225.8000
## 112 112 241.7  38.0      23.2  21.8 241.7000
## 113 113 175.7  15.4       2.4  14.1 175.7000
## 114 114 209.6  20.6      10.7  15.9 209.6000
## 115 115  78.2  46.8      34.5  14.6  78.2000
## 116 116  75.1  35.0      52.7  12.6  75.1000
## 117 117    NA  14.3      25.6  12.2 147.9139
## 118 118  76.4   0.8      14.8   9.4  76.4000
## 119 119 125.7  36.9      79.2  15.9 125.7000
## 120 120  19.4  16.0      22.3   6.6  19.4000
## 121 121 141.3  26.8      46.2  15.5 141.3000
## 122 122  18.8  21.7      50.4   7.0  18.8000
## 123 123 224.0   2.4      15.6  11.6 224.0000
## 124 124 123.1  34.6      12.4  15.2 123.1000
## 125 125 229.5  32.3      74.2  19.7 229.5000
## 126 126  87.2  11.8      25.9  10.6  87.2000
## 127 127   7.8  38.9      50.6   6.6   7.8000
## 128 128  80.2   0.0       9.2   8.8  80.2000
## 129 129 220.3  49.0       3.2  24.7 220.3000
## 130 130  59.6    NA      43.1   9.7  59.6000
## 131 131   0.7  39.6       8.7   1.6   0.7000
## 132 132 265.2   2.9      43.0  12.7 265.2000
## 133 133   8.4  27.2       2.1   5.7   8.4000
## 134 134 219.8  33.5      45.1  19.6 219.8000
## 135 135  36.9  38.6      65.6  10.8  36.9000
## 136 136  48.3  47.0       8.5  11.6  48.3000
## 137 137  25.6    NA       9.3   9.5  25.6000
## 138 138 273.7  28.9      59.7  20.8 273.7000
## 139 139  43.0  25.9      20.5   9.6  43.0000
## 140 140 184.9  43.9       1.7  20.7 184.9000
## 141 141  73.4  17.0      12.9  10.9  73.4000
## 142 142 193.7  35.4      75.6  19.2 193.7000
## 143 143 220.5  33.2      37.9  20.1 220.5000
## 144 144 104.6   5.7      34.4  10.4 104.6000
## 145 145    NA  14.8      38.9  11.4 147.9139
## 146 146 140.3   1.9       9.0  10.3 140.3000
## 147 147 240.1   7.3       8.7  13.2 240.1000
## 148 148 243.2  49.0      44.3  25.4 243.2000
## 149 149  38.0  40.3      11.9  10.9  38.0000
## 150 150  44.7  25.8      20.6  10.1  44.7000
## 151 151 280.7  13.9      37.0  16.1 280.7000
## 152 152 121.0   8.4      48.7  11.6 121.0000
## 153 153 197.6  23.3      14.2  16.6 197.6000
## 154 154 171.3    NA      37.7  19.0 171.3000
## 155 155 187.8  21.1       9.5  15.6 187.8000
## 156 156   4.1  11.6       5.7   3.2   4.1000
## 157 157  93.9    NA      50.5  15.3  93.9000
## 158 158 149.8   1.3      24.3  10.1 149.8000
## 159 159  11.7  36.9      45.2   7.3  11.7000
## 160 160 131.7  18.4      34.6  12.9 131.7000
## 161 161 172.5  18.1      30.7  14.4 172.5000
## 162 162  85.7  35.8      49.3  13.3  85.7000
## 163 163 188.4  18.1      25.6  14.9 188.4000
## 164 164 163.5  36.8       7.4  18.0 163.5000
## 165 165 117.2  14.7       5.4  11.9 117.2000
## 166 166 234.5   3.4      84.8  11.9 234.5000
## 167 167  17.9  37.6      21.6   8.0  17.9000
## 168 168 206.8   5.2      19.4  12.2 206.8000
## 169 169 215.4  23.6      57.6  17.1 215.4000
## 170 170 284.3  10.6       6.4  15.0 284.3000
## 171 171  50.0  11.6      18.4   8.4  50.0000
## 172 172 164.5  20.9      47.4  14.5 164.5000
## 173 173  19.6  20.1      17.0   7.6  19.6000
## 174 174 168.4   7.1      12.8  11.7 168.4000
## 175 175 222.4   3.4      13.1  11.5 222.4000
## 176 176 276.9  48.9      41.8  27.0 276.9000
## 177 177 248.4  30.2      20.3  20.2 248.4000
## 178 178 170.2   7.8      35.2  11.7 170.2000
## 179 179 276.7   2.3      23.7  11.8 276.7000
## 180 180 165.6  10.0      17.6  12.6 165.6000
## 181 181 156.6   2.6       8.3  10.5 156.6000
## 182 182 218.5   5.4      27.4  12.2 218.5000
## 183 183  56.2   5.7      29.7   8.7  56.2000
## 184 184 287.6  43.0      71.8  26.2 287.6000
## 185 185    NA  21.3      30.0  17.6 147.9139
## 186 186 205.0  45.1      19.6  22.6 205.0000
## 187 187 139.5   2.1      26.6  10.3 139.5000
## 188 188 191.1  28.7      18.2  17.3 191.1000
## 189 189 286.0  13.9       3.7  15.9 286.0000
## 190 190  18.7  12.1      23.4   6.7  18.7000
## 191 191  39.5    NA       5.8  10.8  39.5000
## 192 192  75.5  10.8       6.0   9.9  75.5000
## 193 193    NA   4.1      31.6   5.9 147.9139
## 194 194 166.8    NA       3.6  19.6 166.8000
## 195 195 149.7  35.6       6.0  17.3 149.7000
## 196 196  38.2   3.7      13.8   7.6  38.2000
## 197 197  94.2   4.9       8.1   9.7  94.2000
## 198 198 177.0   9.3       6.4  12.8 177.0000
## 199 199 283.6  42.0      66.2  25.5 283.6000
## 200 200 232.1   8.6       8.7  13.4 232.1000
publicidad_mean$Radio_mean <- with(publicidad, impute(Radio, mean))
publicidad_mean
##       X    TV Radio Newspaper Sales  TV_mean Radio_mean
## 1     1 230.1  37.8      69.2  22.1 230.1000   37.80000
## 2     2  44.5  39.3      45.1  10.4  44.5000   39.30000
## 3     3  17.2  45.9      69.3   9.3  17.2000   45.90000
## 4     4 151.5  41.3      58.5  18.5 151.5000   41.30000
## 5     5 180.8  10.8      58.4  12.9 180.8000   10.80000
## 6     6   8.7  48.9      75.0   7.2   8.7000   48.90000
## 7     7  57.5  32.8      23.5  11.8  57.5000   32.80000
## 8     8 120.2  19.6      11.6  13.2 120.2000   19.60000
## 9     9   8.6   2.1       1.0   4.8   8.6000    2.10000
## 10   10 199.8    NA      21.2  10.6 199.8000   22.92299
## 11   11  66.1   5.8      24.2   8.6  66.1000    5.80000
## 12   12 214.7  24.0       4.0  17.4 214.7000   24.00000
## 13   13    NA  35.1      65.9   9.2 147.9139   35.10000
## 14   14  97.5   7.6       7.2   9.7  97.5000    7.60000
## 15   15 204.1  32.9      46.0  19.0 204.1000   32.90000
## 16   16 195.4  47.7      52.9  22.4 195.4000   47.70000
## 17   17  67.8  36.6     114.0  12.5  67.8000   36.60000
## 18   18 281.4  39.6      55.8  24.4 281.4000   39.60000
## 19   19  69.2  20.5      18.3  11.3  69.2000   20.50000
## 20   20 147.3  23.9      19.1  14.6 147.3000   23.90000
## 21   21 218.4    NA      53.4  18.0 218.4000   22.92299
## 22   22 237.4   5.1      23.5  12.5 237.4000    5.10000
## 23   23  13.2  15.9      49.6   5.6  13.2000   15.90000
## 24   24 228.3  16.9      26.2  15.5 228.3000   16.90000
## 25   25    NA  12.6      18.3   9.7 147.9139   12.60000
## 26   26 262.9   3.5      19.5  12.0 262.9000    3.50000
## 27   27 142.9    NA      12.6  15.0 142.9000   22.92299
## 28   28 240.1  16.7      22.9  15.9 240.1000   16.70000
## 29   29 248.8  27.1      22.9  18.9 248.8000   27.10000
## 30   30  70.6  16.0      40.8  10.5  70.6000   16.00000
## 31   31 292.9  28.3      43.2  21.4 292.9000   28.30000
## 32   32    NA  17.4      38.6  11.9 147.9139   17.40000
## 33   33  97.2   1.5      30.0   9.6  97.2000    1.50000
## 34   34 265.6  20.0       0.3  17.4 265.6000   20.00000
## 35   35  95.7   1.4       7.4   9.5  95.7000    1.40000
## 36   36 290.7   4.1       8.5  12.8 290.7000    4.10000
## 37   37    NA  43.8       5.0  25.4 147.9139   43.80000
## 38   38  74.7  49.4      45.7  14.7  74.7000   49.40000
## 39   39  43.1  26.7      35.1  10.1  43.1000   26.70000
## 40   40 228.0  37.7      32.0  21.5 228.0000   37.70000
## 41   41 202.5    NA      31.6  16.6 202.5000   22.92299
## 42   42 177.0  33.4      38.7  17.1 177.0000   33.40000
## 43   43 293.6  27.7       1.8  20.7 293.6000   27.70000
## 44   44 206.9   8.4      26.4  12.9 206.9000    8.40000
## 45   45  25.1  25.7      43.3   8.5  25.1000   25.70000
## 46   46 175.1  22.5      31.5  14.9 175.1000   22.50000
## 47   47  89.7    NA      35.7  10.6  89.7000   22.92299
## 48   48 239.9  41.5      18.5  23.2 239.9000   41.50000
## 49   49 227.2  15.8      49.9  14.8 227.2000   15.80000
## 50   50  66.9  11.7      36.8   9.7  66.9000   11.70000
## 51   51 199.8   3.1      34.6  11.4 199.8000    3.10000
## 52   52    NA   9.6       3.6  10.7 147.9139    9.60000
## 53   53 216.4  41.7      39.6  22.6 216.4000   41.70000
## 54   54 182.6  46.2      58.7  21.2 182.6000   46.20000
## 55   55 262.7  28.8      15.9  20.2 262.7000   28.80000
## 56   56 198.9  49.4      60.0  23.7 198.9000   49.40000
## 57   57   7.3  28.1      41.4   5.5   7.3000   28.10000
## 58   58 136.2  19.2      16.6  13.2 136.2000   19.20000
## 59   59 210.8  49.6      37.7  23.8 210.8000   49.60000
## 60   60 210.7  29.5       9.3  18.4 210.7000   29.50000
## 61   61  53.5   2.0      21.4   8.1  53.5000    2.00000
## 62   62 261.3  42.7      54.7  24.2 261.3000   42.70000
## 63   63 239.3  15.5      27.3  15.7 239.3000   15.50000
## 64   64    NA    NA       8.4  14.0 147.9139   22.92299
## 65   65 131.1  42.8      28.9  18.0 131.1000   42.80000
## 66   66  69.0   9.3       0.9   9.3  69.0000    9.30000
## 67   67  31.5  24.6       2.2   9.5  31.5000   24.60000
## 68   68 139.3  14.5      10.2  13.4 139.3000   14.50000
## 69   69 237.4    NA      11.0  18.9 237.4000   22.92299
## 70   70 216.8  43.9      27.2  22.3 216.8000   43.90000
## 71   71 199.1  30.6      38.7  18.3 199.1000   30.60000
## 72   72 109.8  14.3      31.7  12.4 109.8000   14.30000
## 73   73  26.8  33.0      19.3   8.8  26.8000   33.00000
## 74   74 129.4   5.7      31.3  11.0 129.4000    5.70000
## 75   75 213.4  24.6      13.1  17.0 213.4000   24.60000
## 76   76  16.9  43.7      89.4   8.7  16.9000   43.70000
## 77   77  27.5   1.6      20.7   6.9  27.5000    1.60000
## 78   78 120.5  28.5      14.2  14.2 120.5000   28.50000
## 79   79   5.4  29.9       9.4   5.3   5.4000   29.90000
## 80   80 116.0   7.7      23.1  11.0 116.0000    7.70000
## 81   81  76.4  26.7      22.3  11.8  76.4000   26.70000
## 82   82 239.8   4.1      36.9  12.3 239.8000    4.10000
## 83   83    NA  20.3      32.5  11.3 147.9139   20.30000
## 84   84  68.4  44.5      35.6  13.6  68.4000   44.50000
## 85   85 213.5  43.0      33.8  21.7 213.5000   43.00000
## 86   86 193.2  18.4      65.7  15.2 193.2000   18.40000
## 87   87  76.3  27.5      16.0  12.0  76.3000   27.50000
## 88   88 110.7  40.6      63.2  16.0 110.7000   40.60000
## 89   89  88.3  25.5      73.4  12.9  88.3000   25.50000
## 90   90 109.8  47.8      51.4  16.7 109.8000   47.80000
## 91   91 134.3   4.9       9.3  11.2 134.3000    4.90000
## 92   92  28.6   1.5      33.0   7.3  28.6000    1.50000
## 93   93    NA  33.5      59.0  19.4 147.9139   33.50000
## 94   94 250.9  36.5      72.3  22.2 250.9000   36.50000
## 95   95 107.4  14.0      10.9  11.5 107.4000   14.00000
## 96   96 163.3  31.6      52.9  16.9 163.3000   31.60000
## 97   97 197.6   3.5       5.9  11.7 197.6000    3.50000
## 98   98 184.9  21.0      22.0  15.5 184.9000   21.00000
## 99   99 289.7  42.3      51.2  25.4 289.7000   42.30000
## 100 100 135.2  41.7      45.9  17.2 135.2000   41.70000
## 101 101 222.4   4.3      49.8  11.7 222.4000    4.30000
## 102 102 296.4  36.3     100.9  23.8 296.4000   36.30000
## 103 103    NA  10.1      21.4  14.8 147.9139   10.10000
## 104 104 187.9  17.2      17.9  14.7 187.9000   17.20000
## 105 105 238.2  34.3       5.3  20.7 238.2000   34.30000
## 106 106 137.9  46.4      59.0  19.2 137.9000   46.40000
## 107 107  25.0  11.0      29.7   7.2  25.0000   11.00000
## 108 108  90.4   0.3      23.2   8.7  90.4000    0.30000
## 109 109  13.1   0.4      25.6   5.3  13.1000    0.40000
## 110 110 255.4  26.9       5.5  19.8 255.4000   26.90000
## 111 111 225.8   8.2      56.5  13.4 225.8000    8.20000
## 112 112 241.7  38.0      23.2  21.8 241.7000   38.00000
## 113 113 175.7  15.4       2.4  14.1 175.7000   15.40000
## 114 114 209.6  20.6      10.7  15.9 209.6000   20.60000
## 115 115  78.2  46.8      34.5  14.6  78.2000   46.80000
## 116 116  75.1  35.0      52.7  12.6  75.1000   35.00000
## 117 117    NA  14.3      25.6  12.2 147.9139   14.30000
## 118 118  76.4   0.8      14.8   9.4  76.4000    0.80000
## 119 119 125.7  36.9      79.2  15.9 125.7000   36.90000
## 120 120  19.4  16.0      22.3   6.6  19.4000   16.00000
## 121 121 141.3  26.8      46.2  15.5 141.3000   26.80000
## 122 122  18.8  21.7      50.4   7.0  18.8000   21.70000
## 123 123 224.0   2.4      15.6  11.6 224.0000    2.40000
## 124 124 123.1  34.6      12.4  15.2 123.1000   34.60000
## 125 125 229.5  32.3      74.2  19.7 229.5000   32.30000
## 126 126  87.2  11.8      25.9  10.6  87.2000   11.80000
## 127 127   7.8  38.9      50.6   6.6   7.8000   38.90000
## 128 128  80.2   0.0       9.2   8.8  80.2000    0.00000
## 129 129 220.3  49.0       3.2  24.7 220.3000   49.00000
## 130 130  59.6    NA      43.1   9.7  59.6000   22.92299
## 131 131   0.7  39.6       8.7   1.6   0.7000   39.60000
## 132 132 265.2   2.9      43.0  12.7 265.2000    2.90000
## 133 133   8.4  27.2       2.1   5.7   8.4000   27.20000
## 134 134 219.8  33.5      45.1  19.6 219.8000   33.50000
## 135 135  36.9  38.6      65.6  10.8  36.9000   38.60000
## 136 136  48.3  47.0       8.5  11.6  48.3000   47.00000
## 137 137  25.6    NA       9.3   9.5  25.6000   22.92299
## 138 138 273.7  28.9      59.7  20.8 273.7000   28.90000
## 139 139  43.0  25.9      20.5   9.6  43.0000   25.90000
## 140 140 184.9  43.9       1.7  20.7 184.9000   43.90000
## 141 141  73.4  17.0      12.9  10.9  73.4000   17.00000
## 142 142 193.7  35.4      75.6  19.2 193.7000   35.40000
## 143 143 220.5  33.2      37.9  20.1 220.5000   33.20000
## 144 144 104.6   5.7      34.4  10.4 104.6000    5.70000
## 145 145    NA  14.8      38.9  11.4 147.9139   14.80000
## 146 146 140.3   1.9       9.0  10.3 140.3000    1.90000
## 147 147 240.1   7.3       8.7  13.2 240.1000    7.30000
## 148 148 243.2  49.0      44.3  25.4 243.2000   49.00000
## 149 149  38.0  40.3      11.9  10.9  38.0000   40.30000
## 150 150  44.7  25.8      20.6  10.1  44.7000   25.80000
## 151 151 280.7  13.9      37.0  16.1 280.7000   13.90000
## 152 152 121.0   8.4      48.7  11.6 121.0000    8.40000
## 153 153 197.6  23.3      14.2  16.6 197.6000   23.30000
## 154 154 171.3    NA      37.7  19.0 171.3000   22.92299
## 155 155 187.8  21.1       9.5  15.6 187.8000   21.10000
## 156 156   4.1  11.6       5.7   3.2   4.1000   11.60000
## 157 157  93.9    NA      50.5  15.3  93.9000   22.92299
## 158 158 149.8   1.3      24.3  10.1 149.8000    1.30000
## 159 159  11.7  36.9      45.2   7.3  11.7000   36.90000
## 160 160 131.7  18.4      34.6  12.9 131.7000   18.40000
## 161 161 172.5  18.1      30.7  14.4 172.5000   18.10000
## 162 162  85.7  35.8      49.3  13.3  85.7000   35.80000
## 163 163 188.4  18.1      25.6  14.9 188.4000   18.10000
## 164 164 163.5  36.8       7.4  18.0 163.5000   36.80000
## 165 165 117.2  14.7       5.4  11.9 117.2000   14.70000
## 166 166 234.5   3.4      84.8  11.9 234.5000    3.40000
## 167 167  17.9  37.6      21.6   8.0  17.9000   37.60000
## 168 168 206.8   5.2      19.4  12.2 206.8000    5.20000
## 169 169 215.4  23.6      57.6  17.1 215.4000   23.60000
## 170 170 284.3  10.6       6.4  15.0 284.3000   10.60000
## 171 171  50.0  11.6      18.4   8.4  50.0000   11.60000
## 172 172 164.5  20.9      47.4  14.5 164.5000   20.90000
## 173 173  19.6  20.1      17.0   7.6  19.6000   20.10000
## 174 174 168.4   7.1      12.8  11.7 168.4000    7.10000
## 175 175 222.4   3.4      13.1  11.5 222.4000    3.40000
## 176 176 276.9  48.9      41.8  27.0 276.9000   48.90000
## 177 177 248.4  30.2      20.3  20.2 248.4000   30.20000
## 178 178 170.2   7.8      35.2  11.7 170.2000    7.80000
## 179 179 276.7   2.3      23.7  11.8 276.7000    2.30000
## 180 180 165.6  10.0      17.6  12.6 165.6000   10.00000
## 181 181 156.6   2.6       8.3  10.5 156.6000    2.60000
## 182 182 218.5   5.4      27.4  12.2 218.5000    5.40000
## 183 183  56.2   5.7      29.7   8.7  56.2000    5.70000
## 184 184 287.6  43.0      71.8  26.2 287.6000   43.00000
## 185 185    NA  21.3      30.0  17.6 147.9139   21.30000
## 186 186 205.0  45.1      19.6  22.6 205.0000   45.10000
## 187 187 139.5   2.1      26.6  10.3 139.5000    2.10000
## 188 188 191.1  28.7      18.2  17.3 191.1000   28.70000
## 189 189 286.0  13.9       3.7  15.9 286.0000   13.90000
## 190 190  18.7  12.1      23.4   6.7  18.7000   12.10000
## 191 191  39.5    NA       5.8  10.8  39.5000   22.92299
## 192 192  75.5  10.8       6.0   9.9  75.5000   10.80000
## 193 193    NA   4.1      31.6   5.9 147.9139    4.10000
## 194 194 166.8    NA       3.6  19.6 166.8000   22.92299
## 195 195 149.7  35.6       6.0  17.3 149.7000   35.60000
## 196 196  38.2   3.7      13.8   7.6  38.2000    3.70000
## 197 197  94.2   4.9       8.1   9.7  94.2000    4.90000
## 198 198 177.0   9.3       6.4  12.8 177.0000    9.30000
## 199 199 283.6  42.0      66.2  25.5 283.6000   42.00000
## 200 200 232.1   8.6       8.7  13.4 232.1000    8.60000
# Realizando Imputacion  - KNN

library(DMwR2)
## Warning: package 'DMwR2' was built under R version 4.0.4
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
publicidad_imp <- DMwR::knnImputation(publicidad)
#View(sleep_imp)
summary(publicidad_imp)
##        X                TV            Radio         Newspaper     
##  Min.   :  1.00   Min.   :  0.7   Min.   : 0.00   Min.   :  0.30  
##  1st Qu.: 50.75   1st Qu.: 75.4   1st Qu.:10.47   1st Qu.: 12.75  
##  Median :100.50   Median :150.8   Median :21.86   Median : 25.75  
##  Mean   :100.50   Mean   :147.7   Mean   :22.94   Mean   : 30.55  
##  3rd Qu.:150.25   3rd Qu.:217.2   3rd Qu.:35.17   3rd Qu.: 45.10  
##  Max.   :200.00   Max.   :296.4   Max.   :49.60   Max.   :114.00  
##      Sales      
##  Min.   : 1.60  
##  1st Qu.:10.38  
##  Median :12.90  
##  Mean   :14.02  
##  3rd Qu.:17.40  
##  Max.   :27.00
# Comparando los datos 
par(mfrow=c(1,2))
hist(publicidad_mean$TV_mean)
hist(publicidad_imp$TV)

par(mfrow=c(1,2))
hist(publicidad_mean$Radio_mean)
hist(publicidad_imp$Radio)

par(mfrow=c(1,1))