1 Preparing Data

1.0.0.0.1 Loading Libraries and function using auxiliary file
source("funlibs.R")
1.0.0.0.2 Loading database
TDados <- read.spss(file = "Banco de Dados AEC_Clarissa 07NOV_BanTod11.04.19.Mis.sav", to.data.frame = TRUE, use.value.labels = FALSE)
TDados<-as.data.frame(TDados)
1.0.0.0.3 Subsetting AEC itens
data<-data.matrix(TDados[,c(234:237)])

2 Descriptive Statistics

2.0.0.0.1 Summary Statistics
psych::describe(data)
##       vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## AEC01    1 789 4.08 1.25      4    4.05 1.48   1   7     6 0.16     0.43 0.04
## AEC02    2 789 4.28 1.25      4    4.25 1.48   1   7     6 0.14     0.31 0.04
## AEC03    3 789 4.03 1.27      4    4.00 1.48   1   7     6 0.24     0.19 0.05
## AEC04    4 789 4.13 1.24      4    4.09 1.48   1   7     6 0.21     0.26 0.04

2.1 Relative Frequencies

data<-as.matrix(data)
dsc<-descript(data)
porcentagem<-as.data.frame(round(dsc$perc,2)*100)
names(porcentagem)<-c("% lv1","% lv2","% lv3","% lv4","% lv5","% lv6","% lv7")
porcentagem
##       % lv1 % lv2 % lv3 % lv4 % lv5 % lv6 % lv7
## AEC01     2     6    20    39    22     5     5
## AEC02     2     6    14    41    23     7     7
## AEC03     2     7    23    35    21     5     5
## AEC04     2     6    21    37    23     6     5
2.1.0.0.1 Plotting Itens as Likert
lbs <- c("lv1","lv2","lv3","lv4","lv5","lv6","lv7")
survey <- TDados[,c(234:237)] %>%
  dplyr::mutate_if(is.numeric, factor, levels = 1:7, labels = lbs)
plot(likert(survey[,1:4]), ordered = F, wrap= 60)

2.1.0.1 Recoding just as a test

#TDados[,c(234)]<-car::Recode(TDados[,c(234)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#TDados[,c(235)]<-car::Recode(TDados[,c(235)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#TDados[,c(236)]<-car::Recode(TDados[,c(236)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#TDados[,c(237)]<-car::Recode(TDados[,c(237)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#data<-data.matrix(TDados[,c(234:237)])
2.1.0.1.1 Histogram
dta_long <- melt(as.data.frame(data))
colnames(dta_long) <- c("Item", "Response")
Histogram <- ggplot(dta_long, aes(x = Response, fill = Item))+
geom_histogram(bins = 5)+
facet_wrap(~Item)+
theme_default()
Histogram

2.1.0.1.2 Density Plot
DensityPlot <- ggplot(dta_long, aes(x = Response, fill = Item))+
geom_density()+
facet_wrap(~Item)+
theme_default()
DensityPlot 

2.1.0.1.3 Correlation Matrix
CorMat <- psych::polychoric(data, correct=T, smooth=T,global=T)$rho
2.1.0.1.4 Plotting
corrplot(CorMat,order="hclust",type="upper",method="ellipse",
tl.pos = "lt",mar = c(2,2,2,2))
corrplot(CorMat,order="hclust",type="lower",method="number",
diag=FALSE,tl.pos="n", cl.pos="n",add=TRUE,mar = c(2,2,2,2))

2.1.0.1.5 Ggcorplot
#ggcorrplot(CorMat, hc.order = T,type = "lower", lab = TRUE,
#colors = c("#E46726", "white", "#6D9EC2"))

3 Splitting Data for Analysis

3.0.0.0.1 Random sampling training and test data for EFA and CFA
# Sorteio Aleatório
ss <- sample(1:2,size=nrow(TDados),replace=T,prob=c(0.3,0.7))
banco_EFA <- TDados[ss==1,]
banco_CFA <- TDados[ss==2,]
3.0.0.0.2 EFA of Criativity Auto-Efficacy
data<-as.data.frame(banco_EFA)

3.0.0.1 Recoding into five levels

#data[,c(234)]<-car::Recode(data[,c(234)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#data[,c(235)]<-car::Recode(data[,c(235)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#data[,c(236)]<-car::Recode(data[,c(236)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#data[,c(237)]<-car::Recode(data[,c(237)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#data<-data.matrix(data[,c(234:237)])

3.0.0.2 Subsetting

data<-data[,234:237]
3.0.0.2.1 Polychoric Correlation
CorMat <- psych::polychoric(data, correct=T, smooth=T,global=T)$rho
3.0.0.2.2 Bartlett Sphericity
bartlett<-psych::cortest.bartlett(CorMat, n = nrow(data),diag=TRUE)
#bartlett
3.0.0.2.3 Kayser Meyer - Sample Adequacy
kmo <-psych::KMO(CorMat)
#kmo

It was observed that the six items of CAEFF grouped a latent factor, Bartlett’s chi-square test 963.89; df= 6; p< 0 and KMO = 0.85

3.0.0.2.4 Parallel Analysis using unweighted least square
parallel<-pa.plot(CorMat,n.obs = nrow(data), fm="uls", cor="poly",n.iter=1000)
## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
print(parallel)
## [[1]]

## 
## [[2]]
## [1] 1
#parallel[[2]][1]

Number of factor by parallel analysis is equal to 1

3.0.0.2.5 Numeric Rules - Very Simples Structure based on parallel number of factor plus one
NumericRule <- VSS(CorMat,n =parallel[[2]][1]+1, plot = F, n.obs =nrow(data),rotate="promax",cor="poly", fm="uls")
temp1 <- data.frame(nFactor = row.names(NumericRule$vss.stats), 
VSS1 = NumericRule$cfit.1, VSS2 = NumericRule$cfit.2, 
MAP = NumericRule$map)
temp2 <- NumericRule$vss.stats[,c(6:8,11)]
NumericRule <- cbind(temp1,temp2)
NumericRule
##   nFactor   VSS1   VSS2    MAP   RMSEA    BIC   SABIC        SRMR
## 1       1 0.9795 0.0000 0.1289 0.06531 -6.896 -0.5557 0.009646985
## 2       2 0.4045 0.7538 0.3695      NA     NA      NA 0.000001615
3.0.0.2.6 Exploratory Graph Analysis (EGA)

4 Method 1 - bootEGA Method from EFAShiny

EGArst <- bootEGA(data = data, n = 1000, medianStructure = TRUE, plot.MedianStructure = TRUE, ncores = 4, layout = "spring")
## Note: bootnet will store only the following statistics:  edge, strength, outStrength, inStrength
## model set to 'GGM'
## Estimating sample network...
## Estimating Network. Using package::function:
##   - qgraph::EBICglasso for EBIC model selection
##     - using glasso::glasso
## Note: Network with lowest lambda selected as best network: assumption of sparsity might be violated.
## Warning in EBICglassoCore(S = S, n = n, gamma = gamma, penalize.diagonal =
## penalize.diagonal, : A dense regularized network was selected (lambda < 0.1 *
## lambda.max). Recent work indicates a possible drop in specificity. Interpret the
## presence of the smallest edges with care. Setting threshold = TRUE will enforce
## higher specificity, at the cost of sensitivity.
## Bootstrapping...
## Computing statistics...
## Warning: `tbl_df()` was deprecated in dplyr 1.0.0.
## Please use `tibble::as_tibble()` instead.

5 Method 2 - ega.object from Cleyton’s paper

#Figures
ega1 <- ega.object(CorMat,data)
## Note: Network with lowest lambda selected as best network: assumption of sparsity might be violated.
###
dim1 <- ega1$dim.variables
one <- which(dim1$dimension==1)
dim1$dimension[one] <- rep("AEC01",length(one))
two <- which(dim1$dimension==2)
dim1$dimension[two] <- rep("AEC02",length(two))
three <-which(dim1$dimension==3)
dim1$dimension[three] <- rep("AEC03",length(three))
four <-which(dim1$dimension==4)
dim1$dimension[four] <- rep("AEC04",length(four))

6 Method 3 - original boot.ega function with parallel processing

# BootEGA Function
boot.ega <- bootnet(data, nBoot = 1000, default = "EBICglasso",computeCentrality = T, type = "parametric", nCores = 4)
## Note: bootnet will store only the following statistics:  edge, strength, outStrength, inStrength
## model set to 'GGM'
## Estimating sample network...
## Estimating Network. Using package::function:
##   - qgraph::EBICglasso for EBIC model selection
##     - using glasso::glasso
## Note: Network with lowest lambda selected as best network: assumption of sparsity might be violated.
## Warning in EBICglassoCore(S = S, n = n, gamma = gamma, penalize.diagonal =
## penalize.diagonal, : A dense regularized network was selected (lambda < 0.1 *
## lambda.max). Recent work indicates a possible drop in specificity. Interpret the
## presence of the smallest edges with care. Setting threshold = TRUE will enforce
## higher specificity, at the cost of sensitivity.
## Bootstrapping...
## Computing statistics...
boot.ega
## === bootnet Results ===
## Number of nodes: 4 
## Number of non-zero edges in sample: 6 / 6 
## Mean weight of sample: 0.2915 
## Number of bootstrapped networks: 1000 
## Results of original sample stored in x$sample 
## Table of all statistics from original sample stored in x$sampleTable 
## Results of bootstraps stored in x$boots 
## Table of all statistics from bootstraps stored in x$bootTable 
##  
## Use plot(x$sample) to plot estimated network of original sample 
## Use summary(x) to inspect summarized statistics (see ?summary.bootnet for details) 
## Use plot(x) to plot summarized statistics (see ?plot.bootnet for details) 
## 
## Relevant references:
## 
##      Friedman, J. H., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9 (3), 432-441.
##  Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. 
##  Friedman, J. H., Hastie, T., & Tibshirani, R. (2014). glasso: Graphical lasso estimation of gaussian graphical models. Retrieved from https://CRAN.R-project.org/package=glasso
##  Epskamp, S., Cramer, A., Waldorp, L., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48 (1), 1-18.
##  Epskamp, S., Borsboom, D., & Fried, E. I. (2016). Estimating psychological networks and their accuracy: a tutorial paper. arXiv preprint, arXiv:1604.08462.
6.0.0.0.1 Estimated network of original sample
plot(boot.ega$sample)

##### Summarized statistics

summary(boot.ega)
## Warning: `select_()` was deprecated in dplyr 0.7.0.
## Please use `select()` instead.
## Warning: `mutate_()` was deprecated in dplyr 0.7.0.
## Please use `mutate()` instead.
## See vignette('programming') for more help
## Warning: `summarise_()` was deprecated in dplyr 0.7.0.
## Please use `summarise()` instead.
## Warning: `group_by_()` was deprecated in dplyr 0.7.0.
## Please use `group_by()` instead.
## See vignette('programming') for more help
## Warning: `filter_()` was deprecated in dplyr 0.7.0.
## Please use `filter()` instead.
## See vignette('programming') for more help
## # A tibble: 10 x 17
## # Groups:   type, node1, node2 [10]
##    type   id      node1 node2 sample  mean     sd  CIlower CIupper    q2.5 q97.5
##    <chr>  <chr>   <chr> <chr>  <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl> <dbl>
##  1 edge   AEC01-… AEC01 "AEC…  0.422 0.417 0.0481  0.326     0.519 3.18e-1 0.508
##  2 edge   AEC01-… AEC01 "AEC…  0.184 0.184 0.0595  0.0649    0.303 5.97e-2 0.299
##  3 edge   AEC01-… AEC01 "AEC…  0.291 0.292 0.0539  0.183     0.399 1.85e-1 0.392
##  4 edge   AEC02-… AEC02 "AEC…  0.115 0.120 0.0589 -0.00318   0.233 2.18e-5 0.233
##  5 edge   AEC02-… AEC02 "AEC…  0.460 0.453 0.0459  0.368     0.551 3.59e-1 0.537
##  6 edge   AEC03-… AEC03 "AEC…  0.278 0.275 0.0539  0.170     0.385 1.69e-1 0.377
##  7 stren… AEC01   AEC01 ""     0.897 0.892 0.0589  0.779     1.01  7.82e-1 1.01 
##  8 stren… AEC02   AEC02 ""     0.997 0.989 0.0609  0.875     1.12  8.66e-1 1.12 
##  9 stren… AEC03   AEC03 ""     0.576 0.579 0.0449  0.487     0.666 4.86e-1 0.669
## 10 stren… AEC04   AEC04 ""     1.03  1.02  0.0602  0.908     1.15  9.01e-1 1.13 
## # … with 6 more variables: q2.5_non0 <dbl>, mean_non0 <dbl>, q97.5_non0 <dbl>,
## #   var_non0 <dbl>, sd_non0 <dbl>, prop0 <dbl>

6.0.0.1 Plot from summarized statistics

plot(boot.ega)
## Warning: `arrange_()` was deprecated in dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help

6.0.0.2 Method 3 - New EGA package from Golino and XXX

# Estimate EGA
EGA(data =CorMat,n=nrow(data), plot.EGA = T,uni.method = "LE")
## Warning in EGA(data = CorMat, n = nrow(data), plot.EGA = T, uni.method =
## "LE"): Previous versions of EGAnet (<= 0.9.8) checked unidimensionality using
## uni.method = "expand" as the default
## Network estimated with:
##  • gamma = 0.5
##  • lambda.min.ratio = 0.1

## EGA Results:
## 
## Number of Dimensions:
## [1] 1
## 
## Items per Dimension:
##       items dimension
## AEC01 AEC01         1
## AEC02 AEC02         1
## AEC03 AEC03         1
## AEC04 AEC04         1

6.0.0.3 Factorial Exploratory Analysis

EFArst <- psych::fa(as.matrix(CorMat),1,n.obs=nrow(data), rotate = "promax",fm = "uls", n.iter =1000, alpha = T,correct = T)

The communalities were observed between 0.582 and 0.874, and the factor loadings between 0.763and 0.935 Table2. A factor was retained, with an eigenvalue of 3.16 that explained 0.79% of the variance.

6.0.0.3.1 Complete results from EFA
EFArst
## Factor Analysis with confidence intervals using method = psych::fa(r = as.matrix(CorMat), nfactors = 1, n.obs = nrow(data), 
##     n.iter = 1000, rotate = "promax", fm = "uls", alpha = T, 
##     correct = T)
## Factor Analysis using method =  uls
## Call: psych::fa(r = as.matrix(CorMat), nfactors = 1, n.obs = nrow(data), 
##     n.iter = 1000, rotate = "promax", fm = "uls", alpha = T, 
##     correct = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##       ULS1   h2   u2 com
## AEC01 0.91 0.84 0.16   1
## AEC02 0.94 0.87 0.13   1
## AEC03 0.76 0.58 0.42   1
## AEC04 0.93 0.87 0.13   1
## 
##                ULS1
## SS loadings    3.16
## Proportion Var 0.79
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  6  and the objective function was  3.77 with Chi Square of  963.9
## The degrees of freedom for the model are 2  and the objective function was  0.02 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic number of observations is  259 with the empirical chi square  0.29  with prob <  0.87 
## The total number of observations was  259  with Likelihood Chi Square =  4.22  with prob <  0.12 
## 
## Tucker Lewis Index of factoring reliability =  0.993
## RMSEA index =  0.065  and the 0 % confidence intervals are  NA 0.078
## BIC =  -6.9
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                   ULS1
## Correlation of (regression) scores with factors   0.98
## Multiple R square of scores with factors          0.95
## Minimum correlation of possible factor scores     0.91
## 
##  Coefficients and bootstrapped confidence intervals 
##        low ULS1 upper
## AEC01 0.89 0.91  0.94
## AEC02 0.91 0.94  0.96
## AEC03 0.71 0.76  0.82
## AEC04 0.91 0.93  0.96

6.0.0.4 Exploratory Fator Analysis using semTools and a Lavaan engine

#fa_mod1 <- efaUnrotate(datas[,c(234:237)], nf = 1, estimator = "WLSMV",ordered=T,missing="pairwise")
#fa_mod1 <- efaUnrotate(data[,c(234:237)], nf = 1, estimator = "MLR",ordered=F,missing="MLR")

7 Confirmatory Factor Analysis

7.0.0.1 Changing data

data<-banco_CFA

7.0.0.2 Recoding into five levels

#data[,c(234)]<-car::Recode(data[,c(234)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#data[,c(235)]<-car::Recode(data[,c(235)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#data[,c(236)]<-car::Recode(data[,c(236)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#data[,c(237)]<-car::Recode(data[,c(237)],"1=1;2=1;3=2;4=3;5=4;6=5;7=5")
#data<-data.matrix(data[,c(234:237)])

7.1 Structure Validity - Dimensionality

7.1.0.1 Model

model <- 'AEC =~ AEC04 + AEC02 + AEC03 + AEC01'

7.1.0.2 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise")

7.1.0.3 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 12 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        28
##                                                       
##   Number of observations                           530
##   Number of missing patterns                         1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 1.567      38.796
##   Degrees of freedom                                 2           2
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.041
##   Shift parameter                                            0.223
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2004.344    8789.031
##   Degrees of freedom                                 6           6
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.228
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.996
##   Tucker-Lewis Index (TLI)                       1.001       0.987
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.186
##   90 Percent confidence interval - lower         0.000       0.138
##   90 Percent confidence interval - upper         0.080       0.240
##   P-value RMSEA <= 0.05                          0.779       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.017       0.017
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               0.975    0.975
##     AEC02             0.950    0.008  120.057    0.000    0.926    0.926
##     AEC03             0.788    0.016   48.010    0.000    0.768    0.768
##     AEC01             0.913    0.010   87.304    0.000    0.890    0.890
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -2.348    0.166  -14.151    0.000   -2.348   -2.348
##     AEC04|t2         -1.436    0.081  -17.787    0.000   -1.436   -1.436
##     AEC04|t3         -0.591    0.058  -10.169    0.000   -0.591   -0.591
##     AEC04|t4          0.383    0.056    6.839    0.000    0.383    0.383
##     AEC04|t5          1.153    0.070   16.485    0.000    1.153    1.153
##     AEC04|t6          1.521    0.085   17.917    0.000    1.521    1.521
##     AEC02|t1         -2.220    0.146  -15.179    0.000   -2.220   -2.220
##     AEC02|t2         -1.521    0.085  -17.917    0.000   -1.521   -1.521
##     AEC02|t3         -0.835    0.062  -13.469    0.000   -0.835   -0.835
##     AEC02|t4          0.337    0.056    6.064    0.000    0.337    0.337
##     AEC02|t5          1.040    0.067   15.601    0.000    1.040    1.040
##     AEC02|t6          1.450    0.081   17.815    0.000    1.450    1.450
##     AEC03|t1         -2.168    0.139  -15.568    0.000   -2.168   -2.168
##     AEC03|t2         -1.292    0.075  -17.294    0.000   -1.292   -1.292
##     AEC03|t3         -0.424    0.056   -7.527    0.000   -0.424   -0.424
##     AEC03|t4          0.439    0.056    7.784    0.000    0.439    0.439
##     AEC03|t5          1.190    0.071   16.734    0.000    1.190    1.190
##     AEC03|t6          1.552    0.087   17.936    0.000    1.552    1.552
##     AEC01|t1         -2.121    0.133  -15.900    0.000   -2.121   -2.121
##     AEC01|t2         -1.326    0.076  -17.439    0.000   -1.326   -1.326
##     AEC01|t3         -0.596    0.058  -10.253    0.000   -0.596   -0.596
##     AEC01|t4          0.476    0.057    8.383    0.000    0.476    0.476
##     AEC01|t5          1.200    0.071   16.795    0.000    1.200    1.200
##     AEC01|t6          1.521    0.085   17.917    0.000    1.521    1.521
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.049                               0.049    0.049
##    .AEC02             0.142                               0.142    0.142
##    .AEC03             0.410                               0.410    0.410
##    .AEC01             0.207                               0.207    0.207
##     AEC               0.951    0.010   97.740    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             1.000                               1.000    1.000
##     AEC02             1.000                               1.000    1.000
##     AEC03             1.000                               1.000    1.000
##     AEC01             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.951
##     AEC02             0.858
##     AEC03             0.590
##     AEC01             0.793

7.1.0.4 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##                38.796                 2.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.017                 0.996                 0.987 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.186                 0.138                 0.240

7.1.0.5 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##   lhs op   rhs est.std    se      z pvalue ci.lower ci.upper
## 1 AEC =~ AEC04   0.975 0.005 195.48      0    0.965    0.985
## 2 AEC =~ AEC02   0.926 0.006 142.80      0    0.913    0.939
## 3 AEC =~ AEC03   0.768 0.016  48.20      0    0.737    0.800
## 4 AEC =~ AEC01   0.890 0.009  98.06      0    0.873    0.908

7.1.0.6 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T)
##      lhs op   rhs    mi    epc sepc.lv sepc.all sepc.nox
## 44 AEC04 ~~ AEC03 1.239  0.080   0.080    0.567    0.567
## 47 AEC02 ~~ AEC01 1.239  0.088   0.088    0.515    0.515
## 46 AEC02 ~~ AEC03 1.113 -0.073  -0.073   -0.301   -0.301
## 45 AEC04 ~~ AEC01 1.113 -0.089  -0.089   -0.879   -0.879
## 43 AEC04 ~~ AEC02 0.004 -0.006  -0.006   -0.066   -0.066
## 48 AEC03 ~~ AEC01 0.004 -0.004  -0.004   -0.014   -0.014

7.1.0.7 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##              AEC
## alpha     0.9261
## alpha.ord 0.9378
## omega     0.9202
## omega2    0.9202
## omega3    0.9201
## avevar    0.7980

7.1.1 Internal Validity

7.1.1.1 Sex Invariance Model

data$SexoR<-as.factor(data$Sexo)
model <- 'AEC  =~ AEC04 + AEC01 + AEC02 + AEC03'

7.1.1.2 Fitting

invariance<- measurementInvarianceCat(model = model, data = data, group = "SexoR",parameterization = "theta", estimator = "ULSMV",ordered = c("AEC01", "AEC02", "AEC03", "AEC04"),missing="pairwise")
## Warning: The measurementInvarianceCat function is deprecated, and it will cease
## to be included in future versions of semTools. See help('semTools-deprecated)
## for details.
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
## 
## Measurement invariance models:
## 
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.thresholds
## Model 4 : fit.means
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan NOTE:
##     The "Chisq" column contains standard test statistics, not the
##     robust test that should be reported per model. A robust difference
##     test is a function of two standard (not robust) statistics.
##  
##                Df AIC BIC  Chisq Chisq diff Df diff Pr(>Chisq)   
## fit.configural  4           2.54                                 
## fit.loadings    7           3.71       2.05       3     0.5613   
## fit.thresholds 26          31.82      17.17      19     0.5784   
## fit.means      27         296.44       7.75       1     0.0054 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Fit measures:
## 
##                cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural      0.994        0.219               NA                 NA
## fit.loadings        1.000        0.024            0.006              0.195
## fit.thresholds      1.000        0.000            0.000              0.024
## fit.means           0.994        0.081            0.006              0.081
7.1.1.2.1 Configural
summary(invariance$fit.configural,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 378 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        61
##   Number of equality constraints                     5
##                                                       
##   Number of observations per group:                   
##     2                                              371
##     1                                              159
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 2.536      54.492
##   Degrees of freedom                                 4           4
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.047
##   Shift parameter for each group:                                 
##       2                                                      0.397
##       1                                                      0.170
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                            1.904      40.883
##     1                                            0.632      13.609
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1975.357    8140.340
##   Degrees of freedom                                12          12
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.243
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.994
##   Tucker-Lewis Index (TLI)                       1.002       0.981
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.219
##   90 Percent confidence interval - lower         0.000       0.169
##   90 Percent confidence interval - upper         0.075       0.272
##   P-value RMSEA <= 0.05                          0.845       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.022       0.022
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               4.663    0.978
##     AEC01             0.436    0.075    5.801    0.000    2.033    0.897
##     AEC02             0.486    0.081    5.996    0.000    2.264    0.915
##     AEC03             0.244    0.039    6.348    0.000    1.140    0.752
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1        -10.958    2.028   -5.403    0.000  -10.958   -2.298
##     AEC04|t2         -6.346    0.930   -6.825    0.000   -6.346   -1.331
##     AEC04|t3         -2.292    0.403   -5.690    0.000   -2.292   -0.481
##     AEC04|t4          2.256    0.474    4.765    0.000    2.256    0.473
##     AEC04|t5          6.046    0.880    6.871    0.000    6.046    1.268
##     AEC04|t6          7.788    1.064    7.320    0.000    7.788    1.633
##     AEC01|t1         -4.708    0.307  -15.353    0.000   -4.708   -2.078
##     AEC01|t2         -2.873    0.202  -14.215    0.000   -2.873   -1.268
##     AEC01|t3         -1.176    0.162   -7.273    0.000   -1.176   -0.519
##     AEC01|t4          1.229    0.155    7.934    0.000    1.229    0.542
##     AEC01|t5          3.091    0.216   14.313    0.000    3.091    1.364
##     AEC01|t6          3.760    0.255   14.761    0.000    3.760    1.659
##     AEC02|t1         -5.476    0.440  -12.444    0.000   -5.476   -2.212
##     AEC02|t2         -3.603    0.272  -13.229    0.000   -3.603   -1.455
##     AEC02|t3         -1.771    0.188   -9.431    0.000   -1.771   -0.715
##     AEC02|t4          1.115    0.173    6.446    0.000    1.115    0.451
##     AEC02|t5          2.893    0.205   14.122    0.000    2.893    1.169
##     AEC02|t6          3.863    0.206   18.745    0.000    3.863    1.561
##     AEC03|t1         -3.245    0.215  -15.092    0.000   -3.245   -2.140
##     AEC03|t2         -1.772    0.120  -14.705    0.000   -1.772   -1.169
##     AEC03|t3         -0.506    0.101   -5.003    0.000   -0.506   -0.334
##     AEC03|t4          0.787    0.102    7.706    0.000    0.787    0.519
##     AEC03|t5          1.993    0.128   15.511    0.000    1.993    1.314
##     AEC03|t6          2.601    0.163   15.921    0.000    2.601    1.716
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             1.000                               1.000    0.044
##    .AEC01             1.000                               1.000    0.195
##    .AEC02             1.000                               1.000    0.163
##    .AEC03             1.000                               1.000    0.435
##     AEC              21.739    6.675    3.257    0.001    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.210                               0.210    1.000
##     AEC01             0.441                               0.441    1.000
##     AEC02             0.404                               0.404    1.000
##     AEC03             0.660                               0.660    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.956
##     AEC01             0.805
##     AEC02             0.837
##     AEC03             0.565
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               6.200    0.965
##     AEC01             0.432    0.104    4.145    0.000    2.681    0.870
##     AEC02             0.573    0.119    4.806    0.000    3.553    0.949
##     AEC03             0.255    0.062    4.140    0.000    1.579    0.779
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##     AEC               5.076    6.084    0.834    0.404    0.819    0.819
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1        -10.958    2.028   -5.403    0.000  -10.958   -1.706
##     AEC04|t2         -6.346    0.930   -6.825    0.000   -6.346   -0.988
##     AEC04|t3         -0.596    3.177   -0.188    0.851   -0.596   -0.093
##     AEC04|t4          6.247    6.692    0.934    0.351    6.247    0.972
##     AEC04|t5         11.053    9.225    1.198    0.231   11.053    1.720
##     AEC04|t6         13.521   10.537    1.283    0.199   13.521    2.104
##     AEC01|t1         -4.708    0.307  -15.353    0.000   -4.708   -1.527
##     AEC01|t2         -2.374    0.575   -4.129    0.000   -2.374   -0.770
##     AEC01|t3         -0.251    1.402   -0.179    0.858   -0.251   -0.081
##     AEC01|t4          3.209    2.858    1.123    0.261    3.209    1.041
##     AEC01|t5          4.989    3.624    1.377    0.169    4.989    1.618
##     AEC01|t6          6.135    4.123    1.488    0.137    6.135    1.990
##     AEC02|t1         -5.476    0.440  -12.444    0.000   -5.476   -1.462
##     AEC02|t2         -3.479    0.651   -5.343    0.000   -3.479   -0.929
##     AEC02|t3         -1.501    1.369   -1.096    0.273   -1.501   -0.401
##     AEC02|t4          3.233    3.396    0.952    0.341    3.233    0.863
##     AEC02|t5          5.879    4.576    1.285    0.199    5.879    1.570
##     AEC02|t6          7.563    5.338    1.417    0.157    7.563    2.020
##     AEC03|t1         -3.245    0.215  -15.092    0.000   -3.245   -1.601
##     AEC03|t2         -2.164    0.362   -5.986    0.000   -2.164   -1.068
##     AEC03|t3         -0.024    0.926   -0.026    0.979   -0.024   -0.012
##     AEC03|t4          1.826    1.596    1.144    0.253    1.826    0.901
##     AEC03|t5          3.228    2.132    1.514    0.130    3.228    1.593
##     AEC03|t6          3.883    2.390    1.625    0.104    3.883    1.916
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             2.837    3.102    0.915    0.360    2.837    0.069
##    .AEC01             2.317    2.042    1.135    0.256    2.317    0.244
##    .AEC02             1.401    1.313    1.067    0.286    1.401    0.100
##    .AEC03             1.613    1.243    1.298    0.194    1.613    0.393
##     AEC              38.444   41.068    0.936    0.349    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.156                               0.156    1.000
##     AEC01             0.324                               0.324    1.000
##     AEC02             0.267                               0.267    1.000
##     AEC03             0.493                               0.493    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.931
##     AEC01             0.756
##     AEC02             0.900
##     AEC03             0.607
lavaan::fitMeasures(invariance$fit.configural,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##                54.492                 4.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.022                 0.994                 0.981 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.219                 0.169                 0.272
modificationindices(invariance$fit.configural, sort.=T)
##       lhs op   rhs block group level    mi    epc sepc.lv sepc.all sepc.nox
## 92  AEC04 ~~ AEC03     1     1     1 1.856  0.845   0.845    0.845    0.845
## 93  AEC01 ~~ AEC02     1     1     1 1.856  0.732   0.732    0.732    0.732
## 90  AEC04 ~~ AEC01     1     1     1 0.752 -0.965  -0.965   -0.965   -0.965
## 95  AEC02 ~~ AEC03     1     1     1 0.752 -0.263  -0.263   -0.263   -0.263
## 97  AEC04 ~~ AEC02     2     2     1 0.474  2.687   2.687    1.348    1.348
## 100 AEC01 ~~ AEC03     2     2     1 0.474  0.516   0.516    0.267    0.267
## 96  AEC04 ~~ AEC01     2     2     1 0.465 -1.989  -1.989   -0.776   -0.776
## 101 AEC02 ~~ AEC03     2     2     1 0.465 -0.671  -0.671   -0.447   -0.447
## 94  AEC01 ~~ AEC03     1     1     1 0.254 -0.137  -0.137   -0.137   -0.137
## 91  AEC04 ~~ AEC02     1     1     1 0.254 -0.626  -0.626   -0.626   -0.626
## 99  AEC01 ~~ AEC02     2     2     1 0.000 -0.001  -0.001    0.000    0.000
## 98  AEC04 ~~ AEC03     2     2     1 0.000 -0.001  -0.001    0.000    0.000
semTools::reliability(invariance$fit.configural)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##              AEC
## alpha     0.9189
## alpha.ord 0.9347
## omega     0.9174
## omega2    0.9174
## omega3    0.9174
## avevar    0.8898
## 
## $`1`
##              AEC
## alpha     0.9351
## alpha.ord 0.9382
## omega     0.9197
## omega2    0.9197
## omega3    0.9194
## avevar    0.8815
7.1.1.2.2 Loadings
summary(invariance$fit.loadings,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 322 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        61
##   Number of equality constraints                     8
##                                                       
##   Number of observations per group:                   
##     2                                              371
##     1                                              159
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 3.706       8.074
##   Degrees of freedom                                 7           7
##   P-value (Unknown)                                 NA       0.326
##   Scaling correction factor                                  0.645
##   Shift parameter for each group:                                 
##       2                                                      1.633
##       1                                                      0.700
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                            2.099       4.886
##     1                                            1.606       3.189
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1975.357    8140.340
##   Degrees of freedom                                12          12
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.243
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.003       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.024
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.047       0.082
##   P-value RMSEA <= 0.05                          0.958       0.702
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               4.049    0.971
##     AEC01             0.485    0.155    3.119    0.002    1.962    0.891
##     AEC02             0.619    0.201    3.081    0.002    2.507    0.929
##     AEC03             0.281    0.087    3.229    0.001    1.137    0.751
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -9.600    2.865   -3.351    0.001   -9.600   -2.302
##     AEC04|t2         -5.550    1.509   -3.678    0.000   -5.550   -1.331
##     AEC04|t3         -2.005    0.579   -3.462    0.001   -2.005   -0.481
##     AEC04|t4          1.973    0.603    3.273    0.001    1.973    0.473
##     AEC04|t5          5.288    1.423    3.716    0.000    5.288    1.268
##     AEC04|t6          6.812    1.809    3.765    0.000    6.812    1.633
##     AEC01|t1         -4.586    0.397  -11.557    0.000   -4.586   -2.082
##     AEC01|t2         -2.792    0.238  -11.723    0.000   -2.792   -1.268
##     AEC01|t3         -1.143    0.165   -6.929    0.000   -1.143   -0.519
##     AEC01|t4          1.194    0.160    7.481    0.000    1.194    0.542
##     AEC01|t5          3.004    0.247   12.179    0.000    3.004    1.364
##     AEC01|t6          3.655    0.293   12.478    0.000    3.655    1.659
##     AEC02|t1         -5.947    0.774   -7.680    0.000   -5.947   -2.204
##     AEC02|t2         -3.928    0.484   -8.118    0.000   -3.928   -1.455
##     AEC02|t3         -1.931    0.275   -7.015    0.000   -1.931   -0.715
##     AEC02|t4          1.216    0.220    5.517    0.000    1.216    0.451
##     AEC02|t5          3.154    0.368    8.573    0.000    3.154    1.169
##     AEC02|t6          4.212    0.447    9.418    0.000    4.212    1.561
##     AEC03|t1         -3.241    0.233  -13.910    0.000   -3.241   -2.141
##     AEC03|t2         -1.769    0.127  -13.941    0.000   -1.769   -1.169
##     AEC03|t3         -0.505    0.102   -4.967    0.000   -0.505   -0.334
##     AEC03|t4          0.786    0.103    7.648    0.000    0.786    0.519
##     AEC03|t5          1.990    0.133   14.908    0.000    1.990    1.314
##     AEC03|t6          2.597    0.170   15.288    0.000    2.597    1.716
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             1.000                               1.000    0.057
##    .AEC01             1.000                               1.000    0.206
##    .AEC02             1.000                               1.000    0.137
##    .AEC03             1.000                               1.000    0.436
##     AEC              16.397    9.346    1.754    0.079    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.240                               0.240    1.000
##     AEC01             0.454                               0.454    1.000
##     AEC02             0.371                               0.371    1.000
##     AEC03             0.661                               0.661    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.943
##     AEC01             0.794
##     AEC02             0.863
##     AEC03             0.564
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               5.660    0.987
##     AEC01             0.485    0.155    3.119    0.002    2.743    0.892
##     AEC02             0.619    0.201    3.081    0.002    3.504    0.901
##     AEC03             0.281    0.087    3.229    0.001    1.589    0.782
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##     AEC               4.646    5.726    0.811    0.417    0.821    0.821
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -9.600    2.865   -3.351    0.001   -9.600   -1.674
##     AEC04|t2         -5.550    1.509   -3.678    0.000   -5.550   -0.968
##     AEC04|t3         -0.417    2.629   -0.159    0.874   -0.417   -0.073
##     AEC04|t4          5.692    6.386    0.891    0.373    5.692    0.992
##     AEC04|t5          9.983    9.154    1.091    0.275    9.983    1.740
##     AEC04|t6         12.187   10.585    1.151    0.250   12.187    2.124
##     AEC01|t1         -4.586    0.397  -11.557    0.000   -4.586   -1.492
##     AEC01|t2         -2.305    0.579   -3.979    0.000   -2.305   -0.750
##     AEC01|t3         -0.187    1.362   -0.137    0.891   -0.187   -0.061
##     AEC01|t4          3.263    2.815    1.159    0.246    3.263    1.061
##     AEC01|t5          5.038    3.585    1.405    0.160    5.038    1.639
##     AEC01|t6          6.181    4.086    1.513    0.130    6.181    2.010
##     AEC02|t1         -5.947    0.774   -7.680    0.000   -5.947   -1.529
##     AEC02|t2         -3.759    0.962   -3.908    0.000   -3.759   -0.966
##     AEC02|t3         -1.704    1.384   -1.232    0.218   -1.704   -0.438
##     AEC02|t4          3.214    3.049    1.054    0.292    3.214    0.826
##     AEC02|t5          5.962    4.092    1.457    0.145    5.962    1.533
##     AEC02|t6          7.712    4.774    1.615    0.106    7.712    1.982
##     AEC03|t1         -3.241    0.233  -13.910    0.000   -3.241   -1.596
##     AEC03|t2         -2.160    0.361   -5.993    0.000   -2.160   -1.064
##     AEC03|t3         -0.016    0.907   -0.018    0.986   -0.016   -0.008
##     AEC03|t4          1.839    1.567    1.173    0.241    1.839    0.905
##     AEC03|t5          3.244    2.096    1.548    0.122    3.244    1.597
##     AEC03|t6          3.900    2.351    1.659    0.097    3.900    1.920
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.868    4.064    0.213    0.831    0.868    0.026
##    .AEC01             1.930    1.995    0.967    0.334    1.930    0.204
##    .AEC02             2.856    2.651    1.077    0.281    2.856    0.189
##    .AEC03             1.601    1.185    1.352    0.177    1.601    0.388
##     AEC              32.037   39.548    0.810    0.418    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.174                               0.174    1.000
##     AEC01             0.325                               0.325    1.000
##     AEC02             0.257                               0.257    1.000
##     AEC03             0.492                               0.492    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.974
##     AEC01             0.796
##     AEC02             0.811
##     AEC03             0.612
lavaan::fitMeasures(invariance$fit.loadings,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##                 8.074                 7.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.025                 1.000                 1.000 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.024                 0.000                 0.082
modificationindices(invariance$fit.loadings, sort.=T)
##       lhs  op   rhs block group level    mi    epc sepc.lv sepc.all sepc.nox
## 95  AEC04  ~~ AEC03     1     1     1 2.021  0.704   0.704    0.704    0.704
## 99  AEC04  ~~ AEC01     2     2     1 1.283 -2.036  -2.036   -1.573   -1.573
## 98  AEC02  ~~ AEC03     1     1     1 1.187 -0.338  -0.338   -0.338   -0.338
## 36  AEC02 ~*~ AEC02     1     1     1 1.076  0.057   0.057    1.000    1.000
## 40  AEC02  ~1           1     1     1 1.076  0.909   0.909    0.337    0.337
## 78  AEC02 ~*~ AEC02     2     2     1 1.076 -0.026  -0.026   -1.000   -1.000
## 82  AEC02  ~1           2     2     1 1.075 -0.909  -0.909   -0.234   -0.234
## 96  AEC01  ~~ AEC02     1     1     1 1.034  0.523   0.523    0.523    0.523
## 100 AEC04  ~~ AEC02     2     2     1 0.748  1.970   1.970    1.251    1.251
## 94  AEC04  ~~ AEC02     1     1     1 0.485 -0.728  -0.728   -0.728   -0.728
## 81  AEC01  ~1           2     2     1 0.277  0.358   0.358    0.117    0.117
## 35  AEC01 ~*~ AEC01     1     1     1 0.277 -0.035  -0.035   -1.000   -1.000
## 39  AEC01  ~1           1     1     1 0.277 -0.358  -0.358   -0.163   -0.163
## 77  AEC01 ~*~ AEC01     2     2     1 0.277  0.017   0.017    1.000    1.000
## 80  AEC04  ~1           2     2     1 0.232  0.708   0.708    0.123    0.123
## 38  AEC04  ~1           1     1     1 0.232 -0.708  -0.708   -0.170   -0.170
## 76  AEC04 ~*~ AEC04     2     2     1 0.222  0.008   0.008    1.000    1.000
## 1     AEC  =~ AEC04     1     1     1 0.215  0.068   0.276    0.066    0.066
## 34  AEC04 ~*~ AEC04     1     1     1 0.215 -0.016  -0.016   -1.000   -1.000
## 43    AEC  =~ AEC04     2     2     1 0.215 -0.068  -0.386   -0.067   -0.067
## 93  AEC04  ~~ AEC01     1     1     1 0.118 -0.283  -0.283   -0.283   -0.283
## 102 AEC01  ~~ AEC02     2     2     1 0.108  0.381   0.381    0.162    0.162
## 97  AEC01  ~~ AEC03     1     1     1 0.100 -0.078  -0.078   -0.078   -0.078
## 101 AEC04  ~~ AEC03     2     2     1 0.091 -0.337  -0.337   -0.286   -0.286
## 103 AEC01  ~~ AEC03     2     2     1 0.057  0.141   0.141    0.080    0.080
## 37  AEC03 ~*~ AEC03     1     1     1 0.002 -0.005  -0.005   -1.000   -1.000
## 83  AEC03  ~1           2     2     1 0.002  0.024   0.024    0.012    0.012
## 41  AEC03  ~1           1     1     1 0.002 -0.024  -0.024   -0.016   -0.016
## 79  AEC03 ~*~ AEC03     2     2     1 0.002  0.003   0.003    1.000    1.000
## 104 AEC02  ~~ AEC03     2     2     1 0.001  0.017   0.017    0.008    0.008
semTools::reliability(invariance$fit.loadings)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##              AEC
## alpha     0.9189
## alpha.ord 0.9347
## omega     0.9172
## omega2    0.9172
## omega3    0.9171
## avevar    0.8743
## 
## $`1`
##              AEC
## alpha     0.9351
## alpha.ord 0.9382
## omega     0.9190
## omega2    0.9190
## omega3    0.9182
## avevar    0.8823
7.1.1.2.3 Thresholds
summary(invariance$fit.thresholds,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 191 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        61
##   Number of equality constraints                    27
##                                                       
##   Number of observations per group:                   
##     2                                              371
##     1                                              159
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                31.817      22.649
##   Degrees of freedom                                26          26
##   P-value (Unknown)                                 NA       0.653
##   Scaling correction factor                                  2.583
##   Shift parameter for each group:                                 
##       2                                                      7.233
##       1                                                      3.100
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           10.422      11.267
##     1                                           21.395      11.382
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1975.357    8140.340
##   Degrees of freedom                                12          12
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.243
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997       1.000
##   Tucker-Lewis Index (TLI)                       0.999       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.029       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.059       0.041
##   P-value RMSEA <= 0.05                          0.853       0.985
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.026       0.026
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               3.399    0.959
##     AEC01             0.573    0.120    4.766    0.000    1.948    0.890
##     AEC02             0.716    0.146    4.904    0.000    2.432    0.925
##     AEC03             0.354    0.066    5.399    0.000    1.203    0.769
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -8.017    1.446   -5.544    0.000   -8.017   -2.263
##     AEC04|t2         -4.837    0.850   -5.688    0.000   -4.837   -1.365
##     AEC04|t3         -1.765    0.384   -4.591    0.000   -1.765   -0.498
##     AEC04|t4          1.746    0.354    4.936    0.000    1.746    0.493
##     AEC04|t5          4.525    0.772    5.859    0.000    4.525    1.277
##     AEC04|t6          5.845    0.968    6.040    0.000    5.845    1.650
##     AEC01|t1         -4.546    0.352  -12.903    0.000   -4.546   -2.076
##     AEC01|t2         -2.771    0.226  -12.252    0.000   -2.771   -1.266
##     AEC01|t3         -1.138    0.159   -7.175    0.000   -1.138   -0.520
##     AEC01|t4          1.271    0.155    8.188    0.000    1.271    0.580
##     AEC01|t5          2.950    0.249   11.844    0.000    2.950    1.347
##     AEC01|t6          3.658    0.296   12.361    0.000    3.658    1.671
##     AEC02|t1         -5.688    0.562  -10.118    0.000   -5.688   -2.163
##     AEC02|t2         -3.836    0.376  -10.202    0.000   -3.836   -1.459
##     AEC02|t3         -2.020    0.243   -8.326    0.000   -2.020   -0.768
##     AEC02|t4          1.174    0.188    6.258    0.000    1.174    0.446
##     AEC02|t5          3.085    0.293   10.510    0.000    3.085    1.173
##     AEC02|t6          4.178    0.372   11.236    0.000    4.178    1.589
##     AEC03|t1         -3.293    0.215  -15.300    0.000   -3.293   -2.106
##     AEC03|t2         -1.964    0.126  -15.580    0.000   -1.964   -1.255
##     AEC03|t3         -0.545    0.100   -5.433    0.000   -0.545   -0.348
##     AEC03|t4          0.828    0.100    8.272    0.000    0.828    0.530
##     AEC03|t5          2.035    0.140   14.548    0.000    2.035    1.301
##     AEC03|t6          2.632    0.175   15.061    0.000    2.632    1.683
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             1.000                               1.000    0.080
##    .AEC01             1.000                               1.000    0.209
##    .AEC02             1.000                               1.000    0.145
##    .AEC03             1.000                               1.000    0.409
##     AEC              11.553    4.010    2.881    0.004    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.282                               0.282    1.000
##     AEC01             0.457                               0.457    1.000
##     AEC02             0.380                               0.380    1.000
##     AEC03             0.639                               0.639    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.920
##     AEC01             0.791
##     AEC02             0.855
##     AEC03             0.591
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               3.569    0.992
##     AEC01             0.573    0.120    4.766    0.000    2.045    0.871
##     AEC02             0.716    0.146    4.904    0.000    2.554    0.915
##     AEC03             0.354    0.066    5.399    0.000    1.263    0.784
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##     AEC               1.260    0.398    3.166    0.002    0.353    0.353
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -8.017    1.446   -5.544    0.000   -8.017   -2.229
##     AEC04|t2         -4.837    0.850   -5.688    0.000   -4.837   -1.345
##     AEC04|t3         -1.765    0.384   -4.591    0.000   -1.765   -0.491
##     AEC04|t4          1.746    0.354    4.936    0.000    1.746    0.486
##     AEC04|t5          4.525    0.772    5.859    0.000    4.525    1.258
##     AEC04|t6          5.845    0.968    6.040    0.000    5.845    1.625
##     AEC01|t1         -4.546    0.352  -12.903    0.000   -4.546   -1.935
##     AEC01|t2         -2.771    0.226  -12.252    0.000   -2.771   -1.180
##     AEC01|t3         -1.138    0.159   -7.175    0.000   -1.138   -0.484
##     AEC01|t4          1.271    0.155    8.188    0.000    1.271    0.541
##     AEC01|t5          2.950    0.249   11.844    0.000    2.950    1.256
##     AEC01|t6          3.658    0.296   12.361    0.000    3.658    1.557
##     AEC02|t1         -5.688    0.562  -10.118    0.000   -5.688   -2.038
##     AEC02|t2         -3.836    0.376  -10.202    0.000   -3.836   -1.374
##     AEC02|t3         -2.020    0.243   -8.326    0.000   -2.020   -0.723
##     AEC02|t4          1.174    0.188    6.258    0.000    1.174    0.420
##     AEC02|t5          3.085    0.293   10.510    0.000    3.085    1.105
##     AEC02|t6          4.178    0.372   11.236    0.000    4.178    1.496
##     AEC03|t1         -3.293    0.215  -15.300    0.000   -3.293   -2.045
##     AEC03|t2         -1.964    0.126  -15.580    0.000   -1.964   -1.220
##     AEC03|t3         -0.545    0.100   -5.433    0.000   -0.545   -0.338
##     AEC03|t4          0.828    0.100    8.272    0.000    0.828    0.514
##     AEC03|t5          2.035    0.140   14.548    0.000    2.035    1.264
##     AEC03|t6          2.632    0.175   15.061    0.000    2.632    1.634
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.198    0.943    0.210    0.834    0.198    0.015
##    .AEC01             1.335    0.409    3.260    0.001    1.335    0.242
##    .AEC02             1.272    0.580    2.191    0.028    1.272    0.163
##    .AEC03             0.998    0.231    4.313    0.000    0.998    0.385
##     AEC              12.738    4.725    2.696    0.007    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.278                               0.278    1.000
##     AEC01             0.426                               0.426    1.000
##     AEC02             0.358                               0.358    1.000
##     AEC03             0.621                               0.621    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.985
##     AEC01             0.758
##     AEC02             0.837
##     AEC03             0.615
lavaan::fitMeasures(invariance$fit.thresholds,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##                22.649                26.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.026                 1.000                 1.000 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.000                 0.000                 0.041
modificationindices(invariance$fit.thresholds, sort.=T)
##       lhs  op   rhs block group level    mi    epc sepc.lv sepc.all sepc.nox
## 83  AEC03  ~1           2     2     1 3.105  0.128   0.128    0.080    0.080
## 41  AEC03  ~1           1     1     1 3.105 -0.128  -0.128   -0.082   -0.082
## 117 AEC02  ~~ AEC03     1     1     1 1.881 -0.398  -0.398   -0.398   -0.398
## 114 AEC04  ~~ AEC03     1     1     1 1.145  0.426   0.426    0.426    0.426
## 115 AEC01  ~~ AEC02     1     1     1 1.068  0.455   0.455    0.455    0.455
## 37  AEC03 ~*~ AEC03     1     1     1 0.881  0.059   0.059    1.000    1.000
## 34  AEC04 ~*~ AEC04     1     1     1 0.814 -0.024  -0.024   -1.000   -1.000
## 1     AEC  =~ AEC04     1     1     1 0.814  0.086   0.292    0.083    0.083
## 43    AEC  =~ AEC04     2     2     1 0.814 -0.086  -0.307   -0.085   -0.085
## 118 AEC04  ~~ AEC01     2     2     1 0.730 -0.722  -0.722   -1.404   -1.404
## 78  AEC02 ~*~ AEC02     2     2     1 0.520 -0.026  -0.026   -1.000   -1.000
## 116 AEC01  ~~ AEC03     1     1     1 0.466 -0.161  -0.161   -0.161   -0.161
## 39  AEC01  ~1           1     1     1 0.428  0.072   0.072    0.033    0.033
## 81  AEC01  ~1           2     2     1 0.428 -0.072  -0.072   -0.030   -0.030
## 76  AEC04 ~*~ AEC04     2     2     1 0.317  0.016   0.016    1.000    1.000
## 119 AEC04  ~~ AEC02     2     2     1 0.312  0.572   0.572    1.139    1.139
## 38  AEC04  ~1           1     1     1 0.298  0.098   0.098    0.028    0.028
## 80  AEC04  ~1           2     2     1 0.298 -0.098  -0.098   -0.027   -0.027
## 35  AEC01 ~*~ AEC01     1     1     1 0.208 -0.020  -0.020   -1.000   -1.000
## 122 AEC01  ~~ AEC03     2     2     1 0.207  0.160   0.160    0.139    0.139
## 36  AEC02 ~*~ AEC02     1     1     1 0.197  0.016   0.016    1.000    1.000
## 121 AEC01  ~~ AEC02     2     2     1 0.192  0.279   0.279    0.214    0.214
## 120 AEC04  ~~ AEC03     2     2     1 0.161 -0.225  -0.225   -0.505   -0.505
## 82  AEC02  ~1           2     2     1 0.159 -0.054  -0.054   -0.019   -0.019
## 40  AEC02  ~1           1     1     1 0.159  0.054   0.054    0.020    0.020
## 113 AEC04  ~~ AEC02     1     1     1 0.029 -0.128  -0.128   -0.128   -0.128
## 123 AEC02  ~~ AEC03     2     2     1 0.029 -0.072  -0.072   -0.064   -0.064
## 79  AEC03 ~*~ AEC03     2     2     1 0.014  0.008   0.008    1.000    1.000
## 77  AEC01 ~*~ AEC01     2     2     1 0.002  0.002   0.002    1.000    1.000
## 112 AEC04  ~~ AEC01     1     1     1 0.001  0.021   0.021    0.021    0.021
semTools::reliability(invariance$fit.thresholds)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##              AEC
## alpha     0.9189
## alpha.ord 0.9347
## omega     0.9162
## omega2    0.9162
## omega3    0.9171
## avevar    0.8502
## 
## $`1`
##              AEC
## alpha     0.9351
## alpha.ord 0.9382
## omega     0.9217
## omega2    0.9217
## omega3    0.9209
## avevar    0.8682

7.1.1.3 Partial Invariance - Sex Means

summary(invariance$fit.means,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 194 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        60
##   Number of equality constraints                    27
##                                                       
##   Number of observations per group:                   
##     2                                              371
##     1                                              159
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               296.443      73.466
##   Degrees of freedom                                27          27
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  4.932
##   Shift parameter for each group:                                 
##       2                                                      9.350
##       1                                                      4.007
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           88.835      27.363
##     1                                          207.607      46.103
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1975.357    8140.340
##   Degrees of freedom                                12          12
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.243
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.863       0.994
##   Tucker-Lewis Index (TLI)                       0.939       0.997
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.194       0.081
##   90 Percent confidence interval - lower         0.175       0.059
##   90 Percent confidence interval - upper         0.215       0.103
##   P-value RMSEA <= 0.05                          0.000       0.012
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               3.536    0.962
##     AEC01             0.573    0.132    4.358    0.000    2.027    0.897
##     AEC02             0.683    0.146    4.691    0.000    2.414    0.924
##     AEC03             0.330    0.069    4.808    0.000    1.167    0.759
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -8.599    1.682   -5.113    0.000   -8.599   -2.340
##     AEC04|t2         -5.349    1.015   -5.268    0.000   -5.349   -1.456
##     AEC04|t3         -2.199    0.450   -4.886    0.000   -2.199   -0.599
##     AEC04|t4          1.402    0.338    4.149    0.000    1.402    0.382
##     AEC04|t5          4.249    0.825    5.148    0.000    4.249    1.156
##     AEC04|t6          5.602    1.061    5.280    0.000    5.602    1.524
##     AEC01|t1         -4.863    0.383  -12.681    0.000   -4.863   -2.152
##     AEC01|t2         -3.044    0.242  -12.557    0.000   -3.044   -1.347
##     AEC01|t3         -1.370    0.156   -8.781    0.000   -1.370   -0.606
##     AEC01|t4          1.100    0.142    7.749    0.000    1.100    0.487
##     AEC01|t5          2.818    0.235   11.995    0.000    2.818    1.247
##     AEC01|t6          3.545    0.285   12.418    0.000    3.545    1.568
##     AEC02|t1         -5.818    0.573  -10.153    0.000   -5.818   -2.227
##     AEC02|t2         -4.009    0.392  -10.236    0.000   -4.009   -1.534
##     AEC02|t3         -2.234    0.237   -9.414    0.000   -2.234   -0.855
##     AEC02|t4          0.897    0.164    5.489    0.000    0.897    0.343
##     AEC02|t5          2.770    0.269   10.306    0.000    2.770    1.060
##     AEC02|t6          3.842    0.341   11.264    0.000    3.842    1.471
##     AEC03|t1         -3.347    0.214  -15.660    0.000   -3.347   -2.178
##     AEC03|t2         -2.048    0.119  -17.248    0.000   -2.048   -1.333
##     AEC03|t3         -0.660    0.090   -7.325    0.000   -0.660   -0.429
##     AEC03|t4          0.684    0.089    7.672    0.000    0.684    0.445
##     AEC03|t5          1.863    0.127   14.722    0.000    1.863    1.212
##     AEC03|t6          2.446    0.161   15.208    0.000    2.446    1.592
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             1.000                               1.000    0.074
##    .AEC01             1.000                               1.000    0.196
##    .AEC02             1.000                               1.000    0.146
##    .AEC03             1.000                               1.000    0.423
##     AEC              12.504    4.771    2.621    0.009    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.272                               0.272    1.000
##     AEC01             0.442                               0.442    1.000
##     AEC02             0.383                               0.383    1.000
##     AEC03             0.651                               0.651    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.926
##     AEC01             0.804
##     AEC02             0.854
##     AEC03             0.577
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               3.588    1.001
##     AEC01             0.573    0.132    4.358    0.000    2.056    0.870
##     AEC02             0.683    0.146    4.691    0.000    2.449    0.928
##     AEC03             0.330    0.069    4.808    0.000    1.184    0.761
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -8.599    1.682   -5.113    0.000   -8.599   -2.399
##     AEC04|t2         -5.349    1.015   -5.268    0.000   -5.349   -1.492
##     AEC04|t3         -2.199    0.450   -4.886    0.000   -2.199   -0.614
##     AEC04|t4          1.402    0.338    4.149    0.000    1.402    0.391
##     AEC04|t5          4.249    0.825    5.148    0.000    4.249    1.185
##     AEC04|t6          5.602    1.061    5.280    0.000    5.602    1.563
##     AEC01|t1         -4.863    0.383  -12.681    0.000   -4.863   -2.058
##     AEC01|t2         -3.044    0.242  -12.557    0.000   -3.044   -1.288
##     AEC01|t3         -1.370    0.156   -8.781    0.000   -1.370   -0.580
##     AEC01|t4          1.100    0.142    7.749    0.000    1.100    0.465
##     AEC01|t5          2.818    0.235   11.995    0.000    2.818    1.193
##     AEC01|t6          3.545    0.285   12.418    0.000    3.545    1.501
##     AEC02|t1         -5.818    0.573  -10.153    0.000   -5.818   -2.205
##     AEC02|t2         -4.009    0.392  -10.236    0.000   -4.009   -1.519
##     AEC02|t3         -2.234    0.237   -9.414    0.000   -2.234   -0.847
##     AEC02|t4          0.897    0.164    5.489    0.000    0.897    0.340
##     AEC02|t5          2.770    0.269   10.306    0.000    2.770    1.050
##     AEC02|t6          3.842    0.341   11.264    0.000    3.842    1.456
##     AEC03|t1         -3.347    0.214  -15.660    0.000   -3.347   -2.150
##     AEC03|t2         -2.048    0.119  -17.248    0.000   -2.048   -1.316
##     AEC03|t3         -0.660    0.090   -7.325    0.000   -0.660   -0.424
##     AEC03|t4          0.684    0.089    7.672    0.000    0.684    0.439
##     AEC03|t5          1.863    0.127   14.722    0.000    1.863    1.197
##     AEC03|t6          2.446    0.161   15.208    0.000    2.446    1.571
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04            -0.028    0.727   -0.039    0.969   -0.028   -0.002
##    .AEC01             1.352    0.423    3.197    0.001    1.352    0.242
##    .AEC02             0.965    0.497    1.941    0.052    0.965    0.139
##    .AEC03             1.022    0.221    4.618    0.000    1.022    0.422
##     AEC              12.872    5.270    2.443    0.015    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.279                               0.279    1.000
##     AEC01             0.423                               0.423    1.000
##     AEC02             0.379                               0.379    1.000
##     AEC03             0.642                               0.642    1.000
## 
## R-Square:
##                    Estimate
##     AEC04                NA
##     AEC01             0.758
##     AEC02             0.861
##     AEC03             0.578
lavaan::fitMeasures(invariance$fit.means,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##                73.466                27.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.025                 0.994                 0.997 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.081                 0.059                 0.103
modificationindices(invariance$fit.means, sort.=T)
##       lhs  op   rhs block group level      mi    epc sepc.lv sepc.all sepc.nox
## 42    AEC  ~1           1     1     1 262.788 -1.270  -0.359   -0.359   -0.359
## 84    AEC  ~1           2     2     1 262.787  1.270   0.354    0.354    0.354
## 83  AEC03  ~1           2     2     1  74.972  0.521   0.521    0.335    0.335
## 41  AEC03  ~1           1     1     1  74.971 -0.521  -0.521   -0.339   -0.339
## 38  AEC04  ~1           1     1     1  72.205 -1.202  -1.202   -0.327   -0.327
## 80  AEC04  ~1           2     2     1  72.204  1.202   1.202    0.335    0.335
## 40  AEC02  ~1           1     1     1  62.927 -0.825  -0.825   -0.316   -0.316
## 82  AEC02  ~1           2     2     1  62.927  0.825   0.825    0.313    0.313
## 81  AEC01  ~1           2     2     1  55.898  0.678   0.678    0.287    0.287
## 39  AEC01  ~1           1     1     1  55.898 -0.678  -0.678   -0.300   -0.300
## 114 AEC04  ~~ AEC03     1     1     1   1.631  0.527   0.527    0.527    0.527
## 117 AEC02  ~~ AEC03     1     1     1   1.287 -0.325  -0.325   -0.325   -0.325
## 118 AEC04  ~~ AEC01     2     2     1   0.991 -0.863  -0.863   -4.413   -4.413
## 115 AEC01  ~~ AEC02     1     1     1   0.809  0.419   0.419    0.419    0.419
## 43    AEC  =~ AEC04     2     2     1   0.630 -0.082  -0.296   -0.082   -0.082
## 76  AEC04 ~*~ AEC04     2     2     1   0.630  0.023   0.023    1.000    1.000
## 1     AEC  =~ AEC04     1     1     1   0.630  0.082   0.291    0.079    0.079
## 34  AEC04 ~*~ AEC04     1     1     1   0.630 -0.022  -0.022   -1.000   -1.000
## 122 AEC01  ~~ AEC03     2     2     1   0.587  0.263   0.263    0.224    0.224
## 116 AEC01  ~~ AEC03     1     1     1   0.376 -0.150  -0.150   -0.150   -0.150
## 79  AEC03 ~*~ AEC03     2     2     1   0.207 -0.031  -0.031   -1.000   -1.000
## 37  AEC03 ~*~ AEC03     1     1     1   0.207  0.031   0.031    1.000    1.000
## 36  AEC02 ~*~ AEC02     1     1     1   0.185  0.017   0.017    1.000    1.000
## 78  AEC02 ~*~ AEC02     2     2     1   0.185 -0.017  -0.017   -1.000   -1.000
## 121 AEC01  ~~ AEC02     2     2     1   0.073  0.167   0.167    0.146    0.146
## 112 AEC04  ~~ AEC01     1     1     1   0.062 -0.167  -0.167   -0.167   -0.167
## 113 AEC04  ~~ AEC02     1     1     1   0.053 -0.182  -0.182   -0.182   -0.182
## 119 AEC04  ~~ AEC02     2     2     1   0.049  0.220   0.220    1.330    1.330
## 120 AEC04  ~~ AEC03     2     2     1   0.021 -0.079  -0.079   -0.463   -0.463
## 35  AEC01 ~*~ AEC01     1     1     1   0.008 -0.004  -0.004   -1.000   -1.000
## 77  AEC01 ~*~ AEC01     2     2     1   0.008  0.004   0.004    1.000    1.000
## 123 AEC02  ~~ AEC03     2     2     1   0.000  0.001   0.001    0.001    0.001
semTools::reliability(invariance$fit.means)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##              AEC
## alpha     0.9189
## alpha.ord 0.9347
## omega     0.9169
## omega2    0.9169
## omega3    0.9173
## avevar    0.8561
## 
## $`1`
##              AEC
## alpha     0.9351
## alpha.ord 0.9382
## omega     0.9235
## omega2    0.9235
## omega3    0.9215
## avevar    0.8809
7.1.1.3.1 Checking Latent Differences
partial<-partialInvarianceCat(invariance,type="means",return.fit = F)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
partial
## $estimates
##       poolest mean:2 mean:1 std:2  std:1 diff_std:1 vs. 2
## AEC~1       0      0   1.26     0 0.3652           0.3652
## 
## $results
##       free.chi free.df  free.p free.cfi fix.chi fix.df   fix.p fix.cfi wald.chi
## AEC~1     4.01       1 0.04524  -0.1343    4.01      1 0.04524 -0.1343       NA
##       wald.df wald.p
## AEC~1      NA     NA

7.1.1.4 Education Invariance Model

data$EscClasseR<-as.factor(data$EscClasse)
model <- 'AEC  =~ AEC04 + AEC02 + AEC03 + AEC01'

7.1.1.5 Fitting

invariance<- measurementInvarianceCat(model = model, data = data, group = "EscClasseR",parameterization = "theta", estimator = "ULSMV",ordered = c("AEC01", "AEC02", "AEC03", "AEC04"),missing="pairwise")
## Warning: The measurementInvarianceCat function is deprecated, and it will cease
## to be included in future versions of semTools. See help('semTools-deprecated)
## for details.
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
## 
## Measurement invariance models:
## 
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.thresholds
## Model 4 : fit.means
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan NOTE:
##     The "Chisq" column contains standard test statistics, not the
##     robust test that should be reported per model. A robust difference
##     test is a function of two standard (not robust) statistics.
##  
##                Df AIC BIC  Chisq Chisq diff Df diff Pr(>Chisq)
## fit.configural  6           2.26                              
## fit.loadings   12           5.35        4.5       6       0.61
## fit.thresholds 50          60.30       34.5      38       0.63
## fit.means      52         108.21        2.0       2       0.37
## 
## 
## Fit measures:
## 
##                cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural      0.995          0.2               NA                 NA
## fit.loadings        1.000          0.0            0.005                0.2
## fit.thresholds      1.000          0.0            0.000                0.0
## fit.means           1.000          0.0            0.000                0.0
7.1.1.5.1 Configural
summary(invariance$fit.configural,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 453 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    10
##                                                       
##   Number of observations per group:                   
##     1                                               90
##     2                                              190
##     3                                              250
##   Number of missing patterns per group:               
##     1                                                1
##     2                                                1
##     3                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 2.257      48.158
##   Degrees of freedom                                 6           6
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.048
##   Shift parameter for each group:                                 
##       1                                                      0.151
##       2                                                      0.320
##       3                                                      0.421
##        simple second-order correction                             
##   Test statistic for each group:
##     1                                            1.200      25.281
##     2                                            0.218       4.890
##     3                                            0.839      17.986
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2009.846    8858.756
##   Degrees of freedom                                18          18
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.227
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.995
##   Tucker-Lewis Index (TLI)                       1.006       0.986
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.200
##   90 Percent confidence interval - lower         0.000       0.150
##   90 Percent confidence interval - upper         0.044       0.254
##   P-value RMSEA <= 0.05                          0.960       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.019       0.019
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               3.657    0.965
##     AEC02             0.721    0.182    3.965    0.000    2.636    0.935
##     AEC03             0.321    0.076    4.227    0.000    1.174    0.761
##     AEC01             0.538    0.122    4.407    0.000    1.969    0.892
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -6.953    1.763   -3.944    0.000   -6.953   -1.834
##     AEC04|t2         -4.628    1.047   -4.418    0.000   -4.628   -1.221
##     AEC04|t3         -1.070    0.475   -2.254    0.024   -1.070   -0.282
##     AEC04|t4          1.868    0.646    2.891    0.004    1.868    0.493
##     AEC04|t5          4.859    1.040    4.671    0.000    4.859    1.282
##     AEC04|t6          5.691    1.141    4.986    0.000    5.691    1.501
##     AEC02|t1         -5.666    0.996   -5.686    0.000   -5.666   -2.010
##     AEC02|t2         -3.613    0.640   -5.643    0.000   -3.613   -1.282
##     AEC02|t3         -1.569    0.424   -3.700    0.000   -1.569   -0.557
##     AEC02|t4          1.044    0.401    2.602    0.009    1.044    0.370
##     AEC02|t5          2.727    0.459    5.939    0.000    2.727    0.967
##     AEC02|t6          4.232    0.415   10.206    0.000    4.232    1.501
##     AEC03|t1         -2.624    0.268   -9.789    0.000   -2.624   -1.701
##     AEC03|t2         -1.977    0.225   -8.792    0.000   -1.977   -1.282
##     AEC03|t3         -0.303    0.207   -1.459    0.144   -0.303   -0.196
##     AEC03|t4          0.809    0.209    3.879    0.000    0.809    0.524
##     AEC03|t5          1.636    0.245    6.676    0.000    1.636    1.061
##     AEC03|t6          2.079    0.278    7.478    0.000    2.079    1.348
##     AEC01|t1         -4.439    0.653   -6.801    0.000   -4.439   -2.010
##     AEC01|t2         -2.237    0.353   -6.329    0.000   -2.237   -1.013
##     AEC01|t3         -0.752    0.299   -2.513    0.012   -0.752   -0.341
##     AEC01|t4          1.019    0.310    3.286    0.001    1.019    0.461
##     AEC01|t5          2.696    0.376    7.166    0.000    2.696    1.221
##     AEC01|t6          3.757    0.404    9.305    0.000    3.757    1.701
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             1.000                               1.000    0.070
##    .AEC02             1.000                               1.000    0.126
##    .AEC03             1.000                               1.000    0.420
##    .AEC01             1.000                               1.000    0.205
##     AEC              13.374    5.839    2.291    0.022    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.264                               0.264    1.000
##     AEC02             0.355                               0.355    1.000
##     AEC03             0.648                               0.648    1.000
##     AEC01             0.453                               0.453    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.930
##     AEC02             0.874
##     AEC03             0.580
##     AEC01             0.795
## 
## 
## Group 2 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               1.926    0.978
##     AEC02             0.884    0.211    4.184    0.000    1.703    0.922
##     AEC03             0.344    0.081    4.242    0.000    0.662    0.777
##     AEC01             0.688    0.151    4.552    0.000    1.326    0.864
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC              -1.916    1.506   -1.272    0.203   -0.995   -0.995
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -6.953    1.763   -3.944    0.000   -6.953   -3.531
##     AEC04|t2         -4.628    1.047   -4.418    0.000   -4.628   -2.350
##     AEC04|t3         -3.163    1.101   -2.874    0.004   -3.163   -1.606
##     AEC04|t4         -1.309    1.759   -0.744    0.457   -1.309   -0.665
##     AEC04|t5          0.103    2.420    0.043    0.966    0.103    0.052
##     AEC04|t6          1.095    2.915    0.376    0.707    1.095    0.556
##     AEC02|t1         -5.666    0.996   -5.686    0.000   -5.666   -3.066
##     AEC02|t2         -4.443    0.809   -5.491    0.000   -4.443   -2.404
##     AEC02|t3         -3.082    0.936   -3.294    0.001   -3.082   -1.668
##     AEC02|t4         -1.099    1.629   -0.674    0.500   -1.099   -0.594
##     AEC02|t5          0.201    2.181    0.092    0.927    0.201    0.109
##     AEC02|t6          1.131    2.594    0.436    0.663    1.131    0.612
##     AEC03|t1         -2.624    0.268   -9.789    0.000   -2.624   -3.080
##     AEC03|t2         -1.725    0.304   -5.675    0.000   -1.725   -2.025
##     AEC03|t3         -1.017    0.478   -2.126    0.034   -1.017   -1.194
##     AEC03|t4         -0.336    0.699   -0.480    0.631   -0.336   -0.394
##     AEC03|t5          0.274    0.910    0.301    0.763    0.274    0.322
##     AEC03|t6          0.644    1.043    0.618    0.537    0.644    0.756
##     AEC01|t1         -4.439    0.653   -6.801    0.000   -4.439   -2.892
##     AEC01|t2         -3.433    0.536   -6.407    0.000   -3.433   -2.237
##     AEC01|t3         -2.267    0.741   -3.061    0.002   -2.267   -1.477
##     AEC01|t4         -0.443    1.442   -0.308    0.758   -0.443   -0.289
##     AEC01|t5          0.517    1.853    0.279    0.780    0.517    0.337
##     AEC01|t6          1.028    2.077    0.495    0.621    1.028    0.670
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.168    0.190    0.885    0.376    0.168    0.043
##    .AEC02             0.515    0.477    1.080    0.280    0.515    0.151
##    .AEC03             0.288    0.211    1.364    0.173    0.288    0.397
##    .AEC01             0.598    0.532    1.123    0.261    0.598    0.254
##     AEC               3.709    3.975    0.933    0.351    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.508                               0.508    1.000
##     AEC02             0.541                               0.541    1.000
##     AEC03             1.174                               1.174    1.000
##     AEC01             0.651                               0.651    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.957
##     AEC02             0.849
##     AEC03             0.603
##     AEC01             0.746
## 
## 
## Group 3 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               2.139    0.978
##     AEC02             0.847    0.204    4.148    0.000    1.810    0.929
##     AEC03             0.334    0.082    4.071    0.000    0.714    0.769
##     AEC01             0.690    0.151    4.577    0.000    1.475    0.914
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC              -1.151    1.874   -0.614    0.539   -0.538   -0.538
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -6.953    1.763   -3.944    0.000   -6.953   -3.178
##     AEC04|t2         -4.628    1.047   -4.418    0.000   -4.628   -2.115
##     AEC04|t3         -2.640    1.266   -2.085    0.037   -2.640   -1.207
##     AEC04|t4         -0.272    2.291   -0.119    0.905   -0.272   -0.125
##     AEC04|t5          1.509    3.196    0.472    0.637    1.509    0.690
##     AEC04|t6          2.179    3.548    0.614    0.539    2.179    0.996
##     AEC02|t1         -5.666    0.996   -5.686    0.000   -5.666   -2.909
##     AEC02|t2         -4.217    0.810   -5.204    0.000   -4.217   -2.165
##     AEC02|t3         -2.976    0.938   -3.173    0.002   -2.976   -1.528
##     AEC02|t4         -0.318    1.918   -0.166    0.868   -0.318   -0.163
##     AEC02|t5          1.130    2.553    0.443    0.658    1.130    0.580
##     AEC02|t6          1.711    2.815    0.608    0.543    1.711    0.878
##     AEC03|t1         -2.624    0.268   -9.789    0.000   -2.624   -2.822
##     AEC03|t2         -1.620    0.324   -5.003    0.000   -1.620   -1.742
##     AEC03|t3         -0.861    0.524   -1.643    0.100   -0.861   -0.927
##     AEC03|t4          0.040    0.825    0.048    0.961    0.040    0.043
##     AEC03|t5          0.851    1.116    0.762    0.446    0.851    0.915
##     AEC03|t6          1.163    1.231    0.945    0.345    1.163    1.251
##     AEC01|t1         -4.439    0.653   -6.801    0.000   -4.439   -2.749
##     AEC01|t2         -3.107    0.561   -5.538    0.000   -3.107   -1.924
##     AEC01|t3         -1.893    0.892   -2.122    0.034   -1.893   -1.173
##     AEC01|t4         -0.128    1.620   -0.079    0.937   -0.128   -0.079
##     AEC01|t5          1.136    2.183    0.520    0.603    1.136    0.703
##     AEC01|t6          1.565    2.379    0.658    0.511    1.565    0.969
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.212    0.236    0.900    0.368    0.212    0.044
##    .AEC02             0.516    0.488    1.057    0.290    0.516    0.136
##    .AEC03             0.354    0.264    1.341    0.180    0.354    0.409
##    .AEC01             0.430    0.405    1.064    0.287    0.430    0.165
##     AEC               4.574    5.011    0.913    0.361    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.457                               0.457    1.000
##     AEC02             0.513                               0.513    1.000
##     AEC03             1.076                               1.076    1.000
##     AEC01             0.619                               0.619    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.956
##     AEC02             0.864
##     AEC03             0.591
##     AEC01             0.835
lavaan::fitMeasures(invariance$fit.configural,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##                48.158                 6.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.019                 0.995                 0.986 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.200                 0.150                 0.254
modificationindices(invariance$fit.configural, sort.=T)
##       lhs op   rhs block group level    mi    epc sepc.lv sepc.all sepc.nox
## 141 AEC02 ~~ AEC01     1     1     1 1.185  1.329   1.329    1.329    1.329
## 138 AEC04 ~~ AEC03     1     1     1 1.185  1.099   1.099    1.099    1.099
## 151 AEC04 ~~ AEC01     3     3     1 0.754 -0.380  -0.380   -1.258   -1.258
## 152 AEC02 ~~ AEC03     3     3     1 0.754 -0.156  -0.156   -0.365   -0.365
## 150 AEC04 ~~ AEC03     3     3     1 0.468  0.144   0.144    0.527    0.527
## 153 AEC02 ~~ AEC01     3     3     1 0.468  0.252   0.252    0.535    0.535
## 139 AEC04 ~~ AEC01     1     1     1 0.339 -0.988  -0.988   -0.988   -0.988
## 140 AEC02 ~~ AEC03     1     1     1 0.339 -0.425  -0.425   -0.425   -0.425
## 142 AEC03 ~~ AEC01     1     1     1 0.262 -0.281  -0.281   -0.281   -0.281
## 137 AEC04 ~~ AEC02     1     1     1 0.262 -1.170  -1.170   -1.170   -1.170
## 146 AEC02 ~~ AEC03     2     2     1 0.201 -0.082  -0.082   -0.214   -0.214
## 145 AEC04 ~~ AEC01     2     2     1 0.201 -0.187  -0.187   -0.588   -0.588
## 143 AEC04 ~~ AEC02     2     2     1 0.109  0.178   0.178    0.605    0.605
## 148 AEC03 ~~ AEC01     2     2     1 0.109  0.048   0.048    0.115    0.115
## 149 AEC04 ~~ AEC02     3     3     1 0.033  0.098   0.098    0.296    0.296
## 154 AEC03 ~~ AEC01     3     3     1 0.033  0.027   0.027    0.068    0.068
## 144 AEC04 ~~ AEC03     2     2     1 0.014  0.025   0.025    0.113    0.113
## 147 AEC02 ~~ AEC01     2     2     1 0.014  0.044   0.044    0.079    0.079
semTools::reliability(invariance$fit.configural)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`1`
##              AEC
## alpha     0.9251
## alpha.ord 0.9365
## omega     0.9198
## omega2    0.9198
## omega3    0.9198
## avevar    0.8648
## 
## $`2`
##              AEC
## alpha     0.9191
## alpha.ord 0.9347
## omega     0.9134
## omega2    0.9134
## omega3    0.9133
## avevar    0.8487
## 
## $`3`
##              AEC
## alpha     0.9327
## alpha.ord 0.9423
## omega     0.9233
## omega2    0.9233
## omega3    0.9232
## avevar    0.8745
7.1.1.5.2 Loadings
summary(invariance$fit.loadings,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 363 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    16
##                                                       
##   Number of observations per group:                   
##     1                                               90
##     2                                              190
##     3                                              250
##   Number of missing patterns per group:               
##     1                                                1
##     2                                                1
##     3                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 5.353      11.559
##   Degrees of freedom                                12          12
##   P-value (Unknown)                                 NA       0.482
##   Scaling correction factor                                  0.602
##   Shift parameter for each group:                                 
##       1                                                      0.453
##       2                                                      0.957
##       3                                                      1.259
##        simple second-order correction                             
##   Test statistic for each group:
##     1                                            3.739       6.662
##     2                                            0.525       1.828
##     3                                            1.089       3.069
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2009.846    8858.756
##   Degrees of freedom                                18          18
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.227
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.005       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.012       0.075
##   P-value RMSEA <= 0.05                          0.990       0.797
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               1.854    0.880
##     AEC02             2.238    1.664    1.345    0.179    4.150    0.972
##     AEC03             0.564    0.161    3.500    0.000    1.045    0.723
##     AEC01             2.093    1.471    1.423    0.155    3.881    0.968
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -3.951    0.872   -4.533    0.000   -3.951   -1.876
##     AEC04|t2         -2.614    0.589   -4.440    0.000   -2.614   -1.241
##     AEC04|t3         -0.595    0.296   -2.005    0.045   -0.595   -0.282
##     AEC04|t4          1.038    0.338    3.073    0.002    1.038    0.493
##     AEC04|t5          2.700    0.569    4.745    0.000    2.700    1.282
##     AEC04|t6          3.162    0.645    4.901    0.000    3.162    1.501
##     AEC02|t1         -8.479    5.547   -1.529    0.126   -8.479   -1.986
##     AEC02|t2         -5.471    3.324   -1.646    0.100   -5.471   -1.282
##     AEC02|t3         -2.376    1.485   -1.600    0.110   -2.376   -0.557
##     AEC02|t4          1.581    1.101    1.436    0.151    1.581    0.370
##     AEC02|t5          4.130    2.464    1.676    0.094    4.130    0.967
##     AEC02|t6          6.408    3.656    1.753    0.080    6.408    1.501
##     AEC03|t1         -2.501    0.336   -7.444    0.000   -2.501   -1.729
##     AEC03|t2         -1.854    0.288   -6.429    0.000   -1.854   -1.282
##     AEC03|t3         -0.284    0.196   -1.452    0.147   -0.284   -0.196
##     AEC03|t4          0.759    0.202    3.749    0.000    0.759    0.524
##     AEC03|t5          1.534    0.249    6.158    0.000    1.534    1.061
##     AEC03|t6          1.950    0.287    6.791    0.000    1.950    1.348
##     AEC01|t1         -7.843    4.663   -1.682    0.093   -7.843   -1.957
##     AEC01|t2         -4.059    2.238   -1.814    0.070   -4.059   -1.013
##     AEC01|t3         -1.365    0.873   -1.564    0.118   -1.365   -0.341
##     AEC01|t4          1.850    1.114    1.660    0.097    1.850    0.461
##     AEC01|t5          4.892    2.570    1.903    0.057    4.892    1.221
##     AEC01|t6          6.818    3.432    1.986    0.047    6.818    1.701
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             1.000                               1.000    0.225
##    .AEC02             1.000                               1.000    0.055
##    .AEC03             1.000                               1.000    0.478
##    .AEC01             1.000                               1.000    0.062
##     AEC               3.438    1.579    2.177    0.029    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.475                               0.475    1.000
##     AEC02             0.234                               0.234    1.000
##     AEC03             0.691                               0.691    1.000
##     AEC01             0.250                               0.250    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.775
##     AEC02             0.945
##     AEC03             0.522
##     AEC01             0.938
## 
## 
## Group 2 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               1.143    1.001
##     AEC02             2.238    1.664    1.345    0.179    2.558    0.901
##     AEC03             0.564    0.161    3.500    0.000    0.644    0.777
##     AEC01             2.093    1.471    1.423    0.155    2.392    0.860
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC              -1.044    0.814   -1.283    0.199   -0.914   -0.914
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -3.951    0.872   -4.533    0.000   -3.951   -3.463
##     AEC04|t2         -2.614    0.589   -4.440    0.000   -2.614   -2.291
##     AEC04|t3         -1.767    0.617   -2.863    0.004   -1.767   -1.549
##     AEC04|t4         -0.693    0.939   -0.737    0.461   -0.693   -0.607
##     AEC04|t5          0.126    1.273    0.099    0.921    0.126    0.110
##     AEC04|t6          0.700    1.527    0.458    0.647    0.700    0.614
##     AEC02|t1         -8.479    5.547   -1.529    0.126   -8.479   -2.985
##     AEC02|t2         -6.563    4.279   -1.534    0.125   -6.563   -2.311
##     AEC02|t3         -4.470    2.974   -1.503    0.133   -4.470   -1.574
##     AEC02|t4         -1.423    2.229   -0.638    0.523   -1.423   -0.501
##     AEC02|t5          0.574    2.991    0.192    0.848    0.574    0.202
##     AEC02|t6          2.005    3.874    0.517    0.605    2.005    0.706
##     AEC03|t1         -2.501    0.336   -7.444    0.000   -2.501   -3.017
##     AEC03|t2         -1.627    0.302   -5.387    0.000   -1.627   -1.962
##     AEC03|t3         -0.938    0.411   -2.279    0.023   -0.938   -1.131
##     AEC03|t4         -0.275    0.594   -0.464    0.643   -0.275   -0.332
##     AEC03|t5          0.319    0.778    0.409    0.682    0.319    0.384
##     AEC03|t6          0.678    0.898    0.756    0.450    0.678    0.819
##     AEC01|t1         -7.843    4.663   -1.682    0.093   -7.843   -2.820
##     AEC01|t2         -6.016    3.553   -1.693    0.090   -6.016   -2.163
##     AEC01|t3         -3.903    2.382   -1.639    0.101   -3.903   -1.404
##     AEC01|t4         -0.600    2.255   -0.266    0.790   -0.600   -0.216
##     AEC01|t5          1.141    3.149    0.362    0.717    1.141    0.410
##     AEC01|t6          2.066    3.735    0.553    0.580    2.066    0.743
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04            -0.004    0.108   -0.035    0.972   -0.004   -0.003
##    .AEC02             1.524    2.551    0.597    0.550    1.524    0.189
##    .AEC03             0.272    0.192    1.414    0.157    0.272    0.396
##    .AEC01             2.013    3.175    0.634    0.526    2.013    0.260
##     AEC               1.306    1.220    1.070    0.284    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.876                               0.876    1.000
##     AEC02             0.352                               0.352    1.000
##     AEC03             1.206                               1.206    1.000
##     AEC01             0.360                               0.360    1.000
## 
## R-Square:
##                    Estimate
##     AEC04                NA
##     AEC02             0.811
##     AEC03             0.604
##     AEC01             0.740
## 
## 
## Group 3 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               1.232    0.982
##     AEC02             2.238    1.664    1.345    0.179    2.758    0.936
##     AEC03             0.564    0.161    3.500    0.000    0.695    0.777
##     AEC01             2.093    1.471    1.423    0.155    2.579    0.895
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC              -0.623    0.981   -0.635    0.526   -0.505   -0.505
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -3.951    0.872   -4.533    0.000   -3.951   -3.148
##     AEC04|t2         -2.614    0.589   -4.440    0.000   -2.614   -2.083
##     AEC04|t3         -1.477    0.687   -2.150    0.032   -1.477   -1.177
##     AEC04|t4         -0.119    1.189   -0.100    0.920   -0.119   -0.095
##     AEC04|t5          0.903    1.646    0.549    0.583    0.903    0.720
##     AEC04|t6          1.287    1.824    0.706    0.480    1.287    1.026
##     AEC02|t1         -8.479    5.547   -1.529    0.126   -8.479   -2.878
##     AEC02|t2         -6.298    4.141   -1.521    0.128   -6.298   -2.138
##     AEC02|t3         -4.422    2.962   -1.493    0.135   -4.422   -1.501
##     AEC02|t4         -0.401    2.579   -0.155    0.877   -0.401   -0.136
##     AEC02|t5          1.789    3.821    0.468    0.640    1.789    0.607
##     AEC02|t6          2.668    4.428    0.603    0.547    2.668    0.906
##     AEC03|t1         -2.501    0.336   -7.444    0.000   -2.501   -2.796
##     AEC03|t2         -1.539    0.315   -4.881    0.000   -1.539   -1.721
##     AEC03|t3         -0.810    0.455   -1.781    0.075   -0.810   -0.906
##     AEC03|t4          0.057    0.712    0.080    0.936    0.057    0.064
##     AEC03|t5          0.837    0.971    0.862    0.389    0.837    0.936
##     AEC03|t6          1.138    1.075    1.058    0.290    1.138    1.272
##     AEC01|t1         -7.843    4.663   -1.682    0.093   -7.843   -2.722
##     AEC01|t2         -5.432    3.165   -1.716    0.086   -5.432   -1.885
##     AEC01|t3         -3.266    2.140   -1.526    0.127   -3.266   -1.133
##     AEC01|t4         -0.115    2.530   -0.045    0.964   -0.115   -0.040
##     AEC01|t5          2.141    3.853    0.556    0.578    2.141    0.743
##     AEC01|t6          2.907    4.370    0.665    0.506    2.907    1.009
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.057    0.137    0.416    0.678    0.057    0.036
##    .AEC02             1.074    1.863    0.576    0.564    1.074    0.124
##    .AEC03             0.317    0.225    1.411    0.158    0.317    0.397
##    .AEC01             1.654    2.541    0.651    0.515    1.654    0.199
##     AEC               1.518    1.452    1.045    0.296    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.797                               0.797    1.000
##     AEC02             0.339                               0.339    1.000
##     AEC03             1.118                               1.118    1.000
##     AEC01             0.347                               0.347    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.964
##     AEC02             0.876
##     AEC03             0.603
##     AEC01             0.801
lavaan::fitMeasures(invariance$fit.loadings,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##                11.559                12.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.025                 1.000                 1.000 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.000                 0.000                 0.075
modificationindices(invariance$fit.loadings, sort.=T)
##       lhs  op   rhs block group level    mi    epc sepc.lv sepc.all sepc.nox
## 144 AEC04  ~~ AEC03     1     1     1 3.347  0.677   0.677    0.677    0.677
## 38  AEC04  ~1           1     1     1 1.837 -0.703  -0.703   -0.334   -0.334
## 34  AEC04 ~*~ AEC04     1     1     1 1.508 -0.078  -0.078   -1.000   -1.000
## 1     AEC  =~ AEC04     1     1     1 1.508  0.164   0.304    0.144    0.144
## 37  AEC01 ~*~ AEC01     1     1     1 1.504  0.041   0.041    1.000    1.000
## 41  AEC01  ~1           1     1     1 1.504  1.283   1.283    0.320    0.320
## 158 AEC02  ~~ AEC03     3     3     1 0.961 -0.212  -0.212   -0.363   -0.363
## 159 AEC02  ~~ AEC01     3     3     1 0.569  0.555   0.555    0.416    0.416
## 121 AEC01 ~*~ AEC01     3     3     1 0.447 -0.023  -0.023   -1.000   -1.000
## 125 AEC01  ~1           3     3     1 0.447 -0.425  -0.425   -0.148   -0.148
## 80  AEC04  ~1           2     2     1 0.425  0.207   0.207    0.182    0.182
## 151 AEC04  ~~ AEC01     2     2     1 0.423 -0.211  -0.211   -2.407   -2.407
## 148 AEC03  ~~ AEC01     1     1     1 0.404 -0.464  -0.464   -0.464   -0.464
## 43    AEC  =~ AEC04     2     2     1 0.398 -0.052  -0.059   -0.052   -0.052
## 76  AEC04 ~*~ AEC04     2     2     1 0.384  0.060   0.060    1.000    1.000
## 36  AEC03 ~*~ AEC03     1     1     1 0.368 -0.061  -0.061   -1.000   -1.000
## 40  AEC03  ~1           1     1     1 0.368 -0.219  -0.219   -0.151   -0.151
## 81  AEC02  ~1           2     2     1 0.336 -0.400  -0.400   -0.141   -0.141
## 77  AEC02 ~*~ AEC02     2     2     1 0.336 -0.023  -0.023   -1.000   -1.000
## 39  AEC02  ~1           1     1     1 0.310  0.628   0.628    0.147    0.147
## 35  AEC02 ~*~ AEC02     1     1     1 0.310  0.017   0.017    1.000    1.000
## 147 AEC02  ~~ AEC01     1     1     1 0.307 -1.302  -1.302   -1.302   -1.302
## 153 AEC02  ~~ AEC01     2     2     1 0.231  0.366   0.366    0.209    0.209
## 146 AEC02  ~~ AEC03     1     1     1 0.111 -0.260  -0.260   -0.260   -0.260
## 124 AEC03  ~1           3     3     1 0.110  0.072   0.072    0.081    0.081
## 120 AEC03 ~*~ AEC03     3     3     1 0.110  0.037   0.037    1.000    1.000
## 154 AEC03  ~~ AEC01     2     2     1 0.100  0.066   0.066    0.089    0.089
## 156 AEC04  ~~ AEC03     3     3     1 0.099  0.029   0.029    0.218    0.218
## 157 AEC04  ~~ AEC01     3     3     1 0.090 -0.097  -0.097   -0.317   -0.317
## 145 AEC04  ~~ AEC01     1     1     1 0.085 -0.330  -0.330   -0.330   -0.330
## 160 AEC03  ~~ AEC01     3     3     1 0.085  0.060   0.060    0.083    0.083
## 150 AEC04  ~~ AEC03     2     2     1 0.062 -0.023  -0.023   -0.708   -0.708
## 123 AEC02  ~1           3     3     1 0.056  0.163   0.163    0.055    0.055
## 119 AEC02 ~*~ AEC02     3     3     1 0.056  0.008   0.008    1.000    1.000
## 143 AEC04  ~~ AEC02     1     1     1 0.053  0.276   0.276    0.276    0.276
## 149 AEC04  ~~ AEC02     2     2     1 0.049  0.075   0.075    0.983    0.983
## 122 AEC04  ~1           3     3     1 0.031  0.056   0.056    0.044    0.044
## 85    AEC  =~ AEC04     3     3     1 0.014 -0.010  -0.012   -0.010   -0.010
## 118 AEC04 ~*~ AEC04     3     3     1 0.012  0.008   0.008    1.000    1.000
## 155 AEC04  ~~ AEC02     3     3     1 0.011 -0.036  -0.036   -0.144   -0.144
## 152 AEC02  ~~ AEC03     2     2     1 0.006 -0.018  -0.018   -0.027   -0.027
## 83  AEC01  ~1           2     2     1 0.006 -0.050  -0.050   -0.018   -0.018
## 79  AEC01 ~*~ AEC01     2     2     1 0.006 -0.003  -0.003   -1.000   -1.000
## 78  AEC03 ~*~ AEC03     2     2     1 0.001  0.004   0.004    1.000    1.000
## 82  AEC03  ~1           2     2     1 0.001  0.007   0.007    0.009    0.009
semTools::reliability(invariance$fit.loadings)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`1`
##              AEC
## alpha     0.9251
## alpha.ord 0.9365
## omega     0.9193
## omega2    0.9193
## omega3    0.9145
## avevar    0.9020
## 
## $`2`
##              AEC
## alpha     0.9191
## alpha.ord 0.9347
## omega     0.9175
## omega2    0.9175
## omega3    0.9170
## avevar    0.7861
## 
## $`3`
##              AEC
## alpha     0.9327
## alpha.ord 0.9423
## omega     0.9233
## omega2    0.9233
## omega3    0.9231
## avevar    0.8398
7.1.1.5.3 Thresholds
summary(invariance$fit.thresholds,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 200 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    54
##                                                       
##   Number of observations per group:                   
##     1                                               90
##     2                                              190
##     3                                              250
##   Number of missing patterns per group:               
##     1                                                1
##     2                                                1
##     3                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                60.295      42.772
##   Degrees of freedom                                50          50
##   P-value (Unknown)                                 NA       0.756
##   Scaling correction factor                                  2.735
##   Shift parameter for each group:                                 
##       1                                                      3.520
##       2                                                      7.431
##       3                                                      9.778
##        simple second-order correction                             
##   Test statistic for each group:
##     1                                           28.927      14.095
##     2                                           18.803      14.305
##     3                                           12.565      14.372
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2009.846    8858.756
##   Degrees of freedom                                18          18
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.227
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.995       1.000
##   Tucker-Lewis Index (TLI)                       0.998       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.034       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.062       0.036
##   P-value RMSEA <= 0.05                          0.799       0.992
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               2.822    0.943
##     AEC02             0.997    0.452    2.206    0.027    2.814    0.942
##     AEC03             0.366    0.126    2.894    0.004    1.033    0.718
##     AEC01             1.010    0.522    1.935    0.053    2.851    0.944
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -6.005    1.843   -3.259    0.001   -6.005   -2.006
##     AEC04|t2         -3.328    1.140   -2.919    0.004   -3.328   -1.111
##     AEC04|t3         -1.127    0.513   -2.197    0.028   -1.127   -0.377
##     AEC04|t4          1.416    0.559    2.533    0.011    1.416    0.473
##     AEC04|t5          3.415    1.145    2.983    0.003    3.415    1.141
##     AEC04|t6          4.353    1.423    3.059    0.002    4.353    1.454
##     AEC02|t1         -5.732    1.461   -3.924    0.000   -5.732   -1.920
##     AEC02|t2         -3.786    1.019   -3.714    0.000   -3.786   -1.268
##     AEC02|t3         -1.917    0.622   -3.080    0.002   -1.917   -0.642
##     AEC02|t4          1.344    0.423    3.180    0.001    1.344    0.450
##     AEC02|t5          3.272    0.780    4.196    0.000    3.272    1.096
##     AEC02|t6          4.381    1.019    4.298    0.000    4.381    1.467
##     AEC03|t1         -2.583    0.255  -10.114    0.000   -2.583   -1.797
##     AEC03|t2         -1.404    0.180   -7.801    0.000   -1.404   -0.976
##     AEC03|t3         -0.366    0.134   -2.721    0.007   -0.366   -0.254
##     AEC03|t4          0.689    0.155    4.447    0.000    0.689    0.480
##     AEC03|t5          1.618    0.212    7.641    0.000    1.618    1.125
##     AEC03|t6          2.057    0.246    8.346    0.000    2.057    1.431
##     AEC01|t1         -5.711    1.525   -3.746    0.000   -5.711   -1.890
##     AEC01|t2         -3.437    0.968   -3.550    0.000   -3.437   -1.138
##     AEC01|t3         -1.309    0.506   -2.587    0.010   -1.309   -0.433
##     AEC01|t4          1.790    0.541    3.306    0.001    1.790    0.592
##     AEC01|t5          3.866    1.016    3.807    0.000    3.866    1.280
##     AEC01|t6          4.795    1.250    3.836    0.000    4.795    1.587
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             1.000                               1.000    0.112
##    .AEC02             1.000                               1.000    0.112
##    .AEC03             1.000                               1.000    0.484
##    .AEC01             1.000                               1.000    0.110
##     AEC               7.964    5.379    1.481    0.139    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.334                               0.334    1.000
##     AEC02             0.335                               0.335    1.000
##     AEC03             0.696                               0.696    1.000
##     AEC01             0.331                               0.331    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.888
##     AEC02             0.888
##     AEC03             0.516
##     AEC01             0.890
## 
## 
## Group 2 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               2.557    0.982
##     AEC02             0.997    0.452    2.206    0.027    2.549    0.909
##     AEC03             0.366    0.126    2.894    0.004    0.935    0.762
##     AEC01             1.010    0.522    1.935    0.053    2.583    0.886
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC               0.429    0.408    1.051    0.293    0.168    0.168
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -6.005    1.843   -3.259    0.001   -6.005   -2.307
##     AEC04|t2         -3.328    1.140   -2.919    0.004   -3.328   -1.278
##     AEC04|t3         -1.127    0.513   -2.197    0.028   -1.127   -0.433
##     AEC04|t4          1.416    0.559    2.533    0.011    1.416    0.544
##     AEC04|t5          3.415    1.145    2.983    0.003    3.415    1.312
##     AEC04|t6          4.353    1.423    3.059    0.002    4.353    1.672
##     AEC02|t1         -5.732    1.461   -3.924    0.000   -5.732   -2.044
##     AEC02|t2         -3.786    1.019   -3.714    0.000   -3.786   -1.350
##     AEC02|t3         -1.917    0.622   -3.080    0.002   -1.917   -0.683
##     AEC02|t4          1.344    0.423    3.180    0.001    1.344    0.479
##     AEC02|t5          3.272    0.780    4.196    0.000    3.272    1.167
##     AEC02|t6          4.381    1.019    4.298    0.000    4.381    1.562
##     AEC03|t1         -2.583    0.255  -10.114    0.000   -2.583   -2.104
##     AEC03|t2         -1.404    0.180   -7.801    0.000   -1.404   -1.143
##     AEC03|t3         -0.366    0.134   -2.721    0.007   -0.366   -0.298
##     AEC03|t4          0.689    0.155    4.447    0.000    0.689    0.561
##     AEC03|t5          1.618    0.212    7.641    0.000    1.618    1.317
##     AEC03|t6          2.057    0.246    8.346    0.000    2.057    1.675
##     AEC01|t1         -5.711    1.525   -3.746    0.000   -5.711   -1.960
##     AEC01|t2         -3.437    0.968   -3.550    0.000   -3.437   -1.180
##     AEC01|t3         -1.309    0.506   -2.587    0.010   -1.309   -0.449
##     AEC01|t4          1.790    0.541    3.306    0.001    1.790    0.614
##     AEC01|t5          3.866    1.016    3.807    0.000    3.866    1.327
##     AEC01|t6          4.795    1.250    3.836    0.000    4.795    1.646
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.241    0.437    0.552    0.581    0.241    0.036
##    .AEC02             1.371    0.838    1.636    0.102    1.371    0.174
##    .AEC03             0.633    0.171    3.708    0.000    0.633    0.420
##    .AEC01             1.818    1.151    1.579    0.114    1.818    0.214
##     AEC               6.537    4.239    1.542    0.123    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.384                               0.384    1.000
##     AEC02             0.357                               0.357    1.000
##     AEC03             0.814                               0.814    1.000
##     AEC01             0.343                               0.343    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.964
##     AEC02             0.826
##     AEC03             0.580
##     AEC01             0.786
## 
## 
## Group 3 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               2.439    0.993
##     AEC02             0.997    0.452    2.206    0.027    2.432    0.932
##     AEC03             0.366    0.126    2.894    0.004    0.893    0.781
##     AEC01             1.010    0.522    1.935    0.053    2.464    0.883
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC               0.540    0.409    1.322    0.186    0.222    0.222
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -6.005    1.843   -3.259    0.001   -6.005   -2.444
##     AEC04|t2         -3.328    1.140   -2.919    0.004   -3.328   -1.354
##     AEC04|t3         -1.127    0.513   -2.197    0.028   -1.127   -0.459
##     AEC04|t4          1.416    0.559    2.533    0.011    1.416    0.576
##     AEC04|t5          3.415    1.145    2.983    0.003    3.415    1.390
##     AEC04|t6          4.353    1.423    3.059    0.002    4.353    1.771
##     AEC02|t1         -5.732    1.461   -3.924    0.000   -5.732   -2.198
##     AEC02|t2         -3.786    1.019   -3.714    0.000   -3.786   -1.452
##     AEC02|t3         -1.917    0.622   -3.080    0.002   -1.917   -0.735
##     AEC02|t4          1.344    0.423    3.180    0.001    1.344    0.515
##     AEC02|t5          3.272    0.780    4.196    0.000    3.272    1.255
##     AEC02|t6          4.381    1.019    4.298    0.000    4.381    1.680
##     AEC03|t1         -2.583    0.255  -10.114    0.000   -2.583   -2.262
##     AEC03|t2         -1.404    0.180   -7.801    0.000   -1.404   -1.229
##     AEC03|t3         -0.366    0.134   -2.721    0.007   -0.366   -0.320
##     AEC03|t4          0.689    0.155    4.447    0.000    0.689    0.603
##     AEC03|t5          1.618    0.212    7.641    0.000    1.618    1.416
##     AEC03|t6          2.057    0.246    8.346    0.000    2.057    1.801
##     AEC01|t1         -5.711    1.525   -3.746    0.000   -5.711   -2.046
##     AEC01|t2         -3.437    0.968   -3.550    0.000   -3.437   -1.231
##     AEC01|t3         -1.309    0.506   -2.587    0.010   -1.309   -0.469
##     AEC01|t4          1.790    0.541    3.306    0.001    1.790    0.641
##     AEC01|t5          3.866    1.016    3.807    0.000    3.866    1.385
##     AEC01|t6          4.795    1.250    3.836    0.000    4.795    1.717
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.088    0.300    0.293    0.770    0.088    0.015
##    .AEC02             0.888    0.526    1.688    0.091    0.888    0.130
##    .AEC03             0.508    0.127    4.013    0.000    0.508    0.389
##    .AEC01             1.722    0.934    1.844    0.065    1.722    0.221
##     AEC               5.951    3.845    1.548    0.122    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.407                               0.407    1.000
##     AEC02             0.383                               0.383    1.000
##     AEC03             0.875                               0.875    1.000
##     AEC01             0.358                               0.358    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.985
##     AEC02             0.870
##     AEC03             0.611
##     AEC01             0.779
lavaan::fitMeasures(invariance$fit.thresholds,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##                42.772                50.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.025                 1.000                 1.000 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.000                 0.000                 0.036
modificationindices(invariance$fit.thresholds, sort.=T)
##       lhs  op   rhs block group level    mi    epc sepc.lv sepc.all sepc.nox
## 124 AEC03  ~1           3     3     1 5.708 -0.115  -0.115   -0.101   -0.101
## 81  AEC02  ~1           2     2     1 4.955 -0.271  -0.271   -0.096   -0.096
## 80  AEC04  ~1           2     2     1 3.699  0.224   0.224    0.086    0.086
## 38  AEC04  ~1           1     1     1 3.190 -0.294  -0.294   -0.098   -0.098
## 82  AEC03  ~1           2     2     1 2.906  0.086   0.086    0.070    0.070
## 123 AEC02  ~1           3     3     1 2.119  0.169   0.169    0.065    0.065
## 182 AEC04  ~~ AEC03     1     1     1 1.907  0.719   0.719    0.719    0.719
## 125 AEC01  ~1           3     3     1 1.789  0.159   0.159    0.057    0.057
## 83  AEC01  ~1           2     2     1 1.734 -0.164  -0.164   -0.056   -0.056
## 40  AEC03  ~1           1     1     1 1.311  0.083   0.083    0.058    0.058
## 197 AEC02  ~~ AEC01     3     3     1 1.097  0.646   0.646    0.523    0.523
## 121 AEC01 ~*~ AEC01     3     3     1 1.081 -0.035  -0.035   -1.000   -1.000
## 196 AEC02  ~~ AEC03     3     3     1 0.985 -0.238  -0.238   -0.354   -0.354
## 39  AEC02  ~1           1     1     1 0.909  0.158   0.158    0.053    0.053
## 37  AEC01 ~*~ AEC01     1     1     1 0.670  0.034   0.034    1.000    1.000
## 189 AEC04  ~~ AEC01     2     2     1 0.602 -0.563  -0.563   -0.850   -0.850
## 183 AEC04  ~~ AEC01     1     1     1 0.518 -0.854  -0.854   -0.854   -0.854
## 36  AEC03 ~*~ AEC03     1     1     1 0.500 -0.065  -0.065   -1.000   -1.000
## 85    AEC  =~ AEC04     3     3     1 0.477 -0.062  -0.151   -0.062   -0.062
## 122 AEC04  ~1           3     3     1 0.403 -0.071  -0.071   -0.029   -0.029
## 79  AEC01 ~*~ AEC01     2     2     1 0.382  0.021   0.021    1.000    1.000
## 43    AEC  =~ AEC04     2     2     1 0.309  0.052   0.134    0.051    0.051
## 120 AEC03 ~*~ AEC03     3     3     1 0.239  0.041   0.041    1.000    1.000
## 118 AEC04 ~*~ AEC04     3     3     1 0.185  0.016   0.016    1.000    1.000
## 78  AEC03 ~*~ AEC03     2     2     1 0.183 -0.035  -0.035   -1.000   -1.000
## 198 AEC03  ~~ AEC01     3     3     1 0.154  0.099   0.099    0.105    0.105
## 187 AEC04  ~~ AEC02     2     2     1 0.143  0.267   0.267    0.464    0.464
## 186 AEC03  ~~ AEC01     1     1     1 0.141 -0.197  -0.197   -0.197   -0.197
## 77  AEC02 ~*~ AEC02     2     2     1 0.100 -0.011  -0.011   -1.000   -1.000
## 188 AEC04  ~~ AEC03     2     2     1 0.082  0.082   0.082    0.211    0.211
## 193 AEC04  ~~ AEC02     3     3     1 0.063 -0.144  -0.144   -0.517   -0.517
## 195 AEC04  ~~ AEC01     3     3     1 0.058 -0.145  -0.145   -0.372   -0.372
## 34  AEC04 ~*~ AEC04     1     1     1 0.052 -0.010  -0.010   -1.000   -1.000
## 1     AEC  =~ AEC04     1     1     1 0.052  0.029   0.082    0.028    0.028
## 192 AEC03  ~~ AEC01     2     2     1 0.036  0.059   0.059    0.055    0.055
## 181 AEC04  ~~ AEC02     1     1     1 0.024 -0.180  -0.180   -0.180   -0.180
## 119 AEC02 ~*~ AEC02     3     3     1 0.017  0.005   0.005    1.000    1.000
## 76  AEC04 ~*~ AEC04     2     2     1 0.014  0.004   0.004    1.000    1.000
## 41  AEC01  ~1           1     1     1 0.012 -0.018  -0.018   -0.006   -0.006
## 35  AEC02 ~*~ AEC02     1     1     1 0.009  0.004   0.004    1.000    1.000
## 191 AEC02  ~~ AEC01     2     2     1 0.007 -0.061  -0.061   -0.039   -0.039
## 185 AEC02  ~~ AEC01     1     1     1 0.007  0.095   0.095    0.095    0.095
## 190 AEC02  ~~ AEC03     2     2     1 0.003  0.016   0.016    0.017    0.017
## 184 AEC02  ~~ AEC03     1     1     1 0.002 -0.022  -0.022   -0.022   -0.022
## 194 AEC04  ~~ AEC03     3     3     1 0.002  0.010   0.010    0.046    0.046
semTools::reliability(invariance$fit.thresholds)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`1`
##              AEC
## alpha     0.9251
## alpha.ord 0.9365
## omega     0.9183
## omega2    0.9183
## omega3    0.9138
## avevar    0.8624
## 
## $`2`
##              AEC
## alpha     0.9191
## alpha.ord 0.9347
## omega     0.9169
## omega2    0.9169
## omega3    0.9162
## avevar    0.8351
## 
## $`3`
##              AEC
## alpha     0.9327
## alpha.ord 0.9423
## omega     0.9246
## omega2    0.9246
## omega3    0.9242
## avevar    0.8539
7.1.1.5.4 Partial Invariance - Means
summary(invariance$fit.means,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 167 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        92
##   Number of equality constraints                    54
##                                                       
##   Number of observations per group:                   
##     1                                               90
##     2                                              190
##     3                                              250
##   Number of missing patterns per group:               
##     1                                                1
##     2                                                1
##     3                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               108.205      47.965
##   Degrees of freedom                                52          52
##   P-value (Unknown)                                 NA       0.633
##   Scaling correction factor                                  5.025
##   Shift parameter for each group:                                 
##       1                                                      4.488
##       2                                                      9.475
##       3                                                     12.467
##        simple second-order correction                             
##   Test statistic for each group:
##     1                                           67.255      17.873
##     2                                           18.063      13.070
##     3                                           22.886      17.022
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2009.846    8858.756
##   Degrees of freedom                                18          18
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.227
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.972       1.000
##   Tucker-Lewis Index (TLI)                       0.990       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.078       0.000
##   90 Percent confidence interval - lower         0.057       0.000
##   90 Percent confidence interval - upper         0.099       0.042
##   P-value RMSEA <= 0.05                          0.015       0.984
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               2.564    0.932
##     AEC02             1.075    0.435    2.474    0.013    2.757    0.940
##     AEC03             0.417    0.127    3.282    0.001    1.070    0.731
##     AEC01             1.139    0.547    2.083    0.037    2.920    0.946
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -5.778    1.451   -3.982    0.000   -5.778   -2.099
##     AEC04|t2         -3.375    0.929   -3.631    0.000   -3.375   -1.226
##     AEC04|t3         -1.402    0.405   -3.466    0.001   -1.402   -0.510
##     AEC04|t4          0.881    0.277    3.176    0.001    0.881    0.320
##     AEC04|t5          2.673    0.756    3.533    0.000    2.673    0.971
##     AEC04|t6          3.514    0.976    3.600    0.000    3.514    1.277
##     AEC02|t1         -5.917    1.455   -4.066    0.000   -5.917   -2.018
##     AEC02|t2         -4.048    1.002   -4.039    0.000   -4.048   -1.380
##     AEC02|t3         -2.253    0.573   -3.929    0.000   -2.253   -0.768
##     AEC02|t4          0.883    0.262    3.371    0.001    0.883    0.301
##     AEC02|t5          2.736    0.687    3.982    0.000    2.736    0.933
##     AEC02|t6          3.799    0.940    4.040    0.000    3.799    1.295
##     AEC03|t1         -2.772    0.277  -10.011    0.000   -2.772   -1.893
##     AEC03|t2         -1.580    0.173   -9.117    0.000   -1.580   -1.079
##     AEC03|t3         -0.531    0.085   -6.280    0.000   -0.531   -0.363
##     AEC03|t4          0.535    0.086    6.208    0.000    0.535    0.365
##     AEC03|t5          1.473    0.163    9.044    0.000    1.473    1.006
##     AEC03|t6          1.917    0.205    9.337    0.000    1.917    1.309
##     AEC01|t1         -6.187    1.663   -3.721    0.000   -6.187   -2.004
##     AEC01|t2         -3.896    1.057   -3.687    0.000   -3.896   -1.262
##     AEC01|t3         -1.749    0.497   -3.518    0.000   -1.749   -0.567
##     AEC01|t4          1.377    0.395    3.486    0.000    1.377    0.446
##     AEC01|t5          3.471    0.946    3.670    0.000    3.471    1.124
##     AEC01|t6          4.407    1.199    3.674    0.000    4.407    1.428
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             1.000                               1.000    0.132
##    .AEC02             1.000                               1.000    0.116
##    .AEC03             1.000                               1.000    0.466
##    .AEC01             1.000                               1.000    0.105
##     AEC               6.575    3.761    1.748    0.080    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.363                               0.363    1.000
##     AEC02             0.341                               0.341    1.000
##     AEC03             0.683                               0.683    1.000
##     AEC01             0.324                               0.324    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.868
##     AEC02             0.884
##     AEC03             0.534
##     AEC01             0.895
## 
## 
## Group 2 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               2.282    0.977
##     AEC02             1.075    0.435    2.474    0.013    2.454    0.910
##     AEC03             0.417    0.127    3.282    0.001    0.952    0.767
##     AEC01             1.139    0.547    2.083    0.037    2.599    0.885
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -5.778    1.451   -3.982    0.000   -5.778   -2.475
##     AEC04|t2         -3.375    0.929   -3.631    0.000   -3.375   -1.445
##     AEC04|t3         -1.402    0.405   -3.466    0.001   -1.402   -0.601
##     AEC04|t4          0.881    0.277    3.176    0.001    0.881    0.377
##     AEC04|t5          2.673    0.756    3.533    0.000    2.673    1.145
##     AEC04|t6          3.514    0.976    3.600    0.000    3.514    1.505
##     AEC02|t1         -5.917    1.455   -4.066    0.000   -5.917   -2.195
##     AEC02|t2         -4.048    1.002   -4.039    0.000   -4.048   -1.502
##     AEC02|t3         -2.253    0.573   -3.929    0.000   -2.253   -0.836
##     AEC02|t4          0.883    0.262    3.371    0.001    0.883    0.328
##     AEC02|t5          2.736    0.687    3.982    0.000    2.736    1.015
##     AEC02|t6          3.799    0.940    4.040    0.000    3.799    1.410
##     AEC03|t1         -2.772    0.277  -10.011    0.000   -2.772   -2.232
##     AEC03|t2         -1.580    0.173   -9.117    0.000   -1.580   -1.272
##     AEC03|t3         -0.531    0.085   -6.280    0.000   -0.531   -0.428
##     AEC03|t4          0.535    0.086    6.208    0.000    0.535    0.431
##     AEC03|t5          1.473    0.163    9.044    0.000    1.473    1.186
##     AEC03|t6          1.917    0.205    9.337    0.000    1.917    1.544
##     AEC01|t1         -6.187    1.663   -3.721    0.000   -6.187   -2.107
##     AEC01|t2         -3.896    1.057   -3.687    0.000   -3.896   -1.327
##     AEC01|t3         -1.749    0.497   -3.518    0.000   -1.749   -0.596
##     AEC01|t4          1.377    0.395    3.486    0.000    1.377    0.469
##     AEC01|t5          3.471    0.946    3.670    0.000    3.471    1.182
##     AEC01|t6          4.407    1.199    3.674    0.000    4.407    1.501
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.243    0.363    0.669    0.503    0.243    0.045
##    .AEC02             1.244    0.786    1.583    0.113    1.244    0.171
##    .AEC03             0.636    0.177    3.600    0.000    0.636    0.412
##    .AEC01             1.869    1.227    1.523    0.128    1.869    0.217
##     AEC               5.209    2.896    1.798    0.072    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.428                               0.428    1.000
##     AEC02             0.371                               0.371    1.000
##     AEC03             0.805                               0.805    1.000
##     AEC01             0.341                               0.341    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.955
##     AEC02             0.829
##     AEC03             0.588
##     AEC01             0.783
## 
## 
## Group 3 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             1.000                               2.168    0.989
##     AEC02             1.075    0.435    2.474    0.013    2.331    0.935
##     AEC03             0.417    0.127    3.282    0.001    0.904    0.785
##     AEC01             1.139    0.547    2.083    0.037    2.469    0.880
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -5.778    1.451   -3.982    0.000   -5.778   -2.636
##     AEC04|t2         -3.375    0.929   -3.631    0.000   -3.375   -1.539
##     AEC04|t3         -1.402    0.405   -3.466    0.001   -1.402   -0.640
##     AEC04|t4          0.881    0.277    3.176    0.001    0.881    0.402
##     AEC04|t5          2.673    0.756    3.533    0.000    2.673    1.219
##     AEC04|t6          3.514    0.976    3.600    0.000    3.514    1.603
##     AEC02|t1         -5.917    1.455   -4.066    0.000   -5.917   -2.375
##     AEC02|t2         -4.048    1.002   -4.039    0.000   -4.048   -1.625
##     AEC02|t3         -2.253    0.573   -3.929    0.000   -2.253   -0.904
##     AEC02|t4          0.883    0.262    3.371    0.001    0.883    0.354
##     AEC02|t5          2.736    0.687    3.982    0.000    2.736    1.098
##     AEC02|t6          3.799    0.940    4.040    0.000    3.799    1.525
##     AEC03|t1         -2.772    0.277  -10.011    0.000   -2.772   -2.408
##     AEC03|t2         -1.580    0.173   -9.117    0.000   -1.580   -1.372
##     AEC03|t3         -0.531    0.085   -6.280    0.000   -0.531   -0.461
##     AEC03|t4          0.535    0.086    6.208    0.000    0.535    0.464
##     AEC03|t5          1.473    0.163    9.044    0.000    1.473    1.279
##     AEC03|t6          1.917    0.205    9.337    0.000    1.917    1.665
##     AEC01|t1         -6.187    1.663   -3.721    0.000   -6.187   -2.205
##     AEC01|t2         -3.896    1.057   -3.687    0.000   -3.896   -1.388
##     AEC01|t3         -1.749    0.497   -3.518    0.000   -1.749   -0.623
##     AEC01|t4          1.377    0.395    3.486    0.000    1.377    0.491
##     AEC01|t5          3.471    0.946    3.670    0.000    3.471    1.237
##     AEC01|t6          4.407    1.199    3.674    0.000    4.407    1.570
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.107    0.234    0.457    0.647    0.107    0.022
##    .AEC02             0.776    0.486    1.597    0.110    0.776    0.125
##    .AEC03             0.508    0.130    3.920    0.000    0.508    0.383
##    .AEC01             1.779    1.010    1.761    0.078    1.779    0.226
##     AEC               4.700    2.603    1.806    0.071    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             0.456                               0.456    1.000
##     AEC02             0.401                               0.401    1.000
##     AEC03             0.868                               0.868    1.000
##     AEC01             0.356                               0.356    1.000
## 
## R-Square:
##                    Estimate
##     AEC04             0.978
##     AEC02             0.875
##     AEC03             0.617
##     AEC01             0.774
lavaan::fitMeasures(invariance$fit.means,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##                47.965                52.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.025                 1.000                 1.000 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.000                 0.000                 0.042
modificationindices(invariance$fit.means, sort.=T)
##       lhs  op   rhs block group level     mi    epc sepc.lv sepc.all sepc.nox
## 42    AEC  ~1           1     1     1 43.429 -0.444  -0.173   -0.173   -0.173
## 38  AEC04  ~1           1     1     1 24.934 -0.639  -0.639   -0.232   -0.232
## 126   AEC  ~1           3     3     1 20.067  0.204   0.094    0.094    0.094
## 123 AEC02  ~1           3     3     1 13.045  0.345   0.345    0.138    0.138
## 41  AEC01  ~1           1     1     1 12.745 -0.517  -0.517   -0.168   -0.168
## 125 AEC01  ~1           3     3     1 12.341  0.363   0.363    0.129    0.129
## 39  AEC02  ~1           1     1     1  6.995 -0.367  -0.367   -0.125   -0.125
## 81  AEC02  ~1           2     2     1  3.582 -0.190  -0.190   -0.071   -0.071
## 122 AEC04  ~1           3     3     1  3.300  0.152   0.152    0.069    0.069
## 40  AEC03  ~1           1     1     1  2.791 -0.113  -0.113   -0.077   -0.077
## 80  AEC04  ~1           2     2     1  2.257  0.131   0.131    0.056    0.056
## 82  AEC03  ~1           2     2     1  2.082  0.066   0.066    0.053    0.053
## 182 AEC04  ~~ AEC03     1     1     1  1.810  0.657   0.657    0.657    0.657
## 121 AEC01 ~*~ AEC01     3     3     1  1.354 -0.039  -0.039   -1.000   -1.000
## 196 AEC02  ~~ AEC03     3     3     1  1.257 -0.261  -0.261   -0.416   -0.416
## 197 AEC02  ~~ AEC01     3     3     1  1.111  0.628   0.628    0.535    0.535
## 83  AEC01  ~1           2     2     1  1.031 -0.110  -0.110   -0.037   -0.037
## 37  AEC01 ~*~ AEC01     1     1     1  0.699  0.035   0.035    1.000    1.000
## 189 AEC04  ~~ AEC01     2     2     1  0.458 -0.444  -0.444   -0.659   -0.659
## 120 AEC03 ~*~ AEC03     3     3     1  0.409  0.053   0.053    1.000    1.000
## 183 AEC04  ~~ AEC01     1     1     1  0.390 -0.694  -0.694   -0.694   -0.694
## 79  AEC01 ~*~ AEC01     2     2     1  0.326  0.019   0.019    1.000    1.000
## 186 AEC03  ~~ AEC01     1     1     1  0.271 -0.286  -0.286   -0.286   -0.286
## 36  AEC03 ~*~ AEC03     1     1     1  0.241 -0.044  -0.044   -1.000   -1.000
## 187 AEC04  ~~ AEC02     2     2     1  0.181  0.259   0.259    0.471    0.471
## 34  AEC04 ~*~ AEC04     1     1     1  0.175 -0.019  -0.019   -1.000   -1.000
## 1     AEC  =~ AEC04     1     1     1  0.175  0.053   0.137    0.050    0.050
## 198 AEC03  ~~ AEC01     3     3     1  0.137  0.095   0.095    0.100    0.100
## 118 AEC04 ~*~ AEC04     3     3     1  0.094  0.013   0.013    1.000    1.000
## 85    AEC  =~ AEC04     3     3     1  0.094 -0.029  -0.063   -0.029   -0.029
## 78  AEC03 ~*~ AEC03     2     2     1  0.087 -0.024  -0.024   -1.000   -1.000
## 124 AEC03  ~1           3     3     1  0.087 -0.013  -0.013   -0.011   -0.011
## 77  AEC02 ~*~ AEC02     2     2     1  0.080 -0.010  -0.010   -1.000   -1.000
## 188 AEC04  ~~ AEC03     2     2     1  0.070  0.069   0.069    0.177    0.177
## 193 AEC04  ~~ AEC02     3     3     1  0.056 -0.117  -0.117   -0.407   -0.407
## 119 AEC02 ~*~ AEC02     3     3     1  0.051  0.009   0.009    1.000    1.000
## 184 AEC02  ~~ AEC03     1     1     1  0.023 -0.078  -0.078   -0.078   -0.078
## 192 AEC03  ~~ AEC01     2     2     1  0.019  0.044   0.044    0.040    0.040
## 195 AEC04  ~~ AEC01     3     3     1  0.011 -0.057  -0.057   -0.131   -0.131
## 191 AEC02  ~~ AEC01     2     2     1  0.007 -0.061  -0.061   -0.040   -0.040
## 185 AEC02  ~~ AEC01     1     1     1  0.006  0.093   0.093    0.093    0.093
## 35  AEC02 ~*~ AEC02     1     1     1  0.003  0.003   0.003    1.000    1.000
## 190 AEC02  ~~ AEC03     2     2     1  0.002 -0.012  -0.012   -0.014   -0.014
## 194 AEC04  ~~ AEC03     3     3     1  0.001  0.005   0.005    0.023    0.023
## 84    AEC  ~1           2     2     1  0.001 -0.001  -0.001   -0.001   -0.001
## 181 AEC04  ~~ AEC02     1     1     1  0.000 -0.011  -0.011   -0.011   -0.011
## 43    AEC  =~ AEC04     2     2     1  0.000  0.000  -0.001    0.000    0.000
## 76  AEC04 ~*~ AEC04     2     2     1  0.000  0.000   0.000    1.000    1.000
semTools::reliability(invariance$fit.means)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`1`
##              AEC
## alpha     0.9251
## alpha.ord 0.9365
## omega     0.9189
## omega2    0.9189
## omega3    0.9154
## avevar    0.8564
## 
## $`2`
##              AEC
## alpha     0.9191
## alpha.ord 0.9347
## omega     0.9168
## omega2    0.9168
## omega3    0.9164
## avevar    0.8256
## 
## $`3`
##              AEC
## alpha     0.9327
## alpha.ord 0.9423
## omega     0.9241
## omega2    0.9241
## omega3    0.9238
## avevar    0.8432
7.1.1.5.5 Checking Latent Differences
partial<-partialInvarianceCat(invariance,type="means",return.fit = F)
partial
## $estimates
##       poolest mean:1 mean:2 mean:3 std:1  std:2 std:3 diff_std:2 vs. 1
## AEC~1       0      0 0.4292 0.5404     0 0.1683 0.212           0.1683
##       diff_std:3 vs. 1
## AEC~1            0.212
## 
## $results
##       free.chi free.df free.p free.cfi fix.chi fix.df  fix.p  fix.cfi wald.chi
## AEC~1   0.7696       2 0.6806 -0.02305  0.7696      2 0.6806 -0.02305       NA
##       wald.df wald.p
## AEC~1      NA     NA

8 External Relationships - Convergent and Concurrent Valididity

8.1 First Step CFA for each construct - with all cases

data<-TDados

8.2 AEG

model <- 'AEG  =~ AEG01 + AEG02 + AEG03 + AEG04 + AEG05 + AEG06 + AEG07 + AEG08 + AEG09 + AEG10' 

8.2.0.1 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   1 12 13 14 15 16 17 18 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

8.2.0.2 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 17 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        40
##                                                       
##                                                   Used       Total
##   Number of observations                           586         789
##   Number of missing patterns                         1            
##                                                                   
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                95.335     241.884
##   Degrees of freedom                                35          35
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.402
##   Shift parameter                                            4.927
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7763.930    5152.575
##   Degrees of freedom                                45          45
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.514
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.992       0.959
##   Tucker-Lewis Index (TLI)                       0.990       0.948
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.054       0.101
##   90 Percent confidence interval - lower         0.041       0.089
##   90 Percent confidence interval - upper         0.067       0.113
##   P-value RMSEA <= 0.05                          0.278       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.054       0.054
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEG =~                                                                
##     AEG01             1.000                               0.754    0.754
##     AEG02             0.852    0.048   17.899    0.000    0.642    0.642
##     AEG03             1.077    0.044   24.544    0.000    0.812    0.812
##     AEG04             1.023    0.049   20.828    0.000    0.771    0.771
##     AEG05             1.001    0.048   20.668    0.000    0.754    0.754
##     AEG06             0.969    0.047   20.612    0.000    0.731    0.731
##     AEG07             0.857    0.048   17.816    0.000    0.646    0.646
##     AEG08             1.045    0.044   23.539    0.000    0.788    0.788
##     AEG09             0.850    0.045   18.820    0.000    0.641    0.641
##     AEG10             1.043    0.044   23.499    0.000    0.786    0.786
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEG01             0.000                               0.000    0.000
##    .AEG02             0.000                               0.000    0.000
##    .AEG03             0.000                               0.000    0.000
##    .AEG04             0.000                               0.000    0.000
##    .AEG05             0.000                               0.000    0.000
##    .AEG06             0.000                               0.000    0.000
##    .AEG07             0.000                               0.000    0.000
##    .AEG08             0.000                               0.000    0.000
##    .AEG09             0.000                               0.000    0.000
##    .AEG10             0.000                               0.000    0.000
##     AEG               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEG01|t1         -2.568    0.200  -12.850    0.000   -2.568   -2.568
##     AEG01|t2         -1.780    0.096  -18.534    0.000   -1.780   -1.780
##     AEG01|t3         -0.026    0.052   -0.495    0.620   -0.026   -0.026
##     AEG02|t1         -2.259    0.144  -15.645    0.000   -2.259   -2.259
##     AEG02|t2         -1.213    0.068  -17.743    0.000   -1.213   -1.213
##     AEG02|t3          0.499    0.054    9.202    0.000    0.499    0.499
##     AEG03|t1         -2.080    0.122  -17.005    0.000   -2.080   -2.080
##     AEG03|t2         -1.120    0.066  -17.086    0.000   -1.120   -1.120
##     AEG03|t3          0.470    0.054    8.714    0.000    0.470    0.470
##     AEG04|t1         -2.466    0.179  -13.808    0.000   -2.466   -2.466
##     AEG04|t2         -1.702    0.091  -18.736    0.000   -1.702   -1.702
##     AEG04|t3         -0.060    0.052   -1.156    0.248   -0.060   -0.060
##     AEG05|t1         -1.979    0.112  -17.637    0.000   -1.979   -1.979
##     AEG05|t2         -1.088    0.065  -16.829    0.000   -1.088   -1.088
##     AEG05|t3          0.437    0.054    8.144    0.000    0.437    0.437
##     AEG06|t1         -2.161    0.132  -16.424    0.000   -2.161   -2.161
##     AEG06|t2         -1.370    0.074  -18.511    0.000   -1.370   -1.370
##     AEG06|t3          0.220    0.052    4.207    0.000    0.220    0.220
##     AEG07|t1         -1.633    0.087  -18.838    0.000   -1.633   -1.633
##     AEG07|t2         -0.938    0.061  -15.375    0.000   -0.938   -0.938
##     AEG07|t3          0.381    0.053    7.164    0.000    0.381    0.381
##     AEG08|t1         -2.044    0.119  -17.243    0.000   -2.044   -2.044
##     AEG08|t2         -0.979    0.062  -15.806    0.000   -0.979   -0.979
##     AEG08|t3          0.578    0.055   10.495    0.000    0.578    0.578
##     AEG09|t1         -1.502    0.080  -18.822    0.000   -1.502   -1.502
##     AEG09|t2         -0.504    0.054   -9.283    0.000   -0.504   -0.504
##     AEG09|t3          0.721    0.057   12.642    0.000    0.721    0.721
##     AEG10|t1         -1.823    0.099  -18.384    0.000   -1.823   -1.823
##     AEG10|t2         -0.789    0.058  -13.575    0.000   -0.789   -0.789
##     AEG10|t3          0.710    0.057   12.485    0.000    0.710    0.710
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEG01             0.432                               0.432    0.432
##    .AEG02             0.588                               0.588    0.588
##    .AEG03             0.340                               0.340    0.340
##    .AEG04             0.405                               0.405    0.405
##    .AEG05             0.431                               0.431    0.431
##    .AEG06             0.466                               0.466    0.466
##    .AEG07             0.582                               0.582    0.582
##    .AEG08             0.379                               0.379    0.379
##    .AEG09             0.589                               0.589    0.589
##    .AEG10             0.382                               0.382    0.382
##     AEG               0.568    0.042   13.487    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEG01             1.000                               1.000    1.000
##     AEG02             1.000                               1.000    1.000
##     AEG03             1.000                               1.000    1.000
##     AEG04             1.000                               1.000    1.000
##     AEG05             1.000                               1.000    1.000
##     AEG06             1.000                               1.000    1.000
##     AEG07             1.000                               1.000    1.000
##     AEG08             1.000                               1.000    1.000
##     AEG09             1.000                               1.000    1.000
##     AEG10             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     AEG01             0.568
##     AEG02             0.412
##     AEG03             0.660
##     AEG04             0.595
##     AEG05             0.569
##     AEG06             0.534
##     AEG07             0.418
##     AEG08             0.621
##     AEG09             0.411
##     AEG10             0.618

8.2.0.3 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##               241.884                35.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.054                 0.959                 0.948 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.101                 0.089                 0.113

8.2.0.4 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##    lhs op   rhs est.std    se     z pvalue ci.lower ci.upper
## 1  AEG =~ AEG01   0.754 0.028 26.97      0    0.699    0.809
## 2  AEG =~ AEG02   0.642 0.029 22.25      0    0.586    0.699
## 3  AEG =~ AEG03   0.812 0.018 44.55      0    0.776    0.848
## 4  AEG =~ AEG04   0.771 0.025 30.40      0    0.721    0.821
## 5  AEG =~ AEG05   0.754 0.024 31.97      0    0.708    0.800
## 6  AEG =~ AEG06   0.731 0.027 27.46      0    0.679    0.783
## 7  AEG =~ AEG07   0.646 0.030 21.68      0    0.588    0.705
## 8  AEG =~ AEG08   0.788 0.020 38.94      0    0.748    0.828
## 9  AEG =~ AEG09   0.641 0.027 23.61      0    0.588    0.694
## 10 AEG =~ AEG10   0.786 0.020 38.73      0    0.746    0.826

8.2.0.5 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T)
##       lhs op   rhs     mi    epc sepc.lv sepc.all sepc.nox
## 98  AEG04 ~~ AEG06 25.998  0.241   0.241    0.553    0.553
## 88  AEG02 ~~ AEG09 11.988 -0.157  -0.157   -0.266   -0.266
## 117 AEG09 ~~ AEG10 10.863  0.153   0.153    0.323    0.323
## 110 AEG06 ~~ AEG09 10.770 -0.151  -0.151   -0.288   -0.288
## 115 AEG08 ~~ AEG09  7.608  0.128   0.128    0.271    0.271
## 94  AEG03 ~~ AEG08  6.982  0.128   0.128    0.355    0.355
## 95  AEG03 ~~ AEG09  6.833  0.122   0.122    0.273    0.273
## 100 AEG04 ~~ AEG08  5.832 -0.115  -0.115   -0.294   -0.294
## 86  AEG02 ~~ AEG07  4.277  0.094   0.094    0.160    0.160
## 101 AEG04 ~~ AEG09  4.252 -0.096  -0.096   -0.195   -0.195
## 97  AEG04 ~~ AEG05  3.446  0.088   0.088    0.211    0.211
## 90  AEG03 ~~ AEG04  2.846 -0.081  -0.081   -0.218   -0.218
## 103 AEG05 ~~ AEG06  2.382  0.073   0.073    0.162    0.162
## 91  AEG03 ~~ AEG05  2.180 -0.071  -0.071   -0.185   -0.185
## 92  AEG03 ~~ AEG06  1.957 -0.067  -0.067   -0.167   -0.167
## 111 AEG06 ~~ AEG10  1.895 -0.065  -0.065   -0.154   -0.154
## 109 AEG06 ~~ AEG08  1.613 -0.060  -0.060   -0.143   -0.143
## 104 AEG05 ~~ AEG07  1.570 -0.058  -0.058   -0.116   -0.116
## 82  AEG02 ~~ AEG03  1.491  0.057   0.057    0.128    0.128
## 102 AEG04 ~~ AEG10  1.350 -0.056  -0.056   -0.141   -0.141
## 73  AEG01 ~~ AEG02  1.243  0.051   0.051    0.102    0.102
## 87  AEG02 ~~ AEG08  1.207 -0.051  -0.051   -0.108   -0.108
## 96  AEG03 ~~ AEG10  0.835 -0.044  -0.044   -0.122   -0.122
## 79  AEG01 ~~ AEG08  0.345 -0.028  -0.028   -0.069   -0.069
## 108 AEG06 ~~ AEG07  0.331  0.026   0.026    0.051    0.051
## 93  AEG03 ~~ AEG07  0.265 -0.024  -0.024   -0.054   -0.054
## 80  AEG01 ~~ AEG09  0.264 -0.024  -0.024   -0.047   -0.047
## 75  AEG01 ~~ AEG04  0.241  0.023   0.023    0.056    0.056
## 106 AEG05 ~~ AEG09  0.149 -0.018  -0.018   -0.035   -0.035
## 114 AEG07 ~~ AEG10  0.146 -0.018  -0.018   -0.038   -0.038
## 107 AEG05 ~~ AEG10  0.128  0.017   0.017    0.042    0.042
## 116 AEG08 ~~ AEG10  0.123  0.017   0.017    0.044    0.044
## 84  AEG02 ~~ AEG05  0.115 -0.016  -0.016   -0.031   -0.031
## 105 AEG05 ~~ AEG08  0.085 -0.014  -0.014   -0.034   -0.034
## 77  AEG01 ~~ AEG06  0.041 -0.010  -0.010   -0.021   -0.021
## 113 AEG07 ~~ AEG09  0.030  0.008   0.008    0.013    0.013
## 81  AEG01 ~~ AEG10  0.029  0.008   0.008    0.020    0.020
## 76  AEG01 ~~ AEG05  0.027 -0.008  -0.008   -0.018   -0.018
## 99  AEG04 ~~ AEG07  0.025 -0.007  -0.007   -0.015   -0.015
## 83  AEG02 ~~ AEG04  0.017  0.006   0.006    0.013    0.013
## 74  AEG01 ~~ AEG03  0.016 -0.006  -0.006   -0.016   -0.016
## 78  AEG01 ~~ AEG07  0.012 -0.005  -0.005   -0.010   -0.010
## 89  AEG02 ~~ AEG10  0.006  0.004   0.004    0.008    0.008
## 85  AEG02 ~~ AEG06  0.002  0.002   0.002    0.004    0.004
## 112 AEG07 ~~ AEG08  0.002 -0.002  -0.002   -0.004   -0.004

8.2.0.6 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##              AEG
## alpha         NA
## alpha.ord 0.9204
## omega     0.8824
## omega2    0.8824
## omega3    0.8817
## avevar    0.5405

8.3 AEO

model <- 'AEO =~ AEO01 + AEO02 + AEO03 + AEO04 + AEO05 + AEO06'

8.3.0.1 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   13 110 132 133 134 135 241 242 252 253 258 261 262 275 404 417 738 739 749 750 761 780

8.3.0.2 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 12 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        30
##                                                       
##                                                   Used       Total
##   Number of observations                           767         789
##   Number of missing patterns                         1            
##                                                                   
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                52.580     152.110
##   Degrees of freedom                                 9           9
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.348
##   Shift parameter                                            0.826
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3321.827    2868.879
##   Degrees of freedom                                15          15
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.160
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.987       0.950
##   Tucker-Lewis Index (TLI)                       0.978       0.916
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.080       0.144
##   90 Percent confidence interval - lower         0.060       0.124
##   90 Percent confidence interval - upper         0.101       0.165
##   P-value RMSEA <= 0.05                          0.009       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.057       0.057
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEO =~                                                                
##     AEO01             1.000                               0.718    0.718
##     AEO02             1.102    0.041   27.054    0.000    0.792    0.792
##     AEO03             1.107    0.040   27.824    0.000    0.795    0.795
##     AEO04             0.854    0.042   20.153    0.000    0.613    0.613
##     AEO05             0.974    0.040   24.422    0.000    0.700    0.700
##     AEO06             1.049    0.040   26.366    0.000    0.754    0.754
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEO01             0.000                               0.000    0.000
##    .AEO02             0.000                               0.000    0.000
##    .AEO03             0.000                               0.000    0.000
##    .AEO04             0.000                               0.000    0.000
##    .AEO05             0.000                               0.000    0.000
##    .AEO06             0.000                               0.000    0.000
##     AEO               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEO01|t1         -2.091    0.108  -19.369    0.000   -2.091   -2.091
##     AEO01|t2         -1.137    0.058  -19.703    0.000   -1.137   -1.137
##     AEO01|t3         -0.741    0.050  -14.783    0.000   -0.741   -0.741
##     AEO01|t4          0.502    0.047   10.594    0.000    0.502    0.502
##     AEO02|t1         -2.310    0.133  -17.404    0.000   -2.310   -2.310
##     AEO02|t2         -1.408    0.066  -21.320    0.000   -1.408   -1.408
##     AEO02|t3         -0.848    0.052  -16.396    0.000   -0.848   -0.848
##     AEO02|t4          0.540    0.048   11.302    0.000    0.540    0.540
##     AEO03|t1         -2.225    0.122  -18.219    0.000   -2.225   -2.225
##     AEO03|t2         -1.195    0.059  -20.173    0.000   -1.195   -1.195
##     AEO03|t3         -0.605    0.048  -12.498    0.000   -0.605   -0.605
##     AEO03|t4          0.732    0.050   14.646    0.000    0.732    0.732
##     AEO04|t1         -1.881    0.091  -20.762    0.000   -1.881   -1.881
##     AEO04|t2         -1.349    0.064  -21.094    0.000   -1.349   -1.349
##     AEO04|t3         -0.749    0.050  -14.919    0.000   -0.749   -0.749
##     AEO04|t4          0.044    0.045    0.974    0.330    0.044    0.044
##     AEO05|t1         -2.036    0.103  -19.787    0.000   -2.036   -2.036
##     AEO05|t2         -1.302    0.062  -20.863    0.000   -1.302   -1.302
##     AEO05|t3         -0.724    0.050  -14.509    0.000   -0.724   -0.724
##     AEO05|t4          0.521    0.048   10.948    0.000    0.521    0.521
##     AEO06|t1         -2.188    0.118  -18.556    0.000   -2.188   -2.188
##     AEO06|t2         -1.399    0.066  -21.291    0.000   -1.399   -1.399
##     AEO06|t3         -0.926    0.053  -17.435    0.000   -0.926   -0.926
##     AEO06|t4          0.219    0.046    4.796    0.000    0.219    0.219
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEO01             0.484                               0.484    0.484
##    .AEO02             0.373                               0.373    0.373
##    .AEO03             0.368                               0.368    0.368
##    .AEO04             0.624                               0.624    0.624
##    .AEO05             0.510                               0.510    0.510
##    .AEO06             0.432                               0.432    0.432
##     AEO               0.516    0.033   15.616    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEO01             1.000                               1.000    1.000
##     AEO02             1.000                               1.000    1.000
##     AEO03             1.000                               1.000    1.000
##     AEO04             1.000                               1.000    1.000
##     AEO05             1.000                               1.000    1.000
##     AEO06             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     AEO01             0.516
##     AEO02             0.627
##     AEO03             0.632
##     AEO04             0.376
##     AEO05             0.490
##     AEO06             0.568

8.3.0.3 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##               152.110                 9.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.057                 0.950                 0.916 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.144                 0.124                 0.165

8.3.0.4 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##   lhs op   rhs est.std    se     z pvalue ci.lower ci.upper
## 1 AEO =~ AEO01   0.718 0.023 31.23      0    0.673    0.764
## 2 AEO =~ AEO02   0.792 0.019 40.95      0    0.754    0.830
## 3 AEO =~ AEO03   0.795 0.018 44.15      0    0.760    0.830
## 4 AEO =~ AEO04   0.613 0.028 21.76      0    0.558    0.669
## 5 AEO =~ AEO05   0.700 0.023 30.94      0    0.656    0.744
## 6 AEO =~ AEO06   0.754 0.021 35.55      0    0.712    0.795

8.3.0.5 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T)
##      lhs op   rhs     mi    epc sepc.lv sepc.all sepc.nox
## 65 AEO05 ~~ AEO06 25.384  0.234   0.234    0.499    0.499
## 56 AEO02 ~~ AEO03  9.623  0.155   0.155    0.419    0.419
## 59 AEO02 ~~ AEO06  7.941 -0.138  -0.138   -0.343   -0.343
## 51 AEO01 ~~ AEO02  7.679  0.133   0.133    0.312    0.312
## 63 AEO04 ~~ AEO05  7.303  0.118   0.118    0.209    0.209
## 54 AEO01 ~~ AEO05  7.127 -0.122  -0.122   -0.245   -0.245
## 58 AEO02 ~~ AEO05  6.231 -0.118  -0.118   -0.271   -0.271
## 61 AEO03 ~~ AEO05  4.631 -0.102  -0.102   -0.236   -0.236
## 52 AEO01 ~~ AEO03  3.486  0.090   0.090    0.212    0.212
## 60 AEO03 ~~ AEO04  2.791 -0.076  -0.076   -0.159   -0.159
## 62 AEO03 ~~ AEO06  2.182 -0.072  -0.072   -0.181   -0.181
## 55 AEO01 ~~ AEO06  1.692 -0.061  -0.061   -0.133   -0.133
## 53 AEO01 ~~ AEO04  1.141 -0.047  -0.047   -0.085   -0.085
## 64 AEO04 ~~ AEO06  0.988  0.044   0.044    0.085    0.085
## 57 AEO02 ~~ AEO04  0.602 -0.035  -0.035   -0.073   -0.073

8.3.0.6 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##              AEO
## alpha         NA
## alpha.ord 0.8714
## omega     0.8312
## omega2    0.8312
## omega3    0.8304
## avevar    0.5349

8.4 WAMI

model <- 'WAMI =~ WAMI01 + WAMI02 + WAMI03 + WAMI04 + WAMI05 + WAMI06 + WAMI07 + WAMI08 + WAMI09 + WAMI10' 

8.4.0.1 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   12 13 15 16 105 109 110 119 132 133 134 135 241 242 252 253 258 261 262 263 275 282 404 410 413 417 715 733 738 739 744 749 750 751 761 767 778 779 780 781 786

8.4.0.2 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 23 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        50
##                                                       
##                                                   Used       Total
##   Number of observations                           748         789
##   Number of missing patterns                         1            
##                                                                   
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                65.674     528.629
##   Degrees of freedom                                35          35
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.126
##   Shift parameter                                            8.928
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             17411.711   17316.740
##   Degrees of freedom                                45          45
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.007
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998       0.971
##   Tucker-Lewis Index (TLI)                       0.998       0.963
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.034       0.137
##   90 Percent confidence interval - lower         0.021       0.127
##   90 Percent confidence interval - upper         0.047       0.148
##   P-value RMSEA <= 0.05                          0.981       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040       0.040
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   WAMI =~                                                               
##     WAMI01            1.000                               0.875    0.875
##     WAMI02            0.974    0.016   61.902    0.000    0.852    0.852
##     WAMI03           -0.770    0.027  -28.778    0.000   -0.674   -0.674
##     WAMI04            1.016    0.014   72.576    0.000    0.889    0.889
##     WAMI05            1.014    0.014   70.252    0.000    0.887    0.887
##     WAMI06            0.963    0.016   60.277    0.000    0.843    0.843
##     WAMI07            0.925    0.017   53.914    0.000    0.809    0.809
##     WAMI08            1.066    0.013   80.601    0.000    0.933    0.933
##     WAMI09            0.955    0.016   57.910    0.000    0.836    0.836
##     WAMI10            0.980    0.015   65.929    0.000    0.857    0.857
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .WAMI01            0.000                               0.000    0.000
##    .WAMI02            0.000                               0.000    0.000
##    .WAMI03            0.000                               0.000    0.000
##    .WAMI04            0.000                               0.000    0.000
##    .WAMI05            0.000                               0.000    0.000
##    .WAMI06            0.000                               0.000    0.000
##    .WAMI07            0.000                               0.000    0.000
##    .WAMI08            0.000                               0.000    0.000
##    .WAMI09            0.000                               0.000    0.000
##    .WAMI10            0.000                               0.000    0.000
##     WAMI              0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     WAMI01|t1        -1.576    0.074  -21.319    0.000   -1.576   -1.576
##     WAMI01|t2        -1.194    0.060  -19.911    0.000   -1.194   -1.194
##     WAMI01|t3        -0.581    0.049  -11.903    0.000   -0.581   -0.581
##     WAMI01|t4         0.352    0.047    7.511    0.000    0.352    0.352
##     WAMI02|t1        -1.851    0.090  -20.650    0.000   -1.851   -1.851
##     WAMI02|t2        -1.479    0.070  -21.233    0.000   -1.479   -1.479
##     WAMI02|t3        -0.966    0.055  -17.705    0.000   -0.966   -0.966
##     WAMI02|t4         0.000    0.046    0.000    1.000    0.000    0.000
##     WAMI03|t1         0.158    0.046    3.433    0.001    0.158    0.158
##     WAMI03|t2         0.743    0.051   14.642    0.000    0.743    0.743
##     WAMI03|t3         1.311    0.063   20.650    0.000    1.311    1.311
##     WAMI03|t4         1.781    0.085   20.939    0.000    1.781    1.781
##     WAMI04|t1        -1.749    0.083  -21.045    0.000   -1.749   -1.749
##     WAMI04|t2        -1.243    0.061  -20.255    0.000   -1.243   -1.243
##     WAMI04|t3        -0.621    0.049  -12.613    0.000   -0.621   -0.621
##     WAMI04|t4         0.327    0.047    7.003    0.000    0.327    0.327
##     WAMI05|t1        -1.870    0.091  -20.559    0.000   -1.870   -1.870
##     WAMI05|t2        -1.369    0.065  -20.912    0.000   -1.369   -1.369
##     WAMI05|t3        -0.798    0.052  -15.465    0.000   -0.798   -0.798
##     WAMI05|t4         0.168    0.046    3.652    0.000    0.168    0.168
##     WAMI06|t1        -1.749    0.083  -21.045    0.000   -1.749   -1.749
##     WAMI06|t2        -1.369    0.065  -20.912    0.000   -1.369   -1.369
##     WAMI06|t3        -0.683    0.050  -13.669    0.000   -0.683   -0.683
##     WAMI06|t4         0.138    0.046    2.995    0.003    0.138    0.138
##     WAMI07|t1        -1.510    0.071  -21.279    0.000   -1.510   -1.510
##     WAMI07|t2        -1.122    0.058  -19.323    0.000   -1.122   -1.122
##     WAMI07|t3        -0.414    0.047   -8.743    0.000   -0.414   -0.414
##     WAMI07|t4         0.443    0.048    9.321    0.000    0.443    0.443
##     WAMI08|t1        -1.404    0.067  -21.039    0.000   -1.404   -1.404
##     WAMI08|t2        -1.009    0.055  -18.205    0.000   -1.009   -1.009
##     WAMI08|t3        -0.545    0.048  -11.261    0.000   -0.545   -0.545
##     WAMI08|t4         0.392    0.047    8.309    0.000    0.392    0.392
##     WAMI09|t1        -1.637    0.077  -21.283    0.000   -1.637   -1.637
##     WAMI09|t2        -1.173    0.059  -19.756    0.000   -1.173   -1.173
##     WAMI09|t3        -0.621    0.049  -12.613    0.000   -0.621   -0.621
##     WAMI09|t4         0.306    0.047    6.567    0.000    0.306    0.306
##     WAMI10|t1        -1.460    0.069  -21.193    0.000   -1.460   -1.460
##     WAMI10|t2        -1.085    0.057  -18.982    0.000   -1.085   -1.085
##     WAMI10|t3        -0.473    0.048   -9.898    0.000   -0.473   -0.473
##     WAMI10|t4         0.282    0.047    6.058    0.000    0.282    0.282
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .WAMI01            0.234                               0.234    0.234
##    .WAMI02            0.274                               0.274    0.274
##    .WAMI03            0.546                               0.546    0.546
##    .WAMI04            0.210                               0.210    0.210
##    .WAMI05            0.213                               0.213    0.213
##    .WAMI06            0.290                               0.290    0.290
##    .WAMI07            0.345                               0.345    0.345
##    .WAMI08            0.129                               0.129    0.129
##    .WAMI09            0.301                               0.301    0.301
##    .WAMI10            0.265                               0.265    0.265
##     WAMI              0.766    0.019   40.098    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     WAMI01            1.000                               1.000    1.000
##     WAMI02            1.000                               1.000    1.000
##     WAMI03            1.000                               1.000    1.000
##     WAMI04            1.000                               1.000    1.000
##     WAMI05            1.000                               1.000    1.000
##     WAMI06            1.000                               1.000    1.000
##     WAMI07            1.000                               1.000    1.000
##     WAMI08            1.000                               1.000    1.000
##     WAMI09            1.000                               1.000    1.000
##     WAMI10            1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     WAMI01            0.766
##     WAMI02            0.726
##     WAMI03            0.454
##     WAMI04            0.790
##     WAMI05            0.787
##     WAMI06            0.710
##     WAMI07            0.655
##     WAMI08            0.871
##     WAMI09            0.699
##     WAMI10            0.735

8.4.0.3 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##               528.629                35.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.040                 0.971                 0.963 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.137                 0.127                 0.148

8.4.0.4 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##     lhs op    rhs est.std    se      z pvalue ci.lower ci.upper
## 1  WAMI =~ WAMI01   0.875 0.011  80.20      0    0.854    0.896
## 2  WAMI =~ WAMI02   0.852 0.013  63.49      0    0.826    0.879
## 3  WAMI =~ WAMI03  -0.674 0.023 -29.04      0   -0.719   -0.628
## 4  WAMI =~ WAMI04   0.889 0.010  86.12      0    0.869    0.909
## 5  WAMI =~ WAMI05   0.887 0.011  82.78      0    0.866    0.908
## 6  WAMI =~ WAMI06   0.843 0.013  63.71      0    0.817    0.869
## 7  WAMI =~ WAMI07   0.809 0.015  55.74      0    0.781    0.838
## 8  WAMI =~ WAMI08   0.933 0.007 137.14      0    0.920    0.946
## 9  WAMI =~ WAMI09   0.836 0.013  62.31      0    0.810    0.862
## 10 WAMI =~ WAMI10   0.857 0.012  73.24      0    0.834    0.880

8.4.0.5 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T)
##        lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
## 102 WAMI03 ~~ WAMI06 12.497 -0.142  -0.142   -0.358   -0.358
## 123 WAMI07 ~~ WAMI09 12.258  0.144   0.144    0.446    0.446
## 83  WAMI01 ~~ WAMI02  9.615  0.129   0.129    0.511    0.511
## 103 WAMI03 ~~ WAMI07  6.151  0.099   0.099    0.229    0.229
## 121 WAMI06 ~~ WAMI10  4.313  0.086   0.086    0.311    0.311
## 118 WAMI06 ~~ WAMI07  3.685 -0.079  -0.079   -0.250   -0.250
## 107 WAMI04 ~~ WAMI05  3.518  0.079   0.079    0.374    0.374
## 127 WAMI09 ~~ WAMI10  3.115  0.073   0.073    0.259    0.259
## 90  WAMI01 ~~ WAMI09  2.931 -0.071  -0.071   -0.268   -0.268
## 113 WAMI05 ~~ WAMI06  2.485  0.066   0.066    0.265    0.265
## 95  WAMI02 ~~ WAMI06  2.251 -0.062  -0.062   -0.221   -0.221
## 99  WAMI02 ~~ WAMI10  2.006 -0.059  -0.059   -0.218   -0.218
## 89  WAMI01 ~~ WAMI08  1.883  0.058   0.058    0.334    0.334
## 87  WAMI01 ~~ WAMI06  1.773 -0.055  -0.055   -0.213   -0.213
## 94  WAMI02 ~~ WAMI05  1.418 -0.050  -0.050   -0.206   -0.206
## 116 WAMI05 ~~ WAMI09  1.202 -0.046  -0.046   -0.180   -0.180
## 88  WAMI01 ~~ WAMI07  1.178 -0.045  -0.045   -0.158   -0.158
## 91  WAMI01 ~~ WAMI10  1.102 -0.044  -0.044   -0.176   -0.176
## 106 WAMI03 ~~ WAMI10  1.063 -0.042  -0.042   -0.109   -0.109
## 112 WAMI04 ~~ WAMI10  1.006 -0.042  -0.042   -0.178   -0.178
## 105 WAMI03 ~~ WAMI09  0.783  0.036   0.036    0.088    0.088
## 100 WAMI03 ~~ WAMI04  0.778  0.036   0.036    0.106    0.106
## 114 WAMI05 ~~ WAMI07  0.759 -0.036  -0.036   -0.133   -0.133
## 122 WAMI07 ~~ WAMI08  0.727  0.036   0.036    0.169    0.169
## 96  WAMI02 ~~ WAMI07  0.688  0.034   0.034    0.111    0.111
## 109 WAMI04 ~~ WAMI07  0.648  0.033   0.033    0.124    0.124
## 119 WAMI06 ~~ WAMI08  0.634 -0.034  -0.034   -0.173   -0.173
## 120 WAMI06 ~~ WAMI09  0.565 -0.031  -0.031   -0.105   -0.105
## 117 WAMI05 ~~ WAMI10  0.363 -0.025  -0.025   -0.106   -0.106
## 92  WAMI02 ~~ WAMI03  0.298 -0.022  -0.022   -0.057   -0.057
## 104 WAMI03 ~~ WAMI08  0.281  0.022   0.022    0.082    0.082
## 111 WAMI04 ~~ WAMI09  0.241 -0.020  -0.020   -0.081   -0.081
## 86  WAMI01 ~~ WAMI05  0.168  0.017   0.017    0.077    0.077
## 85  WAMI01 ~~ WAMI04  0.157  0.017   0.017    0.075    0.075
## 84  WAMI01 ~~ WAMI03  0.150  0.016   0.016    0.044    0.044
## 126 WAMI08 ~~ WAMI10  0.129 -0.015  -0.015   -0.082   -0.082
## 110 WAMI04 ~~ WAMI08  0.109 -0.014  -0.014   -0.085   -0.085
## 108 WAMI04 ~~ WAMI06  0.082 -0.012  -0.012   -0.048   -0.048
## 93  WAMI02 ~~ WAMI04  0.071 -0.011  -0.011   -0.047   -0.047
## 115 WAMI05 ~~ WAMI08  0.052 -0.010  -0.010   -0.059   -0.059
## 125 WAMI08 ~~ WAMI09  0.025 -0.007  -0.007   -0.034   -0.034
## 124 WAMI07 ~~ WAMI10  0.010 -0.004  -0.004   -0.013   -0.013
## 97  WAMI02 ~~ WAMI08  0.009  0.004   0.004    0.022    0.022
## 98  WAMI02 ~~ WAMI09  0.009 -0.004  -0.004   -0.014   -0.014
## 101 WAMI03 ~~ WAMI05  0.002 -0.002  -0.002   -0.005   -0.005

8.4.0.6 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##             WAMI
## alpha         NA
## alpha.ord 0.9028
## omega     0.9282
## omega2    0.9282
## omega3    0.9274
## avevar    0.7192

8.5 Final Model with suggested error correlated by modificiation indices from previous analysis

model <- '
# Recurso Pessoal - Autoeficácia Criativa (Variavel a ser validada)
AEC =~ AEC04 + AEC01 + AEC02 + AEC03 

# Recurso Pessoal - Autoeficacia Geral (Concorrente)
AEG  =~ AEG01 + AEG02 + AEG03 + AEG04 + AEG05 + AEG06 + AEG07 + AEG08 + AEG09 + AEG10
AEG04   ~~  AEG06

# Recurso Pessoal - Autoeficácia Ocupacional (Concorrente)
AEO =~ AEO01 + AEO02 + AEO03 + AEO04 + AEO05 + AEO06

# Recurso Pessoal - Sentido do Trabalho (Convergente)
WAMI =~ WAMI01 + WAMI02 + WAMI03 + WAMI04 + WAMI05 + WAMI06 + WAMI07 + WAMI08 + WAMI09 + WAMI10

# Desfecho do Trabalho - Indicador de bem-estar no trabalho (Convergente)
Engaj =~ UWES01Vi + UWES02Vi + UWES03De + UWES04.De + UWES05Vi + UWES06Ab + UWES07De + UWES08Ab + UWES09Ab
UWES01Vi    ~~  UWES02Vi

### remove
#Recurso do Trabalho - Motivação Intrinseca no Trabalho (Convergente) - VAI FICAR DE FORA
#MotIntr =~ Flow09MI + Flow10MI + Flow11MI + Flow12MI + Flow13MI
'
8.5.0.0.1 Fitting using standardization from latent insted of indicators
fit <- cfa(model=model, data = data, ordered=T,estimator = "ULSMV",missing="pairwise",std.lv=T)
8.5.0.0.2 General Summary
summary(fit, fit.measures=TRUE, standardized = TRUE)
## lavaan 0.6-8 ended normally after 43 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       223
##                                                       
##   Number of observations                           789
##   Number of missing patterns                         5
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                              1193.504    1352.810
##   Degrees of freedom                               690         690
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  1.271
##   Shift parameter                                          413.844
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                            118211.061   22639.296
##   Degrees of freedom                               741         741
##   P-value                                           NA       0.000
##   Scaling correction factor                                  5.364
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.996       0.970
##   Tucker-Lewis Index (TLI)                       0.995       0.967
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.030       0.035
##   90 Percent confidence interval - lower         0.028       0.032
##   90 Percent confidence interval - upper         0.033       0.038
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.044       0.044
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AEC =~                                                                
##     AEC04             0.966    0.017   55.779    0.000    0.966    0.966
##     AEC01             0.865    0.021   41.574    0.000    0.865    0.865
##     AEC02             0.972    0.020   48.461    0.000    0.972    0.972
##     AEC03             0.749    0.026   28.398    0.000    0.749    0.749
##   AEG =~                                                                
##     AEG01             0.816    0.033   24.877    0.000    0.816    0.816
##     AEG02             0.590    0.036   16.523    0.000    0.590    0.590
##     AEG03             0.795    0.023   33.864    0.000    0.795    0.795
##     AEG04             0.679    0.037   18.221    0.000    0.679    0.679
##     AEG05             0.768    0.031   24.676    0.000    0.768    0.768
##     AEG06             0.648    0.035   18.472    0.000    0.648    0.648
##     AEG07             0.717    0.033   22.030    0.000    0.717    0.717
##     AEG08             0.801    0.025   32.549    0.000    0.801    0.801
##     AEG09             0.689    0.031   22.512    0.000    0.689    0.689
##     AEG10             0.760    0.027   28.574    0.000    0.760    0.760
##   AEO =~                                                                
##     AEO01             0.749    0.025   29.885    0.000    0.749    0.749
##     AEO02             0.814    0.021   39.124    0.000    0.814    0.814
##     AEO03             0.774    0.020   39.274    0.000    0.774    0.774
##     AEO04             0.672    0.029   22.823    0.000    0.672    0.672
##     AEO05             0.661    0.028   23.866    0.000    0.661    0.661
##     AEO06             0.699    0.025   27.890    0.000    0.699    0.699
##   WAMI =~                                                               
##     WAMI01            0.939    0.012   79.117    0.000    0.939    0.939
##     WAMI02            0.865    0.015   56.351    0.000    0.865    0.865
##     WAMI03           -0.631    0.029  -21.533    0.000   -0.631   -0.631
##     WAMI04            0.912    0.012   74.491    0.000    0.912    0.912
##     WAMI05            0.900    0.015   60.739    0.000    0.900    0.900
##     WAMI06            0.805    0.019   43.200    0.000    0.805    0.805
##     WAMI07            0.798    0.018   44.426    0.000    0.798    0.798
##     WAMI08            0.949    0.010   93.562    0.000    0.949    0.949
##     WAMI09            0.805    0.018   44.928    0.000    0.805    0.805
##     WAMI10            0.828    0.017   49.081    0.000    0.828    0.828
##   Engaj =~                                                              
##     UWES01Vi          0.846    0.014   62.292    0.000    0.846    0.846
##     UWES02Vi          0.879    0.012   75.089    0.000    0.879    0.879
##     UWES03De          0.932    0.008  113.835    0.000    0.932    0.932
##     UWES04.De         0.953    0.009  108.837    0.000    0.953    0.953
##     UWES05Vi          0.885    0.012   74.127    0.000    0.885    0.885
##     UWES06Ab          0.819    0.016   51.531    0.000    0.819    0.819
##     UWES07De          0.922    0.011   83.012    0.000    0.922    0.922
##     UWES08Ab          0.933    0.011   88.631    0.000    0.933    0.933
##     UWES09Ab          0.607    0.026   23.491    0.000    0.607    0.607
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .AEG04 ~~                                                              
##    .AEG06             0.309    0.036    8.490    0.000    0.309    0.552
##  .UWES01Vi ~~                                                           
##    .UWES02Vi          0.225    0.019   11.755    0.000    0.225    0.886
##   AEC ~~                                                                
##     AEG               0.586    0.035   16.773    0.000    0.586    0.586
##     AEO               0.447    0.030   15.146    0.000    0.447    0.447
##     WAMI              0.264    0.034    7.783    0.000    0.264    0.264
##     Engaj             0.257    0.034    7.581    0.000    0.257    0.257
##   AEG ~~                                                                
##     AEO               0.854    0.021   40.476    0.000    0.854    0.854
##     WAMI              0.433    0.037   11.634    0.000    0.433    0.433
##     Engaj             0.464    0.035   13.372    0.000    0.464    0.464
##   AEO ~~                                                                
##     WAMI              0.533    0.030   17.588    0.000    0.533    0.533
##     Engaj             0.594    0.027   21.830    0.000    0.594    0.594
##   WAMI ~~                                                               
##     Engaj             0.794    0.014   55.422    0.000    0.794    0.794
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.000                               0.000    0.000
##    .AEC01             0.000                               0.000    0.000
##    .AEC02             0.000                               0.000    0.000
##    .AEC03             0.000                               0.000    0.000
##    .AEG01             0.000                               0.000    0.000
##    .AEG02             0.000                               0.000    0.000
##    .AEG03             0.000                               0.000    0.000
##    .AEG04             0.000                               0.000    0.000
##    .AEG05             0.000                               0.000    0.000
##    .AEG06             0.000                               0.000    0.000
##    .AEG07             0.000                               0.000    0.000
##    .AEG08             0.000                               0.000    0.000
##    .AEG09             0.000                               0.000    0.000
##    .AEG10             0.000                               0.000    0.000
##    .AEO01             0.000                               0.000    0.000
##    .AEO02             0.000                               0.000    0.000
##    .AEO03             0.000                               0.000    0.000
##    .AEO04             0.000                               0.000    0.000
##    .AEO05             0.000                               0.000    0.000
##    .AEO06             0.000                               0.000    0.000
##    .WAMI01            0.000                               0.000    0.000
##    .WAMI02            0.000                               0.000    0.000
##    .WAMI03            0.000                               0.000    0.000
##    .WAMI04            0.000                               0.000    0.000
##    .WAMI05            0.000                               0.000    0.000
##    .WAMI06            0.000                               0.000    0.000
##    .WAMI07            0.000                               0.000    0.000
##    .WAMI08            0.000                               0.000    0.000
##    .WAMI09            0.000                               0.000    0.000
##    .WAMI10            0.000                               0.000    0.000
##    .UWES01Vi          0.000                               0.000    0.000
##    .UWES02Vi          0.000                               0.000    0.000
##    .UWES03De          0.000                               0.000    0.000
##    .UWES04.De         0.000                               0.000    0.000
##    .UWES05Vi          0.000                               0.000    0.000
##    .UWES06Ab          0.000                               0.000    0.000
##    .UWES07De          0.000                               0.000    0.000
##    .UWES08Ab          0.000                               0.000    0.000
##    .UWES09Ab          0.000                               0.000    0.000
##     AEC               0.000                               0.000    0.000
##     AEG               0.000                               0.000    0.000
##     AEO               0.000                               0.000    0.000
##     WAMI              0.000                               0.000    0.000
##     Engaj             0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04|t1         -2.133    0.110  -19.303    0.000   -2.133   -2.133
##     AEC04|t2         -1.415    0.065  -21.645    0.000   -1.415   -1.415
##     AEC04|t3         -0.571    0.047  -12.053    0.000   -0.571   -0.571
##     AEC04|t4          0.403    0.046    8.763    0.000    0.403    0.403
##     AEC04|t5          1.212    0.059   20.586    0.000    1.212    1.212
##     AEC04|t6          1.603    0.073   21.889    0.000    1.603    1.603
##     AEC01|t1         -1.976    0.096  -20.492    0.000   -1.976   -1.976
##     AEC01|t2         -1.349    0.063  -21.393    0.000   -1.349   -1.349
##     AEC01|t3         -0.571    0.047  -12.053    0.000   -0.571   -0.571
##     AEC01|t4          0.462    0.046    9.958    0.000    0.462    0.462
##     AEC01|t5          1.274    0.061   20.998    0.000    1.274    1.274
##     AEC01|t6          1.614    0.074   21.881    0.000    1.614    1.614
##     AEC02|t1         -2.165    0.114  -19.028    0.000   -2.165   -2.165
##     AEC02|t2         -1.441    0.066  -21.722    0.000   -1.441   -1.441
##     AEC02|t3         -0.796    0.050  -15.865    0.000   -0.796   -0.796
##     AEC02|t4          0.322    0.045    7.068    0.000    0.322    0.322
##     AEC02|t5          1.083    0.056   19.479    0.000    1.083    1.083
##     AEC02|t6          1.497    0.069   21.837    0.000    1.497    1.497
##     AEC03|t1         -2.048    0.102  -19.982    0.000   -2.048   -2.048
##     AEC03|t2         -1.318    0.062  -21.244    0.000   -1.318   -1.318
##     AEC03|t3         -0.445    0.046   -9.607    0.000   -0.445   -0.445
##     AEC03|t4          0.469    0.046   10.099    0.000    0.469    0.469
##     AEC03|t5          1.252    0.060   20.866    0.000    1.252    1.252
##     AEC03|t6          1.638    0.075   21.858    0.000    1.638    1.638
##     AEG01|t1         -2.568    0.200  -12.853    0.000   -2.568   -2.568
##     AEG01|t2         -1.780    0.096  -18.538    0.000   -1.780   -1.780
##     AEG01|t3         -0.026    0.052   -0.495    0.620   -0.026   -0.026
##     AEG02|t1         -2.259    0.144  -15.649    0.000   -2.259   -2.259
##     AEG02|t2         -1.213    0.068  -17.747    0.000   -1.213   -1.213
##     AEG02|t3          0.499    0.054    9.204    0.000    0.499    0.499
##     AEG03|t1         -2.080    0.122  -17.009    0.000   -2.080   -2.080
##     AEG03|t2         -1.120    0.066  -17.089    0.000   -1.120   -1.120
##     AEG03|t3          0.470    0.054    8.716    0.000    0.470    0.470
##     AEG04|t1         -2.466    0.179  -13.811    0.000   -2.466   -2.466
##     AEG04|t2         -1.702    0.091  -18.740    0.000   -1.702   -1.702
##     AEG04|t3         -0.060    0.052   -1.156    0.248   -0.060   -0.060
##     AEG05|t1         -1.979    0.112  -17.641    0.000   -1.979   -1.979
##     AEG05|t2         -1.088    0.065  -16.833    0.000   -1.088   -1.088
##     AEG05|t3          0.437    0.054    8.146    0.000    0.437    0.437
##     AEG06|t1         -2.161    0.132  -16.427    0.000   -2.161   -2.161
##     AEG06|t2         -1.370    0.074  -18.516    0.000   -1.370   -1.370
##     AEG06|t3          0.220    0.052    4.208    0.000    0.220    0.220
##     AEG07|t1         -1.633    0.087  -18.842    0.000   -1.633   -1.633
##     AEG07|t2         -0.938    0.061  -15.379    0.000   -0.938   -0.938
##     AEG07|t3          0.381    0.053    7.165    0.000    0.381    0.381
##     AEG08|t1         -2.044    0.119  -17.247    0.000   -2.044   -2.044
##     AEG08|t2         -0.979    0.062  -15.809    0.000   -0.979   -0.979
##     AEG08|t3          0.578    0.055   10.497    0.000    0.578    0.578
##     AEG09|t1         -1.502    0.080  -18.826    0.000   -1.502   -1.502
##     AEG09|t2         -0.504    0.054   -9.285    0.000   -0.504   -0.504
##     AEG09|t3          0.721    0.057   12.645    0.000    0.721    0.721
##     AEG10|t1         -1.823    0.099  -18.388    0.000   -1.823   -1.823
##     AEG10|t2         -0.789    0.058  -13.578    0.000   -0.789   -0.789
##     AEG10|t3          0.710    0.057   12.488    0.000    0.710    0.710
##     AEO01|t1         -2.091    0.108  -19.369    0.000   -2.091   -2.091
##     AEO01|t2         -1.137    0.058  -19.703    0.000   -1.137   -1.137
##     AEO01|t3         -0.741    0.050  -14.783    0.000   -0.741   -0.741
##     AEO01|t4          0.502    0.047   10.594    0.000    0.502    0.502
##     AEO02|t1         -2.310    0.133  -17.404    0.000   -2.310   -2.310
##     AEO02|t2         -1.408    0.066  -21.321    0.000   -1.408   -1.408
##     AEO02|t3         -0.848    0.052  -16.396    0.000   -0.848   -0.848
##     AEO02|t4          0.540    0.048   11.302    0.000    0.540    0.540
##     AEO03|t1         -2.225    0.122  -18.219    0.000   -2.225   -2.225
##     AEO03|t2         -1.195    0.059  -20.174    0.000   -1.195   -1.195
##     AEO03|t3         -0.605    0.048  -12.498    0.000   -0.605   -0.605
##     AEO03|t4          0.732    0.050   14.646    0.000    0.732    0.732
##     AEO04|t1         -1.881    0.091  -20.762    0.000   -1.881   -1.881
##     AEO04|t2         -1.349    0.064  -21.094    0.000   -1.349   -1.349
##     AEO04|t3         -0.749    0.050  -14.919    0.000   -0.749   -0.749
##     AEO04|t4          0.044    0.045    0.974    0.330    0.044    0.044
##     AEO05|t1         -2.036    0.103  -19.787    0.000   -2.036   -2.036
##     AEO05|t2         -1.302    0.062  -20.863    0.000   -1.302   -1.302
##     AEO05|t3         -0.724    0.050  -14.509    0.000   -0.724   -0.724
##     AEO05|t4          0.521    0.048   10.948    0.000    0.521    0.521
##     AEO06|t1         -2.188    0.118  -18.557    0.000   -2.188   -2.188
##     AEO06|t2         -1.399    0.066  -21.292    0.000   -1.399   -1.399
##     AEO06|t3         -0.926    0.053  -17.435    0.000   -0.926   -0.926
##     AEO06|t4          0.219    0.046    4.796    0.000    0.219    0.219
##     WAMI01|t1        -1.576    0.074  -21.319    0.000   -1.576   -1.576
##     WAMI01|t2        -1.194    0.060  -19.912    0.000   -1.194   -1.194
##     WAMI01|t3        -0.581    0.049  -11.903    0.000   -0.581   -0.581
##     WAMI01|t4         0.352    0.047    7.511    0.000    0.352    0.352
##     WAMI02|t1        -1.851    0.090  -20.651    0.000   -1.851   -1.851
##     WAMI02|t2        -1.479    0.070  -21.233    0.000   -1.479   -1.479
##     WAMI02|t3        -0.966    0.055  -17.706    0.000   -0.966   -0.966
##     WAMI02|t4         0.000    0.046    0.000    1.000    0.000    0.000
##     WAMI03|t1         0.158    0.046    3.433    0.001    0.158    0.158
##     WAMI03|t2         0.743    0.051   14.643    0.000    0.743    0.743
##     WAMI03|t3         1.311    0.063   20.651    0.000    1.311    1.311
##     WAMI03|t4         1.781    0.085   20.940    0.000    1.781    1.781
##     WAMI04|t1        -1.749    0.083  -21.046    0.000   -1.749   -1.749
##     WAMI04|t2        -1.243    0.061  -20.255    0.000   -1.243   -1.243
##     WAMI04|t3        -0.621    0.049  -12.613    0.000   -0.621   -0.621
##     WAMI04|t4         0.327    0.047    7.003    0.000    0.327    0.327
##     WAMI05|t1        -1.870    0.091  -20.559    0.000   -1.870   -1.870
##     WAMI05|t2        -1.369    0.065  -20.913    0.000   -1.369   -1.369
##     WAMI05|t3        -0.798    0.052  -15.465    0.000   -0.798   -0.798
##     WAMI05|t4         0.168    0.046    3.652    0.000    0.168    0.168
##     WAMI06|t1        -1.749    0.083  -21.046    0.000   -1.749   -1.749
##     WAMI06|t2        -1.369    0.065  -20.913    0.000   -1.369   -1.369
##     WAMI06|t3        -0.683    0.050  -13.669    0.000   -0.683   -0.683
##     WAMI06|t4         0.138    0.046    2.995    0.003    0.138    0.138
##     WAMI07|t1        -1.510    0.071  -21.280    0.000   -1.510   -1.510
##     WAMI07|t2        -1.122    0.058  -19.324    0.000   -1.122   -1.122
##     WAMI07|t3        -0.414    0.047   -8.743    0.000   -0.414   -0.414
##     WAMI07|t4         0.443    0.048    9.321    0.000    0.443    0.443
##     WAMI08|t1        -1.404    0.067  -21.040    0.000   -1.404   -1.404
##     WAMI08|t2        -1.009    0.055  -18.205    0.000   -1.009   -1.009
##     WAMI08|t3        -0.545    0.048  -11.261    0.000   -0.545   -0.545
##     WAMI08|t4         0.392    0.047    8.309    0.000    0.392    0.392
##     WAMI09|t1        -1.637    0.077  -21.284    0.000   -1.637   -1.637
##     WAMI09|t2        -1.173    0.059  -19.757    0.000   -1.173   -1.173
##     WAMI09|t3        -0.621    0.049  -12.613    0.000   -0.621   -0.621
##     WAMI09|t4         0.306    0.047    6.567    0.000    0.306    0.306
##     WAMI10|t1        -1.460    0.069  -21.194    0.000   -1.460   -1.460
##     WAMI10|t2        -1.085    0.057  -18.982    0.000   -1.085   -1.085
##     WAMI10|t3        -0.473    0.048   -9.898    0.000   -0.473   -0.473
##     WAMI10|t4         0.282    0.047    6.058    0.000    0.282    0.282
##     UWES01Vi|t1      -1.817    0.087  -20.843    0.000   -1.817   -1.817
##     UWES01Vi|t2      -1.313    0.063  -20.704    0.000   -1.313   -1.313
##     UWES01Vi|t3      -0.867    0.053  -16.479    0.000   -0.867   -0.867
##     UWES01Vi|t4      -0.428    0.047   -9.051    0.000   -0.428   -0.428
##     UWES01Vi|t5      -0.022    0.046   -0.474    0.635   -0.022   -0.022
##     UWES01Vi|t6       1.217    0.060   20.119    0.000    1.217    1.217
##     UWES02Vi|t1      -1.853    0.090  -20.684    0.000   -1.853   -1.853
##     UWES02Vi|t2      -1.305    0.063  -20.663    0.000   -1.305   -1.305
##     UWES02Vi|t3      -0.876    0.053  -16.611    0.000   -0.876   -0.876
##     UWES02Vi|t4      -0.410    0.047   -8.690    0.000   -0.410   -0.410
##     UWES02Vi|t5      -0.015    0.046   -0.328    0.743   -0.015   -0.015
##     UWES02Vi|t6       1.224    0.061   20.168    0.000    1.224    1.224
##     UWES03De|t1      -1.652    0.078  -21.308    0.000   -1.652   -1.652
##     UWES03De|t2      -1.137    0.058  -19.494    0.000   -1.137   -1.137
##     UWES03De|t3      -0.760    0.051  -14.926    0.000   -0.760   -0.760
##     UWES03De|t4      -0.381    0.047   -8.112    0.000   -0.381   -0.381
##     UWES03De|t5      -0.018    0.046   -0.401    0.688   -0.018   -0.018
##     UWES03De|t6       0.947    0.054   17.520    0.000    0.947    0.947
##     UWES04.De|t1     -1.567    0.073  -21.362    0.000   -1.567   -1.567
##     UWES04.De|t2     -1.130    0.058  -19.439    0.000   -1.130   -1.130
##     UWES04.De|t3     -0.778    0.051  -15.200    0.000   -0.778   -0.778
##     UWES04.De|t4     -0.447    0.047   -9.411    0.000   -0.447   -0.447
##     UWES04.De|t5     -0.062    0.046   -1.349    0.177   -0.062   -0.062
##     UWES04.De|t6      0.751    0.051   14.788    0.000    0.751    0.751
##     UWES05Vi|t1      -1.275    0.062  -20.493    0.000   -1.275   -1.275
##     UWES05Vi|t2      -0.819    0.052  -15.810    0.000   -0.819   -0.819
##     UWES05Vi|t3      -0.553    0.048  -11.418    0.000   -0.553   -0.553
##     UWES05Vi|t4      -0.265    0.046   -5.719    0.000   -0.265   -0.265
##     UWES05Vi|t5       0.089    0.046    1.933    0.053    0.089    0.089
##     UWES05Vi|t6       0.995    0.055   18.086    0.000    0.995    0.995
##     UWES06Ab|t1      -1.406    0.067  -21.089    0.000   -1.406   -1.406
##     UWES06Ab|t2      -1.081    0.057  -18.987    0.000   -1.081   -1.081
##     UWES06Ab|t3      -0.787    0.051  -15.336    0.000   -0.787   -0.787
##     UWES06Ab|t4      -0.392    0.047   -8.329    0.000   -0.392   -0.392
##     UWES06Ab|t5      -0.015    0.046   -0.328    0.743   -0.015   -0.015
##     UWES06Ab|t6       0.787    0.051   15.336    0.000    0.787    0.787
##     UWES07De|t1      -1.652    0.078  -21.308    0.000   -1.652   -1.652
##     UWES07De|t2      -1.329    0.064  -20.783    0.000   -1.329   -1.329
##     UWES07De|t3      -0.952    0.054  -17.583    0.000   -0.952   -0.952
##     UWES07De|t4      -0.620    0.049  -12.625    0.000   -0.620   -0.620
##     UWES07De|t5      -0.244    0.046   -5.283    0.000   -0.244   -0.244
##     UWES07De|t6       0.461    0.048    9.699    0.000    0.461    0.461
##     UWES08Ab|t1      -1.736    0.082  -21.128    0.000   -1.736   -1.736
##     UWES08Ab|t2      -1.397    0.066  -21.060    0.000   -1.397   -1.397
##     UWES08Ab|t3      -1.029    0.056  -18.453    0.000   -1.029   -1.029
##     UWES08Ab|t4      -0.738    0.051  -14.582    0.000   -0.738   -0.738
##     UWES08Ab|t5      -0.335    0.047   -7.171    0.000   -0.335   -0.335
##     UWES08Ab|t6       0.356    0.047    7.605    0.000    0.356    0.356
##     UWES09Ab|t1      -1.481    0.070  -21.280    0.000   -1.481   -1.481
##     UWES09Ab|t2      -1.034    0.056  -18.513    0.000   -1.034   -1.034
##     UWES09Ab|t3      -0.690    0.050  -13.818    0.000   -0.690   -0.690
##     UWES09Ab|t4      -0.324    0.047   -6.953    0.000   -0.324   -0.324
##     UWES09Ab|t5       0.075    0.046    1.641    0.101    0.075    0.075
##     UWES09Ab|t6       0.916    0.053   17.134    0.000    0.916    0.916
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AEC04             0.067                               0.067    0.067
##    .AEC01             0.252                               0.252    0.252
##    .AEC02             0.055                               0.055    0.055
##    .AEC03             0.439                               0.439    0.439
##    .AEG01             0.333                               0.333    0.333
##    .AEG02             0.652                               0.652    0.652
##    .AEG03             0.368                               0.368    0.368
##    .AEG04             0.539                               0.539    0.539
##    .AEG05             0.411                               0.411    0.411
##    .AEG06             0.581                               0.581    0.581
##    .AEG07             0.486                               0.486    0.486
##    .AEG08             0.358                               0.358    0.358
##    .AEG09             0.525                               0.525    0.525
##    .AEG10             0.422                               0.422    0.422
##    .AEO01             0.439                               0.439    0.439
##    .AEO02             0.337                               0.337    0.337
##    .AEO03             0.401                               0.401    0.401
##    .AEO04             0.549                               0.549    0.549
##    .AEO05             0.564                               0.564    0.564
##    .AEO06             0.511                               0.511    0.511
##    .WAMI01            0.118                               0.118    0.118
##    .WAMI02            0.252                               0.252    0.252
##    .WAMI03            0.601                               0.601    0.601
##    .WAMI04            0.168                               0.168    0.168
##    .WAMI05            0.190                               0.190    0.190
##    .WAMI06            0.353                               0.353    0.353
##    .WAMI07            0.363                               0.363    0.363
##    .WAMI08            0.099                               0.099    0.099
##    .WAMI09            0.352                               0.352    0.352
##    .WAMI10            0.314                               0.314    0.314
##    .UWES01Vi          0.285                               0.285    0.285
##    .UWES02Vi          0.227                               0.227    0.227
##    .UWES03De          0.131                               0.131    0.131
##    .UWES04.De         0.092                               0.092    0.092
##    .UWES05Vi          0.216                               0.216    0.216
##    .UWES06Ab          0.330                               0.330    0.330
##    .UWES07De          0.149                               0.149    0.149
##    .UWES08Ab          0.129                               0.129    0.129
##    .UWES09Ab          0.632                               0.632    0.632
##     AEC               1.000                               1.000    1.000
##     AEG               1.000                               1.000    1.000
##     AEO               1.000                               1.000    1.000
##     WAMI              1.000                               1.000    1.000
##     Engaj             1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AEC04             1.000                               1.000    1.000
##     AEC01             1.000                               1.000    1.000
##     AEC02             1.000                               1.000    1.000
##     AEC03             1.000                               1.000    1.000
##     AEG01             1.000                               1.000    1.000
##     AEG02             1.000                               1.000    1.000
##     AEG03             1.000                               1.000    1.000
##     AEG04             1.000                               1.000    1.000
##     AEG05             1.000                               1.000    1.000
##     AEG06             1.000                               1.000    1.000
##     AEG07             1.000                               1.000    1.000
##     AEG08             1.000                               1.000    1.000
##     AEG09             1.000                               1.000    1.000
##     AEG10             1.000                               1.000    1.000
##     AEO01             1.000                               1.000    1.000
##     AEO02             1.000                               1.000    1.000
##     AEO03             1.000                               1.000    1.000
##     AEO04             1.000                               1.000    1.000
##     AEO05             1.000                               1.000    1.000
##     AEO06             1.000                               1.000    1.000
##     WAMI01            1.000                               1.000    1.000
##     WAMI02            1.000                               1.000    1.000
##     WAMI03            1.000                               1.000    1.000
##     WAMI04            1.000                               1.000    1.000
##     WAMI05            1.000                               1.000    1.000
##     WAMI06            1.000                               1.000    1.000
##     WAMI07            1.000                               1.000    1.000
##     WAMI08            1.000                               1.000    1.000
##     WAMI09            1.000                               1.000    1.000
##     WAMI10            1.000                               1.000    1.000
##     UWES01Vi          1.000                               1.000    1.000
##     UWES02Vi          1.000                               1.000    1.000
##     UWES03De          1.000                               1.000    1.000
##     UWES04.De         1.000                               1.000    1.000
##     UWES05Vi          1.000                               1.000    1.000
##     UWES06Ab          1.000                               1.000    1.000
##     UWES07De          1.000                               1.000    1.000
##     UWES08Ab          1.000                               1.000    1.000
##     UWES09Ab          1.000                               1.000    1.000

8.5.0.1 Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled                pvalue 
##              1352.810               690.000                    NA 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.044                 0.970                 0.967 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.035                 0.032                 0.038

8.5.0.2 Factor Loadings - Standardized

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##      lhs op       rhs est.std    se      z pvalue ci.lower ci.upper
## 1    AEC =~     AEC04   0.966 0.017  55.78      0    0.932    1.000
## 2    AEC =~     AEC01   0.865 0.021  41.57      0    0.824    0.906
## 3    AEC =~     AEC02   0.972 0.020  48.46      0    0.933    1.012
## 4    AEC =~     AEC03   0.749 0.026  28.40      0    0.697    0.801
## 5    AEG =~     AEG01   0.816 0.033  24.88      0    0.752    0.881
## 6    AEG =~     AEG02   0.590 0.036  16.52      0    0.520    0.660
## 7    AEG =~     AEG03   0.795 0.023  33.86      0    0.749    0.841
## 8    AEG =~     AEG04   0.679 0.037  18.22      0    0.606    0.752
## 9    AEG =~     AEG05   0.768 0.031  24.68      0    0.707    0.829
## 10   AEG =~     AEG06   0.648 0.035  18.47      0    0.579    0.716
## 11   AEG =~     AEG07   0.717 0.033  22.03      0    0.653    0.781
## 12   AEG =~     AEG08   0.801 0.025  32.55      0    0.753    0.849
## 13   AEG =~     AEG09   0.689 0.031  22.51      0    0.629    0.749
## 14   AEG =~     AEG10   0.760 0.027  28.57      0    0.708    0.812
## 16   AEO =~     AEO01   0.749 0.025  29.89      0    0.700    0.798
## 17   AEO =~     AEO02   0.814 0.021  39.12      0    0.773    0.855
## 18   AEO =~     AEO03   0.774 0.020  39.27      0    0.735    0.812
## 19   AEO =~     AEO04   0.672 0.029  22.82      0    0.614    0.730
## 20   AEO =~     AEO05   0.661 0.028  23.87      0    0.606    0.715
## 21   AEO =~     AEO06   0.699 0.025  27.89      0    0.650    0.749
## 22  WAMI =~    WAMI01   0.939 0.012  79.12      0    0.916    0.962
## 23  WAMI =~    WAMI02   0.865 0.015  56.35      0    0.835    0.895
## 24  WAMI =~    WAMI03  -0.631 0.029 -21.53      0   -0.689   -0.574
## 25  WAMI =~    WAMI04   0.912 0.012  74.49      0    0.888    0.936
## 26  WAMI =~    WAMI05   0.900 0.015  60.74      0    0.871    0.929
## 27  WAMI =~    WAMI06   0.805 0.019  43.20      0    0.768    0.841
## 28  WAMI =~    WAMI07   0.798 0.018  44.43      0    0.763    0.833
## 29  WAMI =~    WAMI08   0.949 0.010  93.56      0    0.929    0.969
## 30  WAMI =~    WAMI09   0.805 0.018  44.93      0    0.770    0.840
## 31  WAMI =~    WAMI10   0.828 0.017  49.08      0    0.795    0.861
## 32 Engaj =~  UWES01Vi   0.846 0.014  62.29      0    0.819    0.872
## 33 Engaj =~  UWES02Vi   0.879 0.012  75.09      0    0.856    0.902
## 34 Engaj =~  UWES03De   0.932 0.008 113.83      0    0.916    0.948
## 35 Engaj =~ UWES04.De   0.953 0.009 108.84      0    0.936    0.970
## 36 Engaj =~  UWES05Vi   0.885 0.012  74.13      0    0.862    0.909
## 37 Engaj =~  UWES06Ab   0.819 0.016  51.53      0    0.788    0.850
## 38 Engaj =~  UWES07De   0.922 0.011  83.01      0    0.901    0.944
## 39 Engaj =~  UWES08Ab   0.933 0.011  88.63      0    0.912    0.954
## 40 Engaj =~  UWES09Ab   0.607 0.026  23.49      0    0.556    0.658

8.5.0.3 Covariances Standardized Correlations

parameters<-lavaan::standardizedSolution(fit)
corr<-parameters[parameters$op=="~~",]
corr
##           lhs op       rhs est.std    se      z pvalue ci.lower ci.upper
## 15      AEG04 ~~     AEG06   0.552 0.040 13.710  0.000    0.473    0.631
## 41   UWES01Vi ~~  UWES02Vi   0.886 0.012 75.913  0.000    0.863    0.909
## 214     AEC04 ~~     AEC04   0.067 0.033  2.008  0.045    0.002    0.133
## 215     AEC01 ~~     AEC01   0.252 0.036  7.011  0.000    0.182    0.323
## 216     AEC02 ~~     AEC02   0.055 0.039  1.403  0.161   -0.022    0.131
## 217     AEC03 ~~     AEC03   0.439 0.039 11.118  0.000    0.362    0.517
## 218     AEG01 ~~     AEG01   0.333 0.054  6.220  0.000    0.228    0.438
## 219     AEG02 ~~     AEG02   0.652 0.042 15.495  0.000    0.570    0.735
## 220     AEG03 ~~     AEG03   0.368 0.037  9.878  0.000    0.295    0.442
## 221     AEG04 ~~     AEG04   0.539 0.051 10.668  0.000    0.440    0.638
## 222     AEG05 ~~     AEG05   0.411 0.048  8.595  0.000    0.317    0.504
## 223     AEG06 ~~     AEG06   0.581 0.045 12.786  0.000    0.492    0.670
## 224     AEG07 ~~     AEG07   0.486 0.047 10.415  0.000    0.395    0.577
## 225     AEG08 ~~     AEG08   0.358 0.039  9.081  0.000    0.281    0.435
## 226     AEG09 ~~     AEG09   0.525 0.042 12.451  0.000    0.443    0.608
## 227     AEG10 ~~     AEG10   0.422 0.040 10.435  0.000    0.343    0.501
## 228     AEO01 ~~     AEO01   0.439 0.038 11.679  0.000    0.365    0.512
## 229     AEO02 ~~     AEO02   0.337 0.034  9.945  0.000    0.271    0.403
## 230     AEO03 ~~     AEO03   0.401 0.030 13.170  0.000    0.342    0.461
## 231     AEO04 ~~     AEO04   0.549 0.040 13.867  0.000    0.471    0.626
## 232     AEO05 ~~     AEO05   0.564 0.037 15.405  0.000    0.492    0.635
## 233     AEO06 ~~     AEO06   0.511 0.035 14.562  0.000    0.442    0.580
## 234    WAMI01 ~~    WAMI01   0.118 0.022  5.296  0.000    0.074    0.162
## 235    WAMI02 ~~    WAMI02   0.252 0.027  9.492  0.000    0.200    0.304
## 236    WAMI03 ~~    WAMI03   0.601 0.037 16.243  0.000    0.529    0.674
## 237    WAMI04 ~~    WAMI04   0.168 0.022  7.505  0.000    0.124    0.212
## 238    WAMI05 ~~    WAMI05   0.190 0.027  7.127  0.000    0.138    0.242
## 239    WAMI06 ~~    WAMI06   0.353 0.030 11.761  0.000    0.294    0.411
## 240    WAMI07 ~~    WAMI07   0.363 0.029 12.658  0.000    0.307    0.419
## 241    WAMI08 ~~    WAMI08   0.099 0.019  5.137  0.000    0.061    0.137
## 242    WAMI09 ~~    WAMI09   0.352 0.029 12.212  0.000    0.296    0.409
## 243    WAMI10 ~~    WAMI10   0.314 0.028 11.233  0.000    0.259    0.369
## 244  UWES01Vi ~~  UWES01Vi   0.285 0.023 12.401  0.000    0.240    0.330
## 245  UWES02Vi ~~  UWES02Vi   0.227 0.021 11.026  0.000    0.187    0.267
## 246  UWES03De ~~  UWES03De   0.131 0.015  8.563  0.000    0.101    0.161
## 247 UWES04.De ~~ UWES04.De   0.092 0.017  5.491  0.000    0.059    0.124
## 248  UWES05Vi ~~  UWES05Vi   0.216 0.021 10.207  0.000    0.174    0.257
## 249  UWES06Ab ~~  UWES06Ab   0.330 0.026 12.662  0.000    0.278    0.381
## 250  UWES07De ~~  UWES07De   0.149 0.021  7.274  0.000    0.109    0.189
## 251  UWES08Ab ~~  UWES08Ab   0.129 0.020  6.591  0.000    0.091    0.168
## 252  UWES09Ab ~~  UWES09Ab   0.632 0.031 20.132  0.000    0.570    0.693
## 253       AEC ~~       AEC   1.000 0.000     NA     NA    1.000    1.000
## 254       AEG ~~       AEG   1.000 0.000     NA     NA    1.000    1.000
## 255       AEO ~~       AEO   1.000 0.000     NA     NA    1.000    1.000
## 256      WAMI ~~      WAMI   1.000 0.000     NA     NA    1.000    1.000
## 257     Engaj ~~     Engaj   1.000 0.000     NA     NA    1.000    1.000
## 258       AEC ~~       AEG   0.586 0.035 16.773  0.000    0.518    0.655
## 259       AEC ~~       AEO   0.447 0.030 15.146  0.000    0.389    0.505
## 260       AEC ~~      WAMI   0.264 0.034  7.783  0.000    0.197    0.330
## 261       AEC ~~     Engaj   0.257 0.034  7.581  0.000    0.190    0.323
## 262       AEG ~~       AEO   0.854 0.021 40.476  0.000    0.812    0.895
## 263       AEG ~~      WAMI   0.433 0.037 11.634  0.000    0.360    0.506
## 264       AEG ~~     Engaj   0.464 0.035 13.372  0.000    0.396    0.532
## 265       AEO ~~      WAMI   0.533 0.030 17.588  0.000    0.473    0.592
## 266       AEO ~~     Engaj   0.594 0.027 21.830  0.000    0.541    0.647
## 267      WAMI ~~     Engaj   0.794 0.014 55.422  0.000    0.766    0.822

8.5.0.4 Modification Indices

modificationindices(fit, sort.=T)
##            lhs op       rhs     mi    epc sepc.lv sepc.all sepc.nox
## 452       WAMI =~     AEG01 84.739  0.158   0.158    0.158    0.158
## 481      Engaj =~     AEG01 81.596  0.161   0.161    0.161    0.161
## 465       WAMI =~     AEO04 65.004  0.169   0.169    0.169    0.169
## 497      Engaj =~    WAMI01 51.262  0.371   0.371    0.371    0.371
## 897      AEG09 ~~     AEO01 50.759  0.264   0.264    0.550    0.550
## 425        AEO =~     AEG07 49.709  0.416   0.416    0.416    0.416
## 419        AEO =~     AEG01 48.178  0.421   0.421    0.421    0.421
## 494      Engaj =~     AEO04 44.992  0.151   0.151    0.151    0.151
## 458       WAMI =~     AEG07 42.445  0.109   0.109    0.109    0.109
## 420        AEO =~     AEG02 38.974 -0.359  -0.359   -0.359   -0.359
## 1037     AEO05 ~~     AEO06 37.820  0.232   0.232    0.432    0.432
## 482      Engaj =~     AEG02 37.564 -0.104  -0.104   -0.104   -0.104
## 453       WAMI =~     AEG02 36.096 -0.099  -0.099   -0.099   -0.099
## 487      Engaj =~     AEG07 35.412  0.104   0.104    0.104    0.104
## 486      Engaj =~     AEG06 31.570 -0.097  -0.097   -0.097   -0.097
## 457       WAMI =~     AEG06 30.941 -0.093  -0.093   -0.093   -0.093
## 1113    WAMI03 ~~    WAMI06 26.906 -0.193  -0.193   -0.419   -0.419
## 362        AEC =~     AEO02 25.262  0.148   0.148    0.148    0.148
## 427        AEO =~     AEG09 24.704  0.292   0.292    0.292    0.292
## 393        AEG =~     AEO04 22.621 -0.290  -0.290   -0.290   -0.290
## 391        AEG =~     AEO02 20.910  0.292   0.292    0.292    0.292
## 502      Engaj =~    WAMI06 20.725 -0.228  -0.228   -0.228   -0.228
## 1170    WAMI07 ~~    WAMI09 19.268  0.165   0.165    0.462    0.462
## 365        AEC =~     AEO05 18.464 -0.121  -0.121   -0.121   -0.121
## 461       WAMI =~     AEG10 18.186 -0.072  -0.072   -0.072   -0.072
## 471       WAMI =~ UWES04.De 17.046  0.216   0.216    0.216    0.216
## 490      Engaj =~     AEG10 15.796 -0.070  -0.070   -0.070   -0.070
## 455       WAMI =~     AEG04 15.735 -0.067  -0.067   -0.067   -0.067
## 499      Engaj =~    WAMI03 14.845  0.186   0.186    0.186    0.186
## 422        AEO =~     AEG04 14.675 -0.227  -0.227   -0.227   -0.227
## 489      Engaj =~     AEG09 14.547  0.066   0.066    0.066    0.066
## 752      AEG04 ~~     AEG05 14.283  0.142   0.142    0.302    0.302
## 424        AEO =~     AEG06 13.657 -0.217  -0.217   -0.217   -0.217
## 484      Engaj =~     AEG04 13.515 -0.064  -0.064   -0.064   -0.064
## 693      AEG02 ~~     AEG09 13.439 -0.136  -0.136   -0.232   -0.232
## 1159    WAMI06 ~~    WAMI10 13.307  0.137   0.137    0.413    0.413
## 463       WAMI =~     AEO02 11.355 -0.074  -0.074   -0.074   -0.074
## 505      Engaj =~    WAMI09 11.331 -0.168  -0.168   -0.168   -0.168
## 474       WAMI =~  UWES07De 11.313  0.174   0.174    0.174    0.174
## 355        AEC =~     AEG05 10.737  0.110   0.110    0.110    0.110
## 782      AEG05 ~~     AEG06 10.593  0.122   0.122    0.250    0.250
## 492      Engaj =~     AEO02 10.572 -0.077  -0.077   -0.077   -0.077
## 783      AEG05 ~~     AEG07 10.545 -0.122  -0.122   -0.274   -0.274
## 1192    WAMI09 ~~    WAMI10 10.063  0.120   0.120    0.359    0.359
## 450       WAMI =~     AEC02 10.058  0.053   0.053    0.053    0.053
## 428        AEO =~     AEG10  9.927 -0.188  -0.188   -0.188   -0.188
## 442        AEO =~ UWES04.De  9.851 -0.075  -0.075   -0.075   -0.075
## 378        AEC =~  UWES02Vi  9.785  0.063   0.063    0.063    0.063
## 1088    WAMI01 ~~ UWES04.De  9.453  0.115   0.115    1.108    1.108
## 930      AEG10 ~~    WAMI03  9.447  0.111   0.111    0.219    0.219
## 440        AEO =~  UWES02Vi  9.404  0.073   0.073    0.073    0.073
## 658      AEG01 ~~     AEG07  9.305 -0.115  -0.115   -0.287   -0.287
## 409        AEG =~ UWES04.De  9.167 -0.059  -0.059   -0.059   -0.059
## 896      AEG09 ~~     AEG10  9.020  0.113   0.113    0.240    0.240
## 460       WAMI =~     AEG09  8.950  0.050   0.050    0.050    0.050
## 521      AEC04 ~~     AEO02  8.783  0.111   0.111    0.737    0.737
## 407        AEG =~  UWES02Vi  8.734  0.057   0.057    0.057    0.057
## 394        AEG =~     AEO05  8.724 -0.179  -0.179   -0.179   -0.179
## 814      AEG06 ~~     AEG09  8.609 -0.109  -0.109   -0.198   -0.198
## 660      AEG01 ~~     AEG09  8.573 -0.111  -0.111   -0.264   -0.264
## 479      Engaj =~     AEC02  8.530  0.049   0.049    0.049    0.049
## 688      AEG02 ~~     AEG04  8.520  0.108   0.108    0.182    0.182
## 506      Engaj =~    WAMI10  8.505 -0.147  -0.147   -0.147   -0.147
## 724      AEG03 ~~     AEG08  8.441  0.111   0.111    0.305    0.305
## 1211  UWES01Vi ~~  UWES03De  8.420  0.111   0.111    0.576    0.576
## 1242  UWES06Ab ~~  UWES09Ab  8.316  0.107   0.107    0.235    0.235
## 687      AEG02 ~~     AEG03  8.271  0.108   0.108    0.219    0.219
## 359        AEC =~     AEG09  8.219 -0.095  -0.095   -0.095   -0.095
## 682      AEG01 ~~  UWES05Vi  8.025  0.103   0.103    0.383    0.383
## 949      AEO01 ~~     AEO04  7.981 -0.107  -0.107   -0.219   -0.219
## 357        AEC =~     AEG07  7.755 -0.092  -0.092   -0.092   -0.092
## 790      AEG05 ~~     AEO04  7.674 -0.103  -0.103   -0.216   -0.216
## 668      AEG01 ~~    WAMI01  7.669  0.101   0.101    0.507    0.507
## 1092    WAMI01 ~~  UWES08Ab  7.630  0.103   0.103    0.837    0.837
## 1091    WAMI01 ~~  UWES07De  7.593  0.103   0.103    0.777    0.777
## 431        AEO =~    WAMI03  7.576  0.058   0.058    0.058    0.058
## 925      AEG10 ~~     AEO04  7.317 -0.100  -0.100   -0.208   -0.208
## 1164    WAMI06 ~~  UWES05Vi  7.315 -0.100  -0.100   -0.363   -0.363
## 836      AEG06 ~~  UWES05Vi  7.310 -0.098  -0.098   -0.276   -0.276
## 1019     AEO04 ~~    WAMI02  7.267  0.098   0.098    0.263    0.263
## 380        AEC =~ UWES04.De  7.217 -0.054  -0.054   -0.054   -0.054
## 383        AEC =~  UWES07De  7.010  0.053   0.053    0.053    0.053
## 1161    WAMI06 ~~  UWES02Vi  6.971 -0.098  -0.098   -0.346   -0.346
## 414        AEG =~  UWES09Ab  6.919 -0.048  -0.048   -0.048   -0.048
## 1218  UWES02Vi ~~  UWES03De  6.915  0.101   0.101    0.586    0.586
## 1105    WAMI02 ~~ UWES04.De  6.908  0.098   0.098    0.645    0.645
## 369        AEC =~    WAMI03  6.869  0.050   0.050    0.050    0.050
## 1024     AEO04 ~~    WAMI07  6.782  0.094   0.094    0.212    0.212
## 690      AEG02 ~~     AEG06  6.764  0.096   0.096    0.156    0.156
## 1117    WAMI03 ~~    WAMI10  6.746 -0.097  -0.097   -0.223   -0.223
## 848      AEG07 ~~     AEO05  6.532  0.094   0.094    0.180    0.180
## 855      AEG07 ~~    WAMI06  6.529  0.092   0.092    0.223    0.223
## 708      AEG02 ~~    WAMI08  6.509 -0.092  -0.092   -0.363   -0.363
## 433        AEO =~    WAMI05  6.496  0.056   0.056    0.056    0.056
## 447        AEO =~  UWES09Ab  6.479 -0.058  -0.058   -0.058   -0.058
## 972      AEO02 ~~     AEO04  6.401 -0.097  -0.097   -0.226   -0.226
## 1160    WAMI06 ~~  UWES01Vi  6.383 -0.093  -0.093   -0.295   -0.295
## 852      AEG07 ~~    WAMI03  6.346 -0.091  -0.091   -0.167   -0.167
## 667      AEG01 ~~     AEO06  6.164 -0.092  -0.092   -0.224   -0.224
## 971      AEO02 ~~     AEO03  6.078  0.096   0.096    0.261    0.261
## 659      AEG01 ~~     AEG08  5.975 -0.093  -0.093   -0.270   -0.270
## 711      AEG02 ~~  UWES01Vi  5.966 -0.088  -0.088   -0.204   -0.204
## 900      AEG09 ~~     AEO04  5.923 -0.090  -0.090   -0.167   -0.167
## 475       WAMI =~  UWES08Ab  5.866  0.126   0.126    0.126    0.126
## 483      Engaj =~     AEG03  5.812 -0.043  -0.043   -0.043   -0.043
## 397        AEG =~    WAMI02  5.783 -0.044  -0.044   -0.044   -0.044
## 994      AEO03 ~~     AEO04  5.783 -0.092  -0.092   -0.195   -0.195
## 714      AEG02 ~~ UWES04.De  5.747 -0.087  -0.087   -0.355   -0.355
## 379        AEC =~  UWES03De  5.721 -0.048  -0.048   -0.048   -0.048
## 1025     AEO04 ~~    WAMI08  5.702  0.087   0.087    0.374    0.374
## 1083    WAMI01 ~~    WAMI09  5.693 -0.091  -0.091   -0.445   -0.445
## 469       WAMI =~  UWES02Vi  5.626 -0.124  -0.124   -0.124   -0.124
## 417        AEO =~     AEC02  5.589  0.067   0.067    0.067    0.067
## 597      AEC02 ~~     AEO05  5.537 -0.087  -0.087   -0.494   -0.494
## 398        AEG =~    WAMI03  5.525  0.041   0.041    0.041    0.041
## 352        AEC =~     AEG02  5.505  0.076   0.076    0.076    0.076
## 924      AEG10 ~~     AEO03  5.497  0.087   0.087    0.212    0.212
## 1021     AEO04 ~~    WAMI04  5.462  0.085   0.085    0.281    0.281
## 622      AEC03 ~~     AEG05  5.459  0.086   0.086    0.203    0.203
## 430        AEO =~    WAMI02  5.393 -0.051  -0.051   -0.051   -0.051
## 839      AEG06 ~~  UWES08Ab  5.392 -0.084  -0.084   -0.307   -0.307
## 400        AEG =~    WAMI05  5.325  0.042   0.042    0.042    0.042
## 1081    WAMI01 ~~    WAMI07  5.268 -0.087  -0.087   -0.422   -0.422
## 822      AEG06 ~~    WAMI01  5.223 -0.083  -0.083   -0.316   -0.316
## 351        AEC =~     AEG01  5.166 -0.077  -0.077   -0.077   -0.077
## 1245  UWES08Ab ~~  UWES09Ab  5.148  0.085   0.085    0.297    0.297
## 817      AEG06 ~~     AEO02  5.145  0.084   0.084    0.190    0.190
## 454       WAMI =~     AEG03  5.074 -0.038  -0.038   -0.038   -0.038
## 451       WAMI =~     AEC03  5.072 -0.033  -0.033   -0.033   -0.033
## 665      AEG01 ~~     AEO04  5.048 -0.084  -0.084   -0.195   -0.195
## 673      AEG01 ~~    WAMI06  5.016  0.081   0.081    0.236    0.236
## 504      Engaj =~    WAMI08  5.011  0.116   0.116    0.116    0.116
## 1142    WAMI05 ~~    WAMI06  4.911  0.084   0.084    0.325    0.325
## 999      AEO03 ~~    WAMI03  4.877  0.080   0.080    0.163    0.163
## 672      AEG01 ~~    WAMI05  4.863  0.080   0.080    0.318    0.318
## 514      AEC04 ~~     AEG05  4.845  0.082   0.082    0.495    0.495
## 683      AEG01 ~~  UWES06Ab  4.809  0.079   0.079    0.240    0.240
## 619      AEC03 ~~     AEG02  4.754  0.079   0.079    0.149    0.149
## 854      AEG07 ~~    WAMI05  4.707  0.078   0.078    0.258    0.258
## 842      AEG07 ~~     AEG09  4.667 -0.081  -0.081   -0.160   -0.160
## 1186    WAMI08 ~~ UWES04.De  4.630  0.081   0.081    0.848    0.848
## 561      AEC01 ~~     AEO05  4.572 -0.078  -0.078   -0.208   -0.208
## 1087    WAMI01 ~~  UWES03De  4.520  0.080   0.080    0.641    0.641
## 421        AEO =~     AEG03  4.484 -0.128  -0.128   -0.128   -0.128
## 751      AEG03 ~~  UWES09Ab  4.440 -0.076  -0.076   -0.157   -0.157
## 1165    WAMI06 ~~  UWES06Ab  4.426 -0.078  -0.078   -0.228   -0.228
## 480      Engaj =~     AEC03  4.370 -0.031  -0.031   -0.031   -0.031
## 1023     AEO04 ~~    WAMI06  4.291  0.075   0.075    0.171    0.171
## 441        AEO =~  UWES03De  4.272 -0.049  -0.049   -0.049   -0.049
## 671      AEG01 ~~    WAMI04  4.243  0.075   0.075    0.316    0.316
## 691      AEG02 ~~     AEG07  4.243  0.077   0.077    0.136    0.136
## 950      AEO01 ~~     AEO05  4.169 -0.077  -0.077   -0.156   -0.156
## 498      Engaj =~    WAMI02  4.161  0.104   0.104    0.104    0.104
## 725      AEG03 ~~     AEG09  4.154  0.077   0.077    0.175    0.175
## 825      AEG06 ~~    WAMI04  4.138 -0.073  -0.073   -0.235   -0.235
## 1215  UWES01Vi ~~  UWES07De  4.137 -0.078  -0.078   -0.377   -0.377
## 464       WAMI =~     AEO03  4.106 -0.044  -0.044   -0.044   -0.044
## 408        AEG =~  UWES03De  4.099 -0.039  -0.039   -0.039   -0.039
## 1078    WAMI01 ~~    WAMI04  4.052 -0.077  -0.077   -0.550   -0.550
## 765      AEG04 ~~    WAMI03  4.002  0.072   0.072    0.126    0.126
## 1048     AEO05 ~~  UWES01Vi  3.979  0.073   0.073    0.181    0.181
## 1089    WAMI01 ~~  UWES05Vi  3.958  0.074   0.074    0.465    0.465
## 841      AEG07 ~~     AEG08  3.952 -0.075  -0.075   -0.180   -0.180
## 412        AEG =~  UWES07De  3.942  0.038   0.038    0.038    0.038
## 1026     AEO04 ~~    WAMI09  3.942  0.072   0.072    0.164    0.164
## 1236  UWES05Vi ~~  UWES06Ab  3.922  0.075   0.075    0.281    0.281
## 685      AEG01 ~~  UWES08Ab  3.917  0.072   0.072    0.347    0.347
## 388        AEG =~     AEC02  3.914  0.072   0.072    0.072    0.072
## 472       WAMI =~  UWES05Vi  3.905 -0.101  -0.101   -0.101   -0.101
## 1022     AEO04 ~~    WAMI05  3.888  0.072   0.072    0.222    0.222
## 1016     AEO04 ~~     AEO05  3.863  0.074   0.074    0.133    0.133
## 818      AEG06 ~~     AEO03  3.849  0.073   0.073    0.151    0.151
## 445        AEO =~  UWES07De  3.817  0.047   0.047    0.047    0.047
## 500      Engaj =~    WAMI04  3.796  0.100   0.100    0.100    0.100
## 1213  UWES01Vi ~~  UWES05Vi  3.750  0.074   0.074    0.297    0.297
## 656      AEG01 ~~     AEG05  3.712 -0.073  -0.073   -0.198   -0.198
## 1070     AEO06 ~~ UWES04.De  3.704 -0.071  -0.071   -0.326   -0.326
## 713      AEG02 ~~  UWES03De  3.693 -0.069  -0.069   -0.238   -0.238
## 675      AEG01 ~~    WAMI08  3.691  0.070   0.070    0.384    0.384
## 858      AEG07 ~~    WAMI09  3.658  0.069   0.069    0.167    0.167
## 1202    WAMI10 ~~  UWES01Vi  3.642 -0.071  -0.071   -0.236   -0.236
## 723      AEG03 ~~     AEG07  3.601 -0.072  -0.072   -0.169   -0.169
## 1108    WAMI02 ~~  UWES07De  3.567  0.070   0.070    0.363    0.363
## 468       WAMI =~  UWES01Vi  3.560 -0.098  -0.098   -0.098   -0.098
## 701      AEG02 ~~    WAMI01  3.554 -0.068  -0.068   -0.245   -0.245
## 1119    WAMI03 ~~  UWES02Vi  3.467  0.068   0.068    0.185    0.185
## 632      AEC03 ~~     AEO05  3.453 -0.068  -0.068   -0.136   -0.136
## 1084    WAMI01 ~~    WAMI10  3.426 -0.071  -0.071   -0.367   -0.367
## 766      AEG04 ~~    WAMI04  3.417 -0.067  -0.067   -0.222   -0.222
## 823      AEG06 ~~    WAMI02  3.408 -0.067  -0.067   -0.174   -0.174
## 917      AEG09 ~~  UWES05Vi  3.398  0.067   0.067    0.198    0.198
## 476       WAMI =~  UWES09Ab  3.396 -0.089  -0.089   -0.089   -0.089
## 1222  UWES02Vi ~~  UWES07De  3.361 -0.070  -0.070   -0.382   -0.382
## 555      AEC01 ~~     AEG09  3.359 -0.068  -0.068   -0.186   -0.186
## 1080    WAMI01 ~~    WAMI06  3.356 -0.070  -0.070   -0.342   -0.342
## 699      AEG02 ~~     AEO05  3.355  0.067   0.067    0.111    0.111
## 953      AEO01 ~~    WAMI02  3.299 -0.066  -0.066   -0.199   -0.199
## 776      AEG04 ~~ UWES04.De  3.283 -0.066  -0.066   -0.295   -0.295
## 929      AEG10 ~~    WAMI02  3.279 -0.066  -0.066   -0.201   -0.201
## 1096    WAMI02 ~~    WAMI05  3.274 -0.069  -0.069   -0.315   -0.315
## 528      AEC04 ~~    WAMI03  3.245  0.065   0.065    0.323    0.323
## 670      AEG01 ~~    WAMI03  3.224 -0.065  -0.065   -0.144   -0.144
## 976      AEO02 ~~    WAMI02  3.211 -0.065  -0.065   -0.225   -0.225
## 835      AEG06 ~~ UWES04.De  3.198 -0.065  -0.065   -0.281   -0.281
## 508      AEC04 ~~     AEC02  3.172 -0.082  -0.082   -1.361   -1.361
## 366        AEC =~     AEO06  3.171  0.051   0.051    0.051    0.051
## 669      AEG01 ~~    WAMI02  3.168  0.064   0.064    0.222    0.222
## 1203    WAMI10 ~~  UWES02Vi  3.167 -0.066  -0.066   -0.247   -0.247
## 1220  UWES02Vi ~~  UWES05Vi  3.166  0.068   0.068    0.307    0.307
## 785      AEG05 ~~     AEG09  3.139 -0.067  -0.067   -0.143   -0.143
## 695      AEG02 ~~     AEO01  3.137 -0.065  -0.065   -0.122   -0.122
## 648      AEC03 ~~  UWES05Vi  3.112 -0.064  -0.064   -0.207   -0.207
## 473       WAMI =~  UWES06Ab  3.096 -0.089  -0.089   -0.089   -0.089
## 895      AEG08 ~~  UWES09Ab  3.089 -0.063  -0.063   -0.133   -0.133
## 694      AEG02 ~~     AEG10  3.064  0.065   0.065    0.124    0.124
## 847      AEG07 ~~     AEO04  3.062  0.065   0.065    0.125    0.125
## 1162    WAMI06 ~~  UWES03De  3.059 -0.065  -0.065   -0.303   -0.303
## 370        AEC =~    WAMI04  3.010  0.034   0.034    0.034    0.034
## 496      Engaj =~     AEO06  2.984 -0.039  -0.039   -0.039   -0.039
## 615      AEC02 ~~  UWES07De  2.971  0.063   0.063    0.697    0.697
## 705      AEG02 ~~    WAMI05  2.937 -0.062  -0.062   -0.176   -0.176
## 558      AEC01 ~~     AEO02  2.912  0.063   0.063    0.217    0.217
## 594      AEC02 ~~     AEO02  2.901  0.064   0.064    0.469    0.469
## 770      AEG04 ~~    WAMI08  2.900 -0.062  -0.062   -0.267   -0.267
## 1228  UWES03De ~~  UWES07De  2.870 -0.065  -0.065   -0.466   -0.466
## 1079    WAMI01 ~~    WAMI05  2.847 -0.065  -0.065   -0.432   -0.432
## 1237  UWES05Vi ~~  UWES07De  2.834 -0.064  -0.064   -0.359   -0.359
## 418        AEO =~     AEC03  2.821 -0.040  -0.040   -0.040   -0.040
## 516      AEC04 ~~     AEG07  2.800 -0.062  -0.062   -0.344   -0.344
## 629      AEC03 ~~     AEO02  2.797  0.062   0.062    0.160    0.160
## 367        AEC =~    WAMI01  2.795 -0.033  -0.033   -0.033   -0.033
## 946      AEG10 ~~  UWES09Ab  2.741 -0.060  -0.060   -0.115   -0.115
## 1069     AEO06 ~~  UWES03De  2.732 -0.061  -0.061   -0.234   -0.234
## 432        AEO =~    WAMI04  2.730  0.036   0.036    0.036    0.036
## 933      AEG10 ~~    WAMI06  2.702 -0.059  -0.059   -0.154   -0.154
## 605      AEC02 ~~    WAMI07  2.695  0.060   0.060    0.423    0.423
## 680      AEG01 ~~  UWES03De  2.664  0.059   0.059    0.284    0.284
## 781      AEG04 ~~  UWES09Ab  2.628 -0.058  -0.058   -0.100   -0.100
## 869      AEG08 ~~     AEG09  2.620  0.061   0.061    0.141    0.141
## 1071     AEO06 ~~  UWES05Vi  2.619 -0.059  -0.059   -0.178   -0.178
## 702      AEG02 ~~    WAMI02  2.592 -0.058  -0.058   -0.143   -0.143
## 1123    WAMI03 ~~  UWES06Ab  2.581  0.059   0.059    0.132    0.132
## 853      AEG07 ~~    WAMI04  2.572  0.058   0.058    0.203    0.203
## 712      AEG02 ~~  UWES02Vi  2.548 -0.058  -0.058   -0.150   -0.150
## 945      AEG10 ~~  UWES08Ab  2.521 -0.058  -0.058   -0.247   -0.247
## 977      AEO02 ~~    WAMI03  2.504  0.057   0.057    0.127    0.127
## 973      AEO02 ~~     AEO05  2.502 -0.061  -0.061   -0.139   -0.139
## 503      Engaj =~    WAMI07  2.488 -0.079  -0.079   -0.079   -0.079
## 834      AEG06 ~~  UWES03De  2.484 -0.057  -0.057   -0.207   -0.207
## 591      AEC02 ~~     AEG09  2.480 -0.058  -0.058   -0.344   -0.344
## 387        AEG =~     AEC01  2.457 -0.052  -0.052   -0.052   -0.052
## 734      AEG03 ~~    WAMI02  2.389 -0.056  -0.056   -0.184   -0.184
## 518      AEC04 ~~     AEG09  2.366 -0.057  -0.057   -0.304   -0.304
## 791      AEG05 ~~     AEO05  2.356 -0.057  -0.057   -0.118   -0.118
## 574      AEC01 ~~  UWES02Vi  2.356  0.056   0.056    0.233    0.233
## 1226  UWES03De ~~  UWES05Vi  2.353  0.059   0.059    0.350    0.350
## 684      AEG01 ~~  UWES07De  2.352  0.056   0.056    0.250    0.250
## 511      AEC04 ~~     AEG02  2.336  0.056   0.056    0.269    0.269
## 696      AEG02 ~~     AEO02  2.318 -0.056  -0.056   -0.120   -0.120
## 874      AEG08 ~~     AEO04  2.306 -0.056  -0.056   -0.127   -0.127
## 624      AEC03 ~~     AEG07  2.305 -0.056  -0.056   -0.121   -0.121
## 618      AEC03 ~~     AEG01  2.294 -0.056  -0.056   -0.146   -0.146
## 843      AEG07 ~~     AEG10  2.283 -0.057  -0.057   -0.126   -0.126
## 363        AEC =~     AEO03  2.282 -0.044  -0.044   -0.044   -0.044
## 1223  UWES02Vi ~~  UWES08Ab  2.265 -0.058  -0.058   -0.337   -0.337
## 721      AEG03 ~~     AEG05  2.262 -0.057  -0.057   -0.147   -0.147
## 385        AEC =~  UWES09Ab  2.258 -0.029  -0.029   -0.029   -0.029
## 1020     AEO04 ~~    WAMI03  2.249 -0.054  -0.054   -0.094   -0.094
## 401        AEG =~    WAMI06  2.247  0.027   0.027    0.027    0.027
## 1118    WAMI03 ~~  UWES01Vi  2.218  0.055   0.055    0.132    0.132
## 922      AEG10 ~~     AEO01  2.214  0.055   0.055    0.129    0.129
## 562      AEC01 ~~     AEO06  2.214  0.055   0.055    0.152    0.152
## 610      AEC02 ~~  UWES02Vi  2.199  0.054   0.054    0.485    0.485
## 676      AEG01 ~~    WAMI09  2.195  0.054   0.054    0.156    0.156
## 1216  UWES01Vi ~~  UWES08Ab  2.165 -0.056  -0.056   -0.293   -0.293
## 974      AEO02 ~~     AEO06  2.139 -0.056  -0.056   -0.136   -0.136
## 755      AEG04 ~~     AEG09  2.114 -0.054  -0.054   -0.102   -0.102
## 787      AEG05 ~~     AEO01  2.105 -0.054  -0.054   -0.127   -0.127
## 756      AEG04 ~~     AEG10  2.092  0.054   0.054    0.114    0.114
## 1233 UWES04.De ~~  UWES07De  2.091 -0.056  -0.056   -0.477   -0.477
## 1194    WAMI09 ~~  UWES02Vi  2.085 -0.054  -0.054   -0.189   -0.189
## 364        AEC =~     AEO04  2.049 -0.040  -0.040   -0.040   -0.040
## 1229  UWES03De ~~  UWES08Ab  2.042 -0.055  -0.055   -0.423   -0.423
## 1130    WAMI04 ~~    WAMI08  2.036 -0.055  -0.055   -0.426   -0.426
## 403        AEG =~    WAMI08  2.030 -0.026  -0.026   -0.026   -0.026
## 390        AEG =~     AEO01  2.008  0.088   0.088    0.088    0.088
## 859      AEG07 ~~    WAMI10  1.991  0.051   0.051    0.130    0.130
## 904      AEG09 ~~    WAMI02  1.969 -0.051  -0.051   -0.139   -0.139
## 399        AEG =~    WAMI04  1.965  0.026   0.026    0.026    0.026
## 374        AEC =~    WAMI08  1.957 -0.028  -0.028   -0.028   -0.028
## 681      AEG01 ~~ UWES04.De  1.953  0.051   0.051    0.291    0.291
## 794      AEG05 ~~    WAMI02  1.936 -0.050  -0.050   -0.156   -0.156
## 493      Engaj =~     AEO03  1.936 -0.032  -0.032   -0.032   -0.032
## 434        AEO =~    WAMI06  1.904  0.030   0.030    0.030    0.030
## 819      AEG06 ~~     AEO04  1.896  0.051   0.051    0.090    0.090
## 448       WAMI =~     AEC04  1.877 -0.023  -0.023   -0.023   -0.023
## 582      AEC02 ~~     AEC03  1.870 -0.058  -0.058   -0.375   -0.375
## 1034     AEO04 ~~  UWES07De  1.865  0.050   0.050    0.175    0.175
## 679      AEG01 ~~  UWES02Vi  1.853  0.049   0.049    0.180    0.180
## 1094    WAMI02 ~~    WAMI03  1.845 -0.051  -0.051   -0.130   -0.130
## 634      AEC03 ~~    WAMI01  1.841 -0.049  -0.049   -0.216   -0.216
## 358        AEC =~     AEG08  1.841  0.046   0.046    0.046    0.046
## 485      Engaj =~     AEG05  1.837  0.024   0.024    0.024    0.024
## 875      AEG08 ~~     AEO05  1.832 -0.050  -0.050   -0.112   -0.112
## 829      AEG06 ~~    WAMI08  1.828 -0.049  -0.049   -0.204   -0.204
## 636      AEC03 ~~    WAMI03  1.828  0.049   0.049    0.094    0.094
## 526      AEC04 ~~    WAMI01  1.817 -0.049  -0.049   -0.553   -0.553
## 373        AEC =~    WAMI07  1.816  0.026   0.026    0.026    0.026
## 1049     AEO05 ~~  UWES02Vi  1.814  0.049   0.049    0.137    0.137
## 957      AEO01 ~~    WAMI06  1.808  0.049   0.049    0.124    0.124
## 1056     AEO05 ~~  UWES09Ab  1.803  0.049   0.049    0.081    0.081
## 923      AEG10 ~~     AEO02  1.794  0.050   0.050    0.133    0.133
## 546      AEC01 ~~     AEC03  1.792  0.055   0.055    0.165    0.165
## 655      AEG01 ~~     AEG04  1.789  0.051   0.051    0.119    0.119
## 621      AEC03 ~~     AEG04  1.778  0.049   0.049    0.100    0.100
## 547      AEC01 ~~     AEG01  1.769 -0.050  -0.050   -0.171   -0.171
## 1061     AEO06 ~~    WAMI05  1.767  0.048   0.048    0.155    0.155
## 935      AEG10 ~~    WAMI08  1.743 -0.048  -0.048   -0.234   -0.234
## 1189    WAMI08 ~~  UWES07De  1.721  0.049   0.049    0.404    0.404
## 988      AEO02 ~~ UWES04.De  1.719 -0.048  -0.048   -0.275   -0.275
## 881      AEG08 ~~    WAMI05  1.718  0.048   0.048    0.182    0.182
## 1065     AEO06 ~~    WAMI09  1.713 -0.048  -0.048   -0.112   -0.112
## 509      AEC04 ~~     AEC03  1.710  0.055   0.055    0.323    0.323
## 866      AEG07 ~~  UWES07De  1.708  0.047   0.047    0.176    0.176
## 1244  UWES07De ~~  UWES09Ab  1.706  0.049   0.049    0.159    0.159
## 371        AEC =~    WAMI05  1.706  0.026   0.026    0.026    0.026
## 1006     AEO03 ~~    WAMI10  1.704 -0.048  -0.048   -0.134   -0.134
## 792      AEG05 ~~     AEO06  1.699 -0.048  -0.048   -0.106   -0.106
## 1136    WAMI04 ~~ UWES04.De  1.693  0.049   0.049    0.393    0.393
## 763      AEG04 ~~    WAMI01  1.686 -0.047  -0.047   -0.186   -0.186
## 653      AEG01 ~~     AEG02  1.683  0.049   0.049    0.104    0.104
## 602      AEC02 ~~    WAMI04  1.681  0.047   0.047    0.494    0.494
## 948      AEO01 ~~     AEO03  1.658  0.050   0.050    0.118    0.118
## 1060     AEO06 ~~    WAMI04  1.656  0.047   0.047    0.160    0.160
## 467       WAMI =~     AEO06  1.653 -0.027  -0.027   -0.027   -0.027
## 719      AEG02 ~~  UWES09Ab  1.613 -0.046  -0.046   -0.071   -0.071
## 998      AEO03 ~~    WAMI02  1.611 -0.046  -0.046   -0.146   -0.146
## 1190    WAMI08 ~~  UWES08Ab  1.608  0.048   0.048    0.420    0.420
## 477      Engaj =~     AEC04  1.599 -0.021  -0.021   -0.021   -0.021
## 559      AEC01 ~~     AEO03  1.587 -0.047  -0.047   -0.146   -0.146
## 937      AEG10 ~~    WAMI10  1.585 -0.045  -0.045   -0.125   -0.125
## 1093    WAMI01 ~~  UWES09Ab  1.580  0.046   0.046    0.169    0.169
## 965      AEO01 ~~ UWES04.De  1.572 -0.046  -0.046   -0.230   -0.230
## 941      AEG10 ~~ UWES04.De  1.562 -0.045  -0.045   -0.231   -0.231
## 439        AEO =~  UWES01Vi  1.554  0.030   0.030    0.030    0.030
## 867      AEG07 ~~  UWES08Ab  1.552  0.045   0.045    0.180    0.180
## 816      AEG06 ~~     AEO01  1.547 -0.046  -0.046   -0.091   -0.091
## 600      AEC02 ~~    WAMI02  1.543  0.045   0.045    0.385    0.385
## 654      AEG01 ~~     AEG03  1.528 -0.047  -0.047   -0.135   -0.135
## 920      AEG09 ~~  UWES08Ab  1.521  0.045   0.045    0.171    0.171
## 1043     AEO05 ~~    WAMI06  1.515  0.045   0.045    0.100    0.100
## 470       WAMI =~  UWES03De  1.514 -0.064  -0.064   -0.064   -0.064
## 788      AEG05 ~~     AEO02  1.506  0.046   0.046    0.124    0.124
## 630      AEC03 ~~     AEO03  1.505 -0.045  -0.045   -0.107   -0.107
## 1114    WAMI03 ~~    WAMI07  1.489  0.045   0.045    0.097    0.097
## 919      AEG09 ~~  UWES07De  1.483  0.044   0.044    0.158    0.158
## 566      AEC01 ~~    WAMI04  1.482  0.044   0.044    0.215    0.215
## 677      AEG01 ~~    WAMI10  1.461  0.044   0.044    0.135    0.135
## 733      AEG03 ~~    WAMI01  1.454 -0.044  -0.044   -0.210   -0.210
## 1095    WAMI02 ~~    WAMI04  1.449 -0.046  -0.046   -0.223   -0.223
## 1055     AEO05 ~~  UWES08Ab  1.449  0.044   0.044    0.163    0.163
## 1126    WAMI03 ~~  UWES09Ab  1.446  0.044   0.044    0.071    0.071
## 646      AEC03 ~~  UWES03De  1.440 -0.043  -0.043   -0.181   -0.181
## 1068     AEO06 ~~  UWES02Vi  1.419  0.044   0.044    0.128    0.128
## 1046     AEO05 ~~    WAMI09  1.417 -0.043  -0.043   -0.097   -0.097
## 587      AEC02 ~~     AEG05  1.416  0.044   0.044    0.296    0.296
## 524      AEC04 ~~     AEO05  1.409 -0.044  -0.044   -0.225   -0.225
## 411        AEG =~  UWES06Ab  1.385  0.022   0.022    0.022    0.022
## 899      AEG09 ~~     AEO03  1.374  0.044   0.044    0.095    0.095
## 943      AEG10 ~~  UWES06Ab  1.369  0.042   0.042    0.114    0.114
## 778      AEG04 ~~  UWES06Ab  1.368  0.042   0.042    0.100    0.100
## 707      AEG02 ~~    WAMI07  1.354 -0.042  -0.042   -0.086   -0.086
## 902      AEG09 ~~     AEO06  1.332 -0.043  -0.043   -0.082   -0.082
## 1085    WAMI01 ~~  UWES01Vi  1.325  0.043   0.043    0.234    0.234
## 989      AEO02 ~~  UWES05Vi  1.308 -0.042  -0.042   -0.156   -0.156
## 436        AEO =~    WAMI08  1.299 -0.025  -0.025   -0.025   -0.025
## 960      AEO01 ~~    WAMI09  1.295 -0.041  -0.041   -0.105   -0.105
## 1197    WAMI09 ~~  UWES05Vi  1.293 -0.042  -0.042   -0.153   -0.153
## 565      AEC01 ~~    WAMI03  1.288  0.041   0.041    0.105    0.105
## 959      AEO01 ~~    WAMI08  1.283 -0.041  -0.041   -0.199   -0.199
## 838      AEG06 ~~  UWES07De  1.274 -0.041  -0.041   -0.139   -0.139
## 826      AEG06 ~~    WAMI05  1.269 -0.041  -0.041   -0.122   -0.122
## 1058     AEO06 ~~    WAMI02  1.266 -0.041  -0.041   -0.114   -0.114
## 666      AEG01 ~~     AEO05  1.263 -0.042  -0.042   -0.096   -0.096
## 1027     AEO04 ~~    WAMI10  1.260  0.041   0.041    0.098    0.098
## 495      Engaj =~     AEO05  1.235  0.025   0.025    0.025    0.025
## 804      AEG05 ~~  UWES02Vi  1.234  0.040   0.040    0.132    0.132
## 856      AEG07 ~~    WAMI07  1.234  0.040   0.040    0.095    0.095
## 883      AEG08 ~~    WAMI07  1.230  0.040   0.040    0.111    0.111
## 525      AEC04 ~~     AEO06  1.216  0.041   0.041    0.220    0.220
## 914      AEG09 ~~  UWES02Vi  1.209  0.040   0.040    0.115    0.115
## 381        AEC =~  UWES05Vi  1.201 -0.022  -0.022   -0.022   -0.022
## 553      AEC01 ~~     AEG07  1.192 -0.040  -0.040   -0.115   -0.115
## 1198    WAMI09 ~~  UWES06Ab  1.188 -0.040  -0.040   -0.118   -0.118
## 1199    WAMI09 ~~  UWES07De  1.178 -0.040  -0.040   -0.176   -0.176
## 456       WAMI =~     AEG05  1.173  0.018   0.018    0.018    0.018
## 913      AEG09 ~~  UWES01Vi  1.172  0.039   0.039    0.101    0.101
## 1109    WAMI02 ~~  UWES08Ab  1.158  0.040   0.040    0.222    0.222
## 851      AEG07 ~~    WAMI02  1.151  0.039   0.039    0.111    0.111
## 865      AEG07 ~~  UWES06Ab  1.149  0.039   0.039    0.097    0.097
## 550      AEC01 ~~     AEG04  1.146 -0.039  -0.039   -0.107   -0.107
## 1018     AEO04 ~~    WAMI01  1.142  0.039   0.039    0.153    0.153
## 849      AEG07 ~~     AEO06  1.136  0.039   0.039    0.079    0.079
## 1005     AEO03 ~~    WAMI09  1.106 -0.038  -0.038   -0.102   -0.102
## 947      AEO01 ~~     AEO02  1.103  0.041   0.041    0.106    0.106
## 1040     AEO05 ~~    WAMI03  1.099  0.038   0.038    0.065    0.065
## 1207    WAMI10 ~~  UWES06Ab  1.094 -0.039  -0.039   -0.120   -0.120
## 598      AEC02 ~~     AEO06  1.090  0.039   0.039    0.231    0.231
## 962      AEO01 ~~  UWES01Vi  1.075  0.038   0.038    0.107    0.107
## 538      AEC04 ~~  UWES03De  1.071 -0.038  -0.038   -0.403   -0.403
## 1195    WAMI09 ~~  UWES03De  1.061 -0.038  -0.038   -0.178   -0.178
## 1151    WAMI05 ~~  UWES05Vi  1.054 -0.038  -0.038   -0.189   -0.189
## 1075     AEO06 ~~  UWES09Ab  1.047 -0.037  -0.037   -0.065   -0.065
## 1144    WAMI05 ~~    WAMI08  1.036 -0.039  -0.039   -0.285   -0.285
## 512      AEC04 ~~     AEG03  1.035  0.038   0.038    0.242    0.242
## 1234 UWES04.De ~~  UWES08Ab  1.033 -0.039  -0.039   -0.360   -0.360
## 928      AEG10 ~~    WAMI01  1.020 -0.037  -0.037   -0.164   -0.164
## 1206    WAMI10 ~~  UWES05Vi  1.016 -0.037  -0.037   -0.144   -0.144
## 1241  UWES06Ab ~~  UWES08Ab  1.012 -0.038  -0.038   -0.185   -0.185
## 1044     AEO05 ~~    WAMI07  1.011 -0.036  -0.036   -0.081   -0.081
## 915      AEG09 ~~  UWES03De  1.008  0.036   0.036    0.139    0.139
## 1173    WAMI07 ~~  UWES02Vi  1.003 -0.037  -0.037   -0.129   -0.129
## 517      AEC04 ~~     AEG08  1.000  0.037   0.037    0.241    0.241
## 1076    WAMI01 ~~    WAMI02  0.993  0.038   0.038    0.221    0.221
## 764      AEG04 ~~    WAMI02  0.992 -0.036  -0.036   -0.098   -0.098
## 444        AEO =~  UWES06Ab  0.992  0.023   0.023    0.023    0.023
## 368        AEC =~    WAMI02  0.984 -0.019  -0.019   -0.019   -0.019
## 647      AEC03 ~~ UWES04.De  0.984 -0.036  -0.036   -0.179   -0.179
## 901      AEG09 ~~     AEO05  0.980 -0.036  -0.036   -0.067   -0.067
## 389        AEG =~     AEC03  0.975 -0.030  -0.030   -0.030   -0.030
## 590      AEC02 ~~     AEG08  0.967  0.037   0.037    0.263    0.263
## 757      AEG04 ~~     AEO01  0.958 -0.036  -0.036   -0.075   -0.075
## 1041     AEO05 ~~    WAMI04  0.957  0.036   0.036    0.116    0.116
## 1238  UWES05Vi ~~  UWES08Ab  0.956 -0.037  -0.037   -0.224   -0.224
## 1168    WAMI06 ~~  UWES09Ab  0.954 -0.036  -0.036   -0.076   -0.076
## 808      AEG05 ~~  UWES06Ab  0.951  0.035   0.035    0.096    0.096
## 579      AEC01 ~~  UWES07De  0.950  0.035   0.035    0.183    0.183
## 678      AEG01 ~~  UWES01Vi  0.950  0.035   0.035    0.115    0.115
## 1059     AEO06 ~~    WAMI03  0.949  0.035   0.035    0.063    0.063
## 975      AEO02 ~~    WAMI01  0.945 -0.036  -0.036   -0.179   -0.179
## 510      AEC04 ~~     AEG01  0.936 -0.036  -0.036   -0.242   -0.242
## 1082    WAMI01 ~~    WAMI08  0.930 -0.037  -0.037   -0.344   -0.344
## 1158    WAMI06 ~~    WAMI09  0.928  0.036   0.036    0.103    0.103
## 815      AEG06 ~~     AEG10  0.923  0.036   0.036    0.073    0.073
## 1042     AEO05 ~~    WAMI05  0.923  0.035   0.035    0.107    0.107
## 641      AEC03 ~~    WAMI08  0.922 -0.035  -0.035   -0.167   -0.167
## 1193    WAMI09 ~~  UWES01Vi  0.918 -0.035  -0.035   -0.112   -0.112
## 1180    WAMI07 ~~  UWES09Ab  0.908 -0.035  -0.035   -0.073   -0.073
## 800      AEG05 ~~    WAMI08  0.905  0.035   0.035    0.171    0.171
## 777      AEG04 ~~  UWES05Vi  0.896 -0.034  -0.034   -0.100   -0.100
## 402        AEG =~    WAMI07  0.892  0.017   0.017    0.017    0.017
## 1210    WAMI10 ~~  UWES09Ab  0.891 -0.035  -0.035   -0.078   -0.078
## 1101    WAMI02 ~~    WAMI10  0.882 -0.036  -0.036   -0.126   -0.126
## 784      AEG05 ~~     AEG08  0.875 -0.036  -0.036   -0.093   -0.093
## 627      AEC03 ~~     AEG10  0.871  0.034   0.034    0.080    0.080
## 1120    WAMI03 ~~  UWES03De  0.868  0.034   0.034    0.122    0.122
## 462       WAMI =~     AEO01  0.840 -0.020  -0.020   -0.020   -0.020
## 970      AEO01 ~~  UWES09Ab  0.833 -0.033  -0.033   -0.063   -0.063
## 583      AEC02 ~~     AEG01  0.829 -0.034  -0.034   -0.253   -0.253
## 1112    WAMI03 ~~    WAMI05  0.823 -0.034  -0.034   -0.100   -0.100
## 892      AEG08 ~~  UWES06Ab  0.821 -0.033  -0.033   -0.096   -0.096
## 944      AEG10 ~~  UWES07De  0.818 -0.033  -0.033   -0.131   -0.131
## 1107    WAMI02 ~~  UWES06Ab  0.814  0.033   0.033    0.116    0.116
## 789      AEG05 ~~     AEO03  0.813 -0.034  -0.034   -0.083   -0.083
## 907      AEG09 ~~    WAMI05  0.807  0.032   0.032    0.103    0.103
## 1053     AEO05 ~~  UWES06Ab  0.803 -0.033  -0.033   -0.076   -0.076
## 811      AEG05 ~~  UWES09Ab  0.801  0.032   0.032    0.063    0.063
## 745      AEG03 ~~  UWES03De  0.798 -0.032  -0.032   -0.148   -0.148
## 1174    WAMI07 ~~  UWES03De  0.797 -0.033  -0.033   -0.152   -0.152
## 759      AEG04 ~~     AEO03  0.795 -0.033  -0.033   -0.071   -0.071
## 908      AEG09 ~~    WAMI06  0.795  0.032   0.032    0.075    0.075
## 984      AEO02 ~~    WAMI10  0.790 -0.032  -0.032   -0.100   -0.100
## 593      AEC02 ~~     AEO01  0.790 -0.033  -0.033   -0.213   -0.213
## 1086    WAMI01 ~~  UWES02Vi  0.783  0.033   0.033    0.202    0.202
## 423        AEO =~     AEG05  0.781 -0.053  -0.053   -0.053   -0.053
## 446        AEO =~  UWES08Ab  0.780  0.021   0.021    0.021    0.021
## 416        AEO =~     AEC01  0.778 -0.023  -0.023   -0.023   -0.023
## 406        AEG =~  UWES01Vi  0.774  0.017   0.017    0.017    0.017
## 542      AEC04 ~~  UWES07De  0.769  0.032   0.032    0.320    0.320
## 871      AEG08 ~~     AEO01  0.764  0.033   0.033    0.082    0.082
## 372        AEC =~    WAMI06  0.762  0.017   0.017    0.017    0.017
## 1171    WAMI07 ~~    WAMI10  0.759  0.033   0.033    0.097    0.097
## 1033     AEO04 ~~  UWES06Ab  0.756  0.032   0.032    0.074    0.074
## 1062     AEO06 ~~    WAMI06  0.743  0.031   0.031    0.074    0.074
## 812      AEG06 ~~     AEG07  0.742  0.032   0.032    0.061    0.061
## 1204    WAMI10 ~~  UWES03De  0.736 -0.032  -0.032   -0.158   -0.158
## 769      AEG04 ~~    WAMI07  0.736 -0.031  -0.031   -0.070   -0.070
## 898      AEG09 ~~     AEO02  0.735  0.032   0.032    0.076    0.076
## 1200    WAMI09 ~~  UWES08Ab  0.735 -0.032  -0.032   -0.149   -0.149
## 797      AEG05 ~~    WAMI05  0.731  0.031   0.031    0.111    0.111
## 740      AEG03 ~~    WAMI08  0.723 -0.031  -0.031   -0.162   -0.162
## 1104    WAMI02 ~~  UWES03De  0.721  0.032   0.032    0.174    0.174
## 1143    WAMI05 ~~    WAMI07  0.718 -0.032  -0.032   -0.122   -0.122
## 722      AEG03 ~~     AEG06  0.717  0.032   0.032    0.069    0.069
## 645      AEC03 ~~  UWES02Vi  0.715  0.031   0.031    0.097    0.097
## 589      AEC02 ~~     AEG07  0.713 -0.031  -0.031   -0.192   -0.192
## 652      AEC03 ~~  UWES09Ab  0.710  0.030   0.030    0.057    0.057
## 857      AEG07 ~~    WAMI08  0.710  0.031   0.031    0.139    0.139
## 1205    WAMI10 ~~ UWES04.De  0.710  0.031   0.031    0.185    0.185
## 1176    WAMI07 ~~  UWES05Vi  0.706 -0.031  -0.031   -0.111   -0.111
## 1225  UWES03De ~~ UWES04.De  0.690  0.032   0.032    0.293    0.293
## 861      AEG07 ~~  UWES02Vi  0.686  0.030   0.030    0.090    0.090
## 940      AEG10 ~~  UWES03De  0.682 -0.030  -0.030   -0.128   -0.128
## 1232 UWES04.De ~~  UWES06Ab  0.677 -0.031  -0.031   -0.181   -0.181
## 1127    WAMI04 ~~    WAMI05  0.674  0.031   0.031    0.176    0.176
## 963      AEO01 ~~  UWES02Vi  0.668  0.030   0.030    0.095    0.095
## 539      AEC04 ~~ UWES04.De  0.665 -0.030  -0.030   -0.380   -0.380
## 384        AEC =~  UWES08Ab  0.664  0.016   0.016    0.016    0.016
## 1045     AEO05 ~~    WAMI08  0.662 -0.030  -0.030   -0.126   -0.126
## 882      AEG08 ~~    WAMI06  0.661  0.029   0.029    0.083    0.083
## 674      AEG01 ~~    WAMI07  0.655  0.029   0.029    0.084    0.084
## 775      AEG04 ~~  UWES03De  0.654 -0.029  -0.029   -0.110   -0.110
## 413        AEG =~  UWES08Ab  0.653  0.016   0.016    0.016    0.016
## 607      AEC02 ~~    WAMI09  0.644  0.029   0.029    0.210    0.210
## 1124    WAMI03 ~~  UWES07De  0.641 -0.029  -0.029   -0.098   -0.098
## 720      AEG03 ~~     AEG04  0.641  0.030   0.030    0.068    0.068
## 612      AEC02 ~~ UWES04.De  0.639 -0.029  -0.029   -0.413   -0.413
## 1015     AEO03 ~~  UWES09Ab  0.619 -0.029  -0.029   -0.057   -0.057
## 1098    WAMI02 ~~    WAMI07  0.619  0.030   0.030    0.098    0.098
## 1001     AEO03 ~~    WAMI05  0.618  0.029   0.029    0.104    0.104
## 760      AEG04 ~~     AEO04  0.617 -0.029  -0.029   -0.053   -0.053
## 735      AEG03 ~~    WAMI03  0.616 -0.028  -0.028   -0.060   -0.060
## 1154    WAMI05 ~~  UWES08Ab  0.610  0.029   0.029    0.186    0.186
## 443        AEO =~  UWES05Vi  0.609 -0.018  -0.018   -0.018   -0.018
## 879      AEG08 ~~    WAMI03  0.609 -0.028  -0.028   -0.061   -0.061
## 958      AEO01 ~~    WAMI07  0.604 -0.028  -0.028   -0.071   -0.071
## 377        AEC =~  UWES01Vi  0.604  0.015   0.015    0.015    0.015
## 1132    WAMI04 ~~    WAMI10  0.604 -0.030  -0.030   -0.129   -0.129
## 1097    WAMI02 ~~    WAMI06  0.603 -0.029  -0.029   -0.098   -0.098
## 809      AEG05 ~~  UWES07De  0.600  0.028   0.028    0.114    0.114
## 1139    WAMI04 ~~  UWES07De  0.596  0.029   0.029    0.182    0.182
## 620      AEC03 ~~     AEG03  0.586 -0.028  -0.028   -0.070   -0.070
## 761      AEG04 ~~     AEO05  0.583  0.028   0.028    0.051    0.051
## 608      AEC02 ~~    WAMI10  0.580  0.028   0.028    0.211    0.211
## 1047     AEO05 ~~    WAMI10  0.580 -0.028  -0.028   -0.066   -0.066
## 575      AEC01 ~~  UWES03De  0.569 -0.027  -0.027   -0.151   -0.151
## 1177    WAMI07 ~~  UWES06Ab  0.567 -0.028  -0.028   -0.080   -0.080
## 541      AEC04 ~~  UWES06Ab  0.556 -0.027  -0.027   -0.182   -0.182
## 1116    WAMI03 ~~    WAMI09  0.555 -0.028  -0.028   -0.060   -0.060
## 1169    WAMI07 ~~    WAMI08  0.551  0.028   0.028    0.149    0.149
## 595      AEC02 ~~     AEO03  0.549 -0.028  -0.028   -0.186   -0.186
## 807      AEG05 ~~  UWES05Vi  0.549  0.027   0.027    0.090    0.090
## 1110    WAMI02 ~~  UWES09Ab  0.548  0.027   0.027    0.068    0.068
## 727      AEG03 ~~     AEO01  0.544  0.028   0.028    0.068    0.068
## 573      AEC01 ~~  UWES01Vi  0.536  0.027   0.027    0.099    0.099
## 611      AEC02 ~~  UWES03De  0.536 -0.027  -0.027   -0.316   -0.316
## 873      AEG08 ~~     AEO03  0.534  0.027   0.027    0.072    0.072
## 918      AEG09 ~~  UWES06Ab  0.531  0.026   0.026    0.063    0.063
## 638      AEC03 ~~    WAMI05  0.531 -0.026  -0.026   -0.091   -0.091
## 603      AEC02 ~~    WAMI05  0.527  0.026   0.026    0.259    0.259
## 1122    WAMI03 ~~  UWES05Vi  0.520  0.026   0.026    0.074    0.074
## 537      AEC04 ~~  UWES02Vi  0.519  0.026   0.026    0.213    0.213
## 831      AEG06 ~~    WAMI10  0.513 -0.026  -0.026   -0.060   -0.060
## 986      AEO02 ~~  UWES02Vi  0.509  0.026   0.026    0.095    0.095
## 1008     AEO03 ~~  UWES02Vi  0.508  0.026   0.026    0.087    0.087
## 743      AEG03 ~~  UWES01Vi  0.505 -0.026  -0.026   -0.080   -0.080
## 912      AEG09 ~~    WAMI10  0.503  0.026   0.026    0.063    0.063
## 426        AEO =~     AEG08  0.501 -0.043  -0.043   -0.043   -0.043
## 578      AEC01 ~~  UWES06Ab  0.495 -0.025  -0.025   -0.088   -0.088
## 730      AEG03 ~~     AEO04  0.494 -0.026  -0.026   -0.058   -0.058
## 700      AEG02 ~~     AEO06  0.480  0.025   0.025    0.044    0.044
## 1141    WAMI04 ~~  UWES09Ab  0.478 -0.025  -0.025   -0.078   -0.078
## 438        AEO =~    WAMI10  0.477 -0.015  -0.015   -0.015   -0.015
## 868      AEG07 ~~  UWES09Ab  0.475 -0.025  -0.025   -0.045   -0.045
## 870      AEG08 ~~     AEG10  0.474  0.026   0.026    0.067    0.067
## 1090    WAMI01 ~~  UWES06Ab  0.473  0.026   0.026    0.130    0.130
## 540      AEC04 ~~  UWES05Vi  0.473 -0.025  -0.025   -0.208   -0.208
## 1240  UWES06Ab ~~  UWES07De  0.469 -0.026  -0.026   -0.118   -0.118
## 1099    WAMI02 ~~    WAMI08  0.468 -0.026  -0.026   -0.166   -0.166
## 1029     AEO04 ~~  UWES02Vi  0.466  0.025   0.025    0.071    0.071
## 990      AEO02 ~~  UWES06Ab  0.456 -0.025  -0.025   -0.074   -0.074
## 1067     AEO06 ~~  UWES01Vi  0.454  0.025   0.025    0.065    0.065
## 1156    WAMI06 ~~    WAMI07  0.451 -0.025  -0.025   -0.071   -0.071
## 1175    WAMI07 ~~ UWES04.De  0.449  0.025   0.025    0.137    0.137
## 754      AEG04 ~~     AEG08  0.447 -0.025  -0.025   -0.057   -0.057
## 616      AEC02 ~~  UWES08Ab  0.445  0.024   0.024    0.290    0.290
## 786      AEG05 ~~     AEG10  0.442  0.025   0.025    0.060    0.060
## 1035     AEO04 ~~  UWES08Ab  0.442  0.024   0.024    0.091    0.091
## 491      Engaj =~     AEO01  0.436 -0.015  -0.015   -0.015   -0.015
## 650      AEC03 ~~  UWES07De  0.434  0.024   0.024    0.093    0.093
## 1140    WAMI04 ~~  UWES08Ab  0.432  0.025   0.025    0.167    0.167
## 798      AEG05 ~~    WAMI06  0.430 -0.024  -0.024   -0.062   -0.062
## 661      AEG01 ~~     AEG10  0.428 -0.025  -0.025   -0.066   -0.066
## 1243  UWES07De ~~  UWES08Ab  0.428  0.025   0.025    0.181    0.181
## 978      AEO02 ~~    WAMI04  0.427 -0.024  -0.024   -0.101   -0.101
## 926      AEG10 ~~     AEO05  0.424 -0.024  -0.024   -0.049   -0.049
## 703      AEG02 ~~    WAMI03  0.419  0.023   0.023    0.037    0.037
## 891      AEG08 ~~  UWES05Vi  0.418 -0.023  -0.023   -0.084   -0.084
## 435        AEO =~    WAMI07  0.417  0.014   0.014    0.014    0.014
## 1187    WAMI08 ~~  UWES05Vi  0.416  0.024   0.024    0.165    0.165
## 1214  UWES01Vi ~~  UWES06Ab  0.413  0.024   0.024    0.079    0.079
## 501      Engaj =~    WAMI05  0.409  0.033   0.033    0.033    0.033
## 850      AEG07 ~~    WAMI01  0.405  0.023   0.023    0.096    0.096
## 1004     AEO03 ~~    WAMI08  0.404 -0.023  -0.023   -0.117   -0.117
## 1017     AEO04 ~~     AEO06  0.403  0.024   0.024    0.045    0.045
## 982      AEO02 ~~    WAMI08  0.400 -0.023  -0.023   -0.127   -0.127
## 827      AEG06 ~~    WAMI06  0.395 -0.023  -0.023   -0.050   -0.050
## 1185    WAMI08 ~~  UWES03De  0.386  0.023   0.023    0.205    0.205
## 1051     AEO05 ~~ UWES04.De  0.375 -0.022  -0.022   -0.099   -0.099
## 576      AEC01 ~~ UWES04.De  0.374 -0.022  -0.022   -0.146   -0.146
## 1010     AEO03 ~~ UWES04.De  0.371 -0.022  -0.022   -0.117   -0.117
## 936      AEG10 ~~    WAMI09  0.369  0.022   0.022    0.057    0.057
## 1003     AEO03 ~~    WAMI07  0.369 -0.022  -0.022   -0.058   -0.058
## 563      AEC01 ~~    WAMI01  0.368 -0.022  -0.022   -0.128   -0.128
## 376        AEC =~    WAMI10  0.367  0.012   0.012    0.012    0.012
## 890      AEG08 ~~ UWES04.De  0.363 -0.022  -0.022   -0.121   -0.121
## 580      AEC01 ~~  UWES08Ab  0.362  0.022   0.022    0.121    0.121
## 885      AEG08 ~~    WAMI09  0.360  0.022   0.022    0.061    0.061
## 916      AEG09 ~~ UWES04.De  0.357  0.022   0.022    0.099    0.099
## 548      AEC01 ~~     AEG02  0.357  0.022   0.022    0.054    0.054
## 396        AEG =~    WAMI01  0.356 -0.011  -0.011   -0.011   -0.011
## 1152    WAMI05 ~~  UWES06Ab  0.352 -0.022  -0.022   -0.088   -0.088
## 1066     AEO06 ~~    WAMI10  0.348 -0.021  -0.021   -0.054   -0.054
## 938      AEG10 ~~  UWES01Vi  0.344 -0.021  -0.021   -0.061   -0.061
## 609      AEC02 ~~  UWES01Vi  0.343  0.021   0.021    0.171    0.171
## 985      AEO02 ~~  UWES01Vi  0.341  0.021   0.021    0.069    0.069
## 731      AEG03 ~~     AEO05  0.339 -0.022  -0.022   -0.047   -0.047
## 968      AEO01 ~~  UWES07De  0.330  0.021   0.021    0.082    0.082
## 639      AEC03 ~~    WAMI06  0.328 -0.021  -0.021   -0.052   -0.052
## 631      AEC03 ~~     AEO04  0.322 -0.021  -0.021   -0.042   -0.042
## 886      AEG08 ~~    WAMI10  0.319 -0.020  -0.020   -0.061   -0.061
## 706      AEG02 ~~    WAMI06  0.319 -0.020  -0.020   -0.042   -0.042
## 951      AEO01 ~~     AEO06  0.319 -0.022  -0.022   -0.045   -0.045
## 689      AEG02 ~~     AEG05  0.316  0.021   0.021    0.041    0.041
## 996      AEO03 ~~     AEO06  0.314  0.021   0.021    0.047    0.047
## 992      AEO02 ~~  UWES08Ab  0.310 -0.021  -0.021   -0.098   -0.098
## 533      AEC04 ~~    WAMI08  0.307 -0.020  -0.020   -0.248   -0.248
## 795      AEG05 ~~    WAMI03  0.302  0.020   0.020    0.040    0.040
## 410        AEG =~  UWES05Vi  0.301 -0.011  -0.011   -0.011   -0.011
## 893      AEG08 ~~  UWES07De  0.300 -0.020  -0.020   -0.086   -0.086
## 716      AEG02 ~~  UWES06Ab  0.299 -0.020  -0.020   -0.042   -0.042
## 840      AEG06 ~~  UWES09Ab  0.298 -0.020  -0.020   -0.032   -0.032
## 1007     AEO03 ~~  UWES01Vi  0.295  0.020   0.020    0.059    0.059
## 729      AEG03 ~~     AEO03  0.293  0.020   0.020    0.053    0.053
## 588      AEC02 ~~     AEG06  0.291  0.020   0.020    0.112    0.112
## 545      AEC01 ~~     AEC02  0.289  0.024   0.024    0.202    0.202
## 1145    WAMI05 ~~    WAMI09  0.285 -0.020  -0.020   -0.078   -0.078
## 1036     AEO04 ~~  UWES09Ab  0.281  0.019   0.019    0.033    0.033
## 863      AEG07 ~~ UWES04.De  0.281  0.019   0.019    0.091    0.091
## 488      Engaj =~     AEG08  0.281 -0.009  -0.009   -0.009   -0.009
## 623      AEC03 ~~     AEG06  0.279  0.019   0.019    0.038    0.038
## 697      AEG02 ~~     AEO03  0.275 -0.019  -0.019   -0.038   -0.038
## 709      AEG02 ~~    WAMI09  0.273 -0.019  -0.019   -0.039   -0.039
## 927      AEG10 ~~     AEO06  0.264 -0.019  -0.019   -0.041   -0.041
## 531      AEC04 ~~    WAMI06  0.264 -0.019  -0.019   -0.121   -0.121
## 1129    WAMI04 ~~    WAMI07  0.262  0.019   0.019    0.079    0.079
## 864      AEG07 ~~  UWES05Vi  0.262  0.019   0.019    0.057    0.057
## 642      AEC03 ~~    WAMI09  0.257 -0.018  -0.018   -0.047   -0.047
## 799      AEG05 ~~    WAMI07  0.249  0.018   0.018    0.047    0.047
## 981      AEO02 ~~    WAMI07  0.249  0.018   0.018    0.052    0.052
## 987      AEO02 ~~  UWES03De  0.249 -0.018  -0.018   -0.087   -0.087
## 1031     AEO04 ~~ UWES04.De  0.246  0.018   0.018    0.081    0.081
## 884      AEG08 ~~    WAMI08  0.245 -0.018  -0.018   -0.095   -0.095
## 1178    WAMI07 ~~  UWES07De  0.244 -0.018  -0.018   -0.079   -0.079
## 805      AEG05 ~~  UWES03De  0.244  0.018   0.018    0.077    0.077
## 1125    WAMI03 ~~  UWES08Ab  0.238  0.018   0.018    0.064    0.064
## 1077    WAMI01 ~~    WAMI03  0.236  0.018   0.018    0.068    0.068
## 386        AEG =~     AEC04  0.231  0.017   0.017    0.017    0.017
## 1013     AEO03 ~~  UWES07De  0.230  0.018   0.018    0.072    0.072
## 704      AEG02 ~~    WAMI04  0.230 -0.017  -0.017   -0.052   -0.052
## 1163    WAMI06 ~~ UWES04.De  0.230 -0.018  -0.018   -0.099   -0.099
## 966      AEO01 ~~  UWES05Vi  0.227  0.017   0.017    0.057    0.057
## 375        AEC =~    WAMI09  0.225  0.009   0.009    0.009    0.009
## 535      AEC04 ~~    WAMI10  0.221  0.017   0.017    0.118    0.118
## 617      AEC02 ~~  UWES09Ab  0.221  0.017   0.017    0.091    0.091
## 1219  UWES02Vi ~~ UWES04.De  0.217 -0.018  -0.018   -0.124   -0.124
## 1014     AEO03 ~~  UWES08Ab  0.212  0.017   0.017    0.074    0.074
## 832      AEG06 ~~  UWES01Vi  0.209 -0.017  -0.017   -0.041   -0.041
## 1121    WAMI03 ~~ UWES04.De  0.206 -0.017  -0.017   -0.071   -0.071
## 779      AEG04 ~~  UWES07De  0.202 -0.016  -0.016   -0.057   -0.057
## 837      AEG06 ~~  UWES06Ab  0.199  0.016   0.016    0.037    0.037
## 1000     AEO03 ~~    WAMI04  0.198 -0.016  -0.016   -0.063   -0.063
## 544      AEC04 ~~  UWES09Ab  0.198 -0.016  -0.016   -0.078   -0.078
## 664      AEG01 ~~     AEO03  0.196 -0.017  -0.017   -0.045   -0.045
## 952      AEO01 ~~    WAMI01  0.192  0.016   0.016    0.070    0.070
## 657      AEG01 ~~     AEG06  0.190  0.016   0.016    0.037    0.037
## 880      AEG08 ~~    WAMI04  0.189 -0.016  -0.016   -0.064   -0.064
## 749      AEG03 ~~  UWES07De  0.187 -0.016  -0.016   -0.067   -0.067
## 746      AEG03 ~~ UWES04.De  0.187 -0.016  -0.016   -0.086   -0.086
## 878      AEG08 ~~    WAMI02  0.187 -0.016  -0.016   -0.052   -0.052
## 1103    WAMI02 ~~  UWES02Vi  0.186 -0.016  -0.016   -0.067   -0.067
## 956      AEO01 ~~    WAMI05  0.184  0.016   0.016    0.054    0.054
## 844      AEG07 ~~     AEO01  0.183  0.016   0.016    0.034    0.034
## 1064     AEO06 ~~    WAMI08  0.180 -0.015  -0.015   -0.069   -0.069
## 1167    WAMI06 ~~  UWES08Ab  0.177 -0.016  -0.016   -0.073   -0.073
## 750      AEG03 ~~  UWES08Ab  0.177 -0.015  -0.015   -0.070   -0.070
## 1011     AEO03 ~~  UWES05Vi  0.176 -0.015  -0.015   -0.052   -0.052
## 536      AEC04 ~~  UWES01Vi  0.175 -0.015  -0.015   -0.110   -0.110
## 628      AEC03 ~~     AEO01  0.174 -0.015  -0.015   -0.035   -0.035
## 906      AEG09 ~~    WAMI04  0.173  0.015   0.015    0.051    0.051
## 466       WAMI =~     AEO05  0.170  0.009   0.009    0.009    0.009
## 568      AEC01 ~~    WAMI06  0.170  0.015   0.015    0.050    0.050
## 995      AEO03 ~~     AEO05  0.169 -0.016  -0.016   -0.033   -0.033
## 979      AEO02 ~~    WAMI05  0.167 -0.015  -0.015   -0.059   -0.059
## 635      AEC03 ~~    WAMI02  0.164 -0.015  -0.015   -0.044   -0.044
## 651      AEC03 ~~  UWES08Ab  0.161 -0.015  -0.015   -0.061   -0.061
## 1201    WAMI09 ~~  UWES09Ab  0.159 -0.015  -0.015   -0.031   -0.031
## 820      AEG06 ~~     AEO05  0.158  0.015   0.015    0.026    0.026
## 392        AEG =~     AEO03  0.157  0.025   0.025    0.025    0.025
## 1212  UWES01Vi ~~ UWES04.De  0.157 -0.015  -0.015   -0.094   -0.094
## 1100    WAMI02 ~~    WAMI09  0.157  0.015   0.015    0.050    0.050
## 698      AEG02 ~~     AEO04  0.153 -0.014  -0.014   -0.024   -0.024
## 1030     AEO04 ~~  UWES03De  0.152 -0.014  -0.014   -0.053   -0.053
## 360        AEC =~     AEG10  0.152  0.013   0.013    0.013    0.013
## 932      AEG10 ~~    WAMI05  0.148 -0.014  -0.014   -0.049   -0.049
## 1155    WAMI05 ~~  UWES09Ab  0.145 -0.014  -0.014   -0.040   -0.040
## 564      AEC01 ~~    WAMI02  0.143  0.014   0.014    0.054    0.054
## 395        AEG =~     AEO06  0.141  0.023   0.023    0.023    0.023
## 710      AEG02 ~~    WAMI10  0.141  0.014   0.014    0.030    0.030
## 1002     AEO03 ~~    WAMI06  0.139  0.014   0.014    0.036    0.036
## 1009     AEO03 ~~  UWES03De  0.139 -0.014  -0.014   -0.060   -0.060
## 637      AEC03 ~~    WAMI04  0.138  0.013   0.013    0.050    0.050
## 717      AEG02 ~~  UWES07De  0.138 -0.013  -0.013   -0.043   -0.043
## 991      AEO02 ~~  UWES07De  0.135 -0.014  -0.014   -0.060   -0.060
## 404        AEG =~    WAMI09  0.133  0.007   0.007    0.007    0.007
## 980      AEO02 ~~    WAMI06  0.133 -0.013  -0.013   -0.039   -0.039
## 821      AEG06 ~~     AEO06  0.132  0.013   0.013    0.025    0.025
## 1224  UWES02Vi ~~  UWES09Ab  0.131 -0.013  -0.013   -0.036   -0.036
## 649      AEC03 ~~  UWES06Ab  0.130 -0.013  -0.013   -0.034   -0.034
## 967      AEO01 ~~  UWES06Ab  0.129 -0.013  -0.013   -0.035   -0.035
## 1148    WAMI05 ~~  UWES02Vi  0.129 -0.013  -0.013   -0.064   -0.064
## 1179    WAMI07 ~~  UWES08Ab  0.124 -0.013  -0.013   -0.060   -0.060
## 1052     AEO05 ~~  UWES05Vi  0.123 -0.013  -0.013   -0.037   -0.037
## 1115    WAMI03 ~~    WAMI08  0.122 -0.013  -0.013   -0.054   -0.054
## 862      AEG07 ~~  UWES03De  0.119  0.013   0.013    0.050    0.050
## 644      AEC03 ~~  UWES01Vi  0.116  0.012   0.012    0.035    0.035
## 744      AEG03 ~~  UWES02Vi  0.115 -0.012  -0.012   -0.042   -0.042
## 572      AEC01 ~~    WAMI10  0.112  0.012   0.012    0.043    0.043
## 354        AEC =~     AEG04  0.109  0.011   0.011    0.011    0.011
## 813      AEG06 ~~     AEG08  0.108  0.012   0.012    0.027    0.027
## 1181    WAMI08 ~~    WAMI09  0.107  0.012   0.012    0.067    0.067
## 739      AEG03 ~~    WAMI07  0.101  0.011   0.011    0.031    0.031
## 604      AEC02 ~~    WAMI06  0.100  0.011   0.011    0.083    0.083
## 507      AEC04 ~~     AEC01  0.098  0.014   0.014    0.106    0.106
## 569      AEC01 ~~    WAMI07  0.097  0.011   0.011    0.037    0.037
## 429        AEO =~    WAMI01  0.097  0.007   0.007    0.007    0.007
## 437        AEO =~    WAMI09  0.096 -0.007  -0.007   -0.007   -0.007
## 921      AEG09 ~~  UWES09Ab  0.096  0.011   0.011    0.019    0.019
## 801      AEG05 ~~    WAMI09  0.094  0.011   0.011    0.029    0.029
## 552      AEC01 ~~     AEG06  0.093 -0.011  -0.011   -0.029   -0.029
## 1172    WAMI07 ~~  UWES01Vi  0.092 -0.011  -0.011   -0.035   -0.035
## 824      AEG06 ~~    WAMI03  0.090  0.011   0.011    0.018    0.018
## 983      AEO02 ~~    WAMI09  0.089 -0.011  -0.011   -0.031   -0.031
## 581      AEC01 ~~  UWES09Ab  0.088 -0.011  -0.011   -0.027   -0.027
## 737      AEG03 ~~    WAMI05  0.088 -0.011  -0.011   -0.041   -0.041
## 361        AEC =~     AEO01  0.083 -0.008  -0.008   -0.008   -0.008
## 1063     AEO06 ~~    WAMI07  0.080 -0.010  -0.010   -0.024   -0.024
## 551      AEC01 ~~     AEG05  0.080  0.010   0.010    0.033    0.033
## 876      AEG08 ~~     AEO06  0.080  0.010   0.010    0.025    0.025
## 520      AEC04 ~~     AEO01  0.078 -0.010  -0.010   -0.061   -0.061
## 513      AEC04 ~~     AEG04  0.076  0.010   0.010    0.054    0.054
## 577      AEC01 ~~  UWES05Vi  0.072 -0.010  -0.010   -0.042   -0.042
## 774      AEG04 ~~  UWES02Vi  0.071  0.010   0.010    0.028    0.028
## 1102    WAMI02 ~~  UWES01Vi  0.071  0.010   0.010    0.037    0.037
## 889      AEG08 ~~  UWES03De  0.070  0.010   0.010    0.044    0.044
## 1221  UWES02Vi ~~  UWES06Ab  0.069  0.010   0.010    0.037    0.037
## 887      AEG08 ~~  UWES01Vi  0.069  0.010   0.010    0.030    0.030
## 599      AEC02 ~~    WAMI01  0.068 -0.010  -0.010   -0.118   -0.118
## 802      AEG05 ~~    WAMI10  0.067  0.009   0.009    0.026    0.026
## 570      AEC01 ~~    WAMI08  0.067 -0.009  -0.009   -0.060   -0.060
## 554      AEC01 ~~     AEG08  0.067  0.010   0.010    0.032    0.032
## 356        AEC =~     AEG06  0.066  0.008   0.008    0.008    0.008
## 592      AEC02 ~~     AEG10  0.064  0.009   0.009    0.062    0.062
## 964      AEO01 ~~  UWES03De  0.064 -0.009  -0.009   -0.039   -0.039
## 767      AEG04 ~~    WAMI05  0.061 -0.009  -0.009   -0.028   -0.028
## 626      AEC03 ~~     AEG09  0.061  0.009   0.009    0.019    0.019
## 903      AEG09 ~~    WAMI01  0.060  0.009   0.009    0.036    0.036
## 1149    WAMI05 ~~  UWES03De  0.060 -0.009  -0.009   -0.058   -0.058
## 806      AEG05 ~~ UWES04.De  0.058  0.009   0.009    0.045    0.045
## 523      AEC04 ~~     AEO04  0.058 -0.009  -0.009   -0.046   -0.046
## 1147    WAMI05 ~~  UWES01Vi  0.058 -0.009  -0.009   -0.038   -0.038
## 1074     AEO06 ~~  UWES08Ab  0.055 -0.009  -0.009   -0.033   -0.033
## 803      AEG05 ~~  UWES01Vi  0.055  0.008   0.008    0.025    0.025
## 686      AEG01 ~~  UWES09Ab  0.054  0.008   0.008    0.018    0.018
## 1184    WAMI08 ~~  UWES02Vi  0.054  0.009   0.009    0.058    0.058
## 522      AEC04 ~~     AEO03  0.053 -0.009  -0.009   -0.052   -0.052
## 527      AEC04 ~~    WAMI02  0.051  0.008   0.008    0.063    0.063
## 567      AEC01 ~~    WAMI05  0.049 -0.008  -0.008   -0.037   -0.037
## 955      AEO01 ~~    WAMI04  0.049  0.008   0.008    0.030    0.030
## 1028     AEO04 ~~  UWES01Vi  0.047  0.008   0.008    0.020    0.020
## 584      AEC02 ~~     AEG02  0.046  0.008   0.008    0.042    0.042
## 1131    WAMI04 ~~    WAMI09  0.045 -0.008  -0.008   -0.033   -0.033
## 758      AEG04 ~~     AEO02  0.044  0.008   0.008    0.018    0.018
## 663      AEG01 ~~     AEO02  0.044  0.008   0.008    0.023    0.023
## 846      AEG07 ~~     AEO03  0.042 -0.008  -0.008   -0.017   -0.017
## 738      AEG03 ~~    WAMI06  0.042  0.007   0.007    0.021    0.021
## 1227  UWES03De ~~  UWES06Ab  0.042 -0.008  -0.008   -0.038   -0.038
## 747      AEG03 ~~  UWES05Vi  0.041  0.007   0.007    0.026    0.026
## 556      AEC01 ~~     AEG10  0.041 -0.008  -0.008   -0.023   -0.023
## 692      AEG02 ~~     AEG08  0.040 -0.007  -0.007   -0.015   -0.015
## 718      AEG02 ~~  UWES08Ab  0.039  0.007   0.007    0.025    0.025
## 633      AEC03 ~~     AEO06  0.037  0.007   0.007    0.015    0.015
## 1138    WAMI04 ~~  UWES06Ab  0.037  0.007   0.007    0.030    0.030
## 1111    WAMI03 ~~    WAMI04  0.036  0.007   0.007    0.022    0.022
## 934      AEG10 ~~    WAMI07  0.035 -0.007  -0.007   -0.017   -0.017
## 353        AEC =~     AEG03  0.033  0.006   0.006    0.006    0.006
## 830      AEG06 ~~    WAMI09  0.032  0.006   0.006    0.014    0.014
## 741      AEG03 ~~    WAMI09  0.031 -0.006  -0.006   -0.018   -0.018
## 872      AEG08 ~~     AEO02  0.031  0.007   0.007    0.019    0.019
## 753      AEG04 ~~     AEG07  0.031  0.007   0.007    0.013    0.013
## 894      AEG08 ~~  UWES08Ab  0.031  0.006   0.006    0.030    0.030
## 909      AEG09 ~~    WAMI07  0.030 -0.006  -0.006   -0.014   -0.014
## 1128    WAMI04 ~~    WAMI06  0.030  0.007   0.007    0.027    0.027
## 942      AEG10 ~~  UWES05Vi  0.029  0.006   0.006    0.021    0.021
## 997      AEO03 ~~    WAMI01  0.029  0.006   0.006    0.029    0.029
## 606      AEC02 ~~    WAMI08  0.029  0.006   0.006    0.085    0.085
## 640      AEC03 ~~    WAMI07  0.028  0.006   0.006    0.015    0.015
## 643      AEC03 ~~    WAMI10  0.028  0.006   0.006    0.016    0.016
## 828      AEG06 ~~    WAMI07  0.027  0.006   0.006    0.013    0.013
## 732      AEG03 ~~     AEO06  0.027  0.006   0.006    0.014    0.014
## 728      AEG03 ~~     AEO02  0.026 -0.006  -0.006   -0.017   -0.017
## 1239  UWES05Vi ~~  UWES09Ab  0.026  0.006   0.006    0.016    0.016
## 1183    WAMI08 ~~  UWES01Vi  0.025  0.006   0.006    0.035    0.035
## 478      Engaj =~     AEC01  0.024  0.002   0.002    0.002    0.002
## 796      AEG05 ~~    WAMI04  0.023 -0.006  -0.006   -0.021   -0.021
## 1235 UWES04.De ~~  UWES09Ab  0.023 -0.006  -0.006   -0.024   -0.024
## 736      AEG03 ~~    WAMI04  0.023 -0.005  -0.005   -0.022   -0.022
## 586      AEC02 ~~     AEG04  0.022  0.005   0.005    0.032    0.032
## 993      AEO02 ~~  UWES09Ab  0.020 -0.005  -0.005   -0.011   -0.011
## 449       WAMI =~     AEC01  0.020  0.002   0.002    0.002    0.002
## 905      AEG09 ~~    WAMI03  0.019  0.005   0.005    0.009    0.009
## 1012     AEO03 ~~  UWES06Ab  0.018  0.005   0.005    0.014    0.014
## 877      AEG08 ~~    WAMI01  0.018  0.005   0.005    0.024    0.024
## 405        AEG =~    WAMI10  0.017 -0.002  -0.002   -0.002   -0.002
## 571      AEC01 ~~    WAMI09  0.016 -0.005  -0.005   -0.015   -0.015
## 1196    WAMI09 ~~ UWES04.De  0.016  0.005   0.005    0.026    0.026
## 1146    WAMI05 ~~    WAMI10  0.016 -0.005  -0.005   -0.020   -0.020
## 810      AEG05 ~~  UWES08Ab  0.016 -0.005  -0.005   -0.020   -0.020
## 1208    WAMI10 ~~  UWES07De  0.016  0.005   0.005    0.022    0.022
## 1050     AEO05 ~~  UWES03De  0.015  0.005   0.005    0.017    0.017
## 793      AEG05 ~~    WAMI01  0.015  0.004   0.004    0.020    0.020
## 1150    WAMI05 ~~ UWES04.De  0.014  0.004   0.004    0.034    0.034
## 596      AEC02 ~~     AEO04  0.013 -0.004  -0.004   -0.024   -0.024
## 1166    WAMI06 ~~  UWES07De  0.013 -0.004  -0.004   -0.018   -0.018
## 529      AEC04 ~~    WAMI04  0.013  0.004   0.004    0.039    0.039
## 1134    WAMI04 ~~  UWES02Vi  0.012  0.004   0.004    0.021    0.021
## 1054     AEO05 ~~  UWES07De  0.012  0.004   0.004    0.014    0.014
## 614      AEC02 ~~  UWES06Ab  0.011 -0.004  -0.004   -0.029   -0.029
## 911      AEG09 ~~    WAMI09  0.011  0.004   0.004    0.009    0.009
## 585      AEC02 ~~     AEG03  0.011 -0.004  -0.004   -0.028   -0.028
## 530      AEC04 ~~    WAMI05  0.010 -0.004  -0.004   -0.033   -0.033
## 860      AEG07 ~~  UWES01Vi  0.009  0.004   0.004    0.009    0.009
## 382        AEC =~  UWES06Ab  0.009  0.002   0.002    0.002    0.002
## 762      AEG04 ~~     AEO06  0.009 -0.003  -0.003   -0.007   -0.007
## 1135    WAMI04 ~~  UWES03De  0.008 -0.003  -0.003   -0.023   -0.023
## 1073     AEO06 ~~  UWES07De  0.008  0.003   0.003    0.012    0.012
## 1188    WAMI08 ~~  UWES06Ab  0.008  0.003   0.003    0.018    0.018
## 1072     AEO06 ~~  UWES06Ab  0.008  0.003   0.003    0.008    0.008
## 1137    WAMI04 ~~  UWES05Vi  0.007  0.003   0.003    0.017    0.017
## 1157    WAMI06 ~~    WAMI08  0.007 -0.003  -0.003   -0.017   -0.017
## 1153    WAMI05 ~~  UWES07De  0.006  0.003   0.003    0.017    0.017
## 1038     AEO05 ~~    WAMI01  0.006  0.003   0.003    0.011    0.011
## 748      AEG03 ~~  UWES06Ab  0.006 -0.003  -0.003   -0.008   -0.008
## 613      AEC02 ~~  UWES05Vi  0.005  0.003   0.003    0.024    0.024
## 772      AEG04 ~~    WAMI10  0.005 -0.003  -0.003   -0.006   -0.006
## 1191    WAMI08 ~~  UWES09Ab  0.005 -0.003  -0.003   -0.011   -0.011
## 543      AEC04 ~~  UWES08Ab  0.005 -0.003  -0.003   -0.028   -0.028
## 768      AEG04 ~~    WAMI06  0.005  0.003   0.003    0.006    0.006
## 1133    WAMI04 ~~  UWES01Vi  0.005  0.003   0.003    0.012    0.012
## 773      AEG04 ~~  UWES01Vi  0.005 -0.003  -0.003   -0.006   -0.006
## 1209    WAMI10 ~~  UWES08Ab  0.004 -0.002  -0.002   -0.012   -0.012
## 780      AEG04 ~~  UWES08Ab  0.004 -0.002  -0.002   -0.009   -0.009
## 954      AEO01 ~~    WAMI03  0.004  0.002   0.002    0.004    0.004
## 1182    WAMI08 ~~    WAMI10  0.004  0.002   0.002    0.014    0.014
## 726      AEG03 ~~     AEG10  0.004  0.002   0.002    0.006    0.006
## 662      AEG01 ~~     AEO01  0.004  0.002   0.002    0.006    0.006
## 1217  UWES01Vi ~~  UWES09Ab  0.003  0.002   0.002    0.005    0.005
## 601      AEC02 ~~    WAMI03  0.003  0.002   0.002    0.012    0.012
## 969      AEO01 ~~  UWES08Ab  0.003 -0.002  -0.002   -0.009   -0.009
## 939      AEG10 ~~  UWES02Vi  0.003  0.002   0.002    0.006    0.006
## 1039     AEO05 ~~    WAMI02  0.003 -0.002  -0.002   -0.005   -0.005
## 532      AEC04 ~~    WAMI07  0.002  0.002   0.002    0.011    0.011
## 715      AEG02 ~~  UWES05Vi  0.002 -0.002  -0.002   -0.004   -0.004
## 549      AEC01 ~~     AEG03  0.002 -0.002  -0.002   -0.005   -0.005
## 771      AEG04 ~~    WAMI09  0.002 -0.002  -0.002   -0.004   -0.004
## 845      AEG07 ~~     AEO02  0.002 -0.002  -0.002   -0.004   -0.004
## 1032     AEO04 ~~  UWES05Vi  0.001  0.001   0.001    0.004    0.004
## 931      AEG10 ~~    WAMI04  0.001 -0.001  -0.001   -0.004   -0.004
## 625      AEC03 ~~     AEG08  0.001  0.001   0.001    0.003    0.003
## 415        AEO =~     AEC04  0.001  0.001   0.001    0.001    0.001
## 557      AEC01 ~~     AEO01  0.001  0.001   0.001    0.003    0.003
## 1106    WAMI02 ~~  UWES05Vi  0.001 -0.001  -0.001   -0.004   -0.004
## 1231 UWES04.De ~~  UWES05Vi  0.001 -0.001  -0.001   -0.007   -0.007
## 833      AEG06 ~~  UWES02Vi  0.001 -0.001  -0.001   -0.002   -0.002
## 888      AEG08 ~~  UWES02Vi  0.000 -0.001  -0.001   -0.003   -0.003
## 1230  UWES03De ~~  UWES09Ab  0.000  0.001   0.001    0.003    0.003
## 515      AEC04 ~~     AEG06  0.000  0.001   0.001    0.003    0.003
## 910      AEG09 ~~    WAMI08  0.000  0.001   0.001    0.003    0.003
## 560      AEC01 ~~     AEO04  0.000 -0.001  -0.001   -0.002   -0.002
## 519      AEC04 ~~     AEG10  0.000  0.001   0.001    0.003    0.003
## 742      AEG03 ~~    WAMI10  0.000  0.000   0.000   -0.001   -0.001
## 534      AEC04 ~~    WAMI09  0.000  0.000   0.000   -0.003   -0.003
## 1057     AEO06 ~~    WAMI01  0.000  0.000   0.000   -0.002   -0.002
## 961      AEO01 ~~    WAMI10  0.000  0.000   0.000    0.000    0.000
## 459       WAMI =~     AEG08  0.000  0.000   0.000    0.000    0.000

8.5.0.5 Alpha Ordinal and Omege

#Reliability
semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##              AEC    AEG    AEO   WAMI  Engaj
## alpha     0.9242     NA     NA     NA     NA
## alpha.ord 0.9371 0.9204 0.8714 0.9028 0.9651
## omega     0.9209 0.8743 0.8317 0.9297 0.9491
## omega2    0.9209 0.8743 0.8317 0.9297 0.9491
## omega3    0.9192 0.8749 0.8317 0.9450 0.9455
## avevar    0.7967 0.5324 0.5333 0.7190 0.7567

8.5.0.6 Correlations and Discriminant Validaity

discriminantValidity(fit, merge=T)
##     lhs op   rhs    est ci.lower ci.upper  Df AIC BIC Chisq Chisq diff Df diff
## 1   AEC ~~   AEG 0.5863   0.5178   0.6548 694  NA  NA  2334      93.19       4
## 2   AEC ~~   AEO 0.4473   0.3895   0.5052 694  NA  NA  2789     193.85       4
## 3   AEC ~~  WAMI 0.2639   0.1974   0.3303 694  NA  NA  5937     514.90       4
## 4   AEC ~~ Engaj 0.2569   0.1904   0.3233 694  NA  NA  5699     470.52       4
## 5   AEG ~~   AEO 0.8536   0.8123   0.8950 694  NA  NA  1713      73.40       4
## 6   AEG ~~  WAMI 0.4329   0.3600   0.5058 694  NA  NA  8839     523.08       4
## 7   AEG ~~ Engaj 0.4644   0.3963   0.5324 694  NA  NA  8170     515.84       4
## 8   AEO ~~  WAMI 0.5327   0.4733   0.5920 694  NA  NA  5461     479.73       4
## 9   AEO ~~ Engaj 0.5941   0.5407   0.6474 694  NA  NA  4905     469.13       4
## 10 WAMI ~~ Engaj 0.7937   0.7656   0.8218 694  NA  NA  2007      95.28       4
##    Pr(>Chisq)
## 1   2.770e-19
## 2   7.900e-41
## 3  4.015e-110
## 4  1.592e-100
## 5   4.348e-15
## 6  6.818e-112
## 7  2.506e-110
## 8  1.620e-102
## 9  3.175e-100
## 10  9.941e-20

8.5.0.7 Graphical Representation

semPaths(object=fit,whatLabels ="stand",residuals = F, thresholds = F,ThreshAtSide=F, cardinal = c("exogenous covariances", border.color = ("black")), layout="circle",intercept=F, edge.label.cex = 1)

8.5.1 Predicting Latent as Factor Scores

data_predict <- predict(fit)
data <- cbind(data,data_predict)
write.csv(data,"data.csv")
#names(data)
8.5.1.0.1 Correlation Matrix
CorMat <- cor(data[,c(281:285)],method = "pearson")
corrplot(CorMat,order="hclust",type="upper",method="ellipse",
tl.pos = "lt",mar = c(2,2,2,2))
corrplot(CorMat,order="hclust",type="lower",method="number",
diag=FALSE,tl.pos="n", cl.pos="n",add=TRUE,mar = c(2,2,2,2))

9 Item Reponse Theory

9.1 Subsetting Data

data<-TDados[,c(234:237)]

9.2 Descriptives

data<-as.matrix(data)
dsc<-descript(data)

9.3 Alpha - per excluded item

dsc$alpha
##                  value
## All Items       0.9242
## Excluding AEC01 0.8978
## Excluding AEC02 0.8918
## Excluding AEC03 0.9326
## Excluding AEC04 0.8815

9.4 Correlation Itens

rcor.test(data, method = "kendall")
## 
##       AEC01  AEC02  AEC03  AEC04 
## AEC01  *****  0.730  0.556  0.721
## AEC02 <0.001  *****  0.563  0.780
## AEC03 <0.001 <0.001  *****  0.629
## AEC04 <0.001 <0.001 <0.001  *****
## 
## upper diagonal part contains correlation coefficient estimates 
## lower diagonal part contains corresponding p-values

9.5 Empirical Plots - Total Raw Score and Responses

empirical_plot(data, c(1,2,3,4), smooth = TRUE)

9.6 Firts Constrained Model

fit1<-ltm::grm(data,constrained = T, Hessian=T,IRT.param=T)
fit1
## 
## Call:
## ltm::grm(data = data, constrained = T, IRT.param = T, Hessian = T)
## 
## Coefficients:
##        Extrmt1  Extrmt2  Extrmt3  Extrmt4  Extrmt5  Extrmt6  Dscrmn
## AEC01   -1.985   -1.308   -0.568    0.465    1.388    1.847   3.782
## AEC02   -2.180   -1.437   -0.782    0.333    1.203    1.733   3.782
## AEC03   -2.016   -1.273   -0.428    0.460    1.376    1.864   3.782
## AEC04   -2.121   -1.414   -0.553    0.432    1.352    1.834   3.782
## 
## Log.Lik: -3819
margins(fit1)
## 
## Call:
## ltm::grm(data = data, constrained = T, IRT.param = T, Hessian = T)
## 
## Fit on the Two-Way Margins
## 
##       AEC01 AEC02   AEC03   AEC04  
## AEC01 -      140.93 3307.38  105.33
## AEC02       -       2412.13  187.60
## AEC03 ***   ***     -        186.12
## AEC04       ***     ***     -      
## 
## '***' denotes pairs of items with lack-of-fit
margins(fit1, "three")
## 
## Call:
## ltm::grm(data = data, constrained = T, IRT.param = T, Hessian = T)
## 
## Fit on the Three-Way Margins
## 
##   Item i Item j Item k (O-E)^2/E    
## 1      1      2      3   92867.3 ***
## 2      1      2      4     973.5    
## 3      1      3      4   14885.4 ***
## 4      2      3      4   11192.0 ***
## 
## '***' denotes triplets of items with lack-of-fit

9.7 Unconstrained Model

fit2<-grm(data,constrained = F, Hessian=T,IRT.param=T)
fit2
## 
## Call:
## grm(data = data, constrained = F, IRT.param = T, Hessian = T)
## 
## Coefficients:
##        Extrmt1  Extrmt2  Extrmt3  Extrmt4  Extrmt5  Extrmt6  Dscrmn
## AEC01   -2.460   -1.513   -0.691    0.461    1.464    1.961   3.745
## AEC02   -2.107   -1.485   -0.816    0.388    1.318    1.958   3.572
## AEC03   -2.371   -1.669   -0.643    0.512    1.671    2.210   2.089
## AEC04   -2.211   -1.521   -0.634    0.480    1.579    2.031   3.152
## 
## Log.Lik: -3828
margins(fit1)
## 
## Call:
## ltm::grm(data = data, constrained = T, IRT.param = T, Hessian = T)
## 
## Fit on the Two-Way Margins
## 
##       AEC01 AEC02   AEC03   AEC04  
## AEC01 -      140.93 3307.38  105.33
## AEC02       -       2412.13  187.60
## AEC03 ***   ***     -        186.12
## AEC04       ***     ***     -      
## 
## '***' denotes pairs of items with lack-of-fit
margins(fit1, "three")
## 
## Call:
## ltm::grm(data = data, constrained = T, IRT.param = T, Hessian = T)
## 
## Fit on the Three-Way Margins
## 
##   Item i Item j Item k (O-E)^2/E    
## 1      1      2      3   92867.3 ***
## 2      1      2      4     973.5    
## 3      1      3      4   14885.4 ***
## 4      2      3      4   11192.0 ***
## 
## '***' denotes triplets of items with lack-of-fit

9.8 Comparisons Constrained and Uconstrained

anova(fit1,fit2)
## 
##  Likelihood Ratio Table
##       AIC  BIC log.Lik    LRT df p.value
## fit1 7688 7805   -3819                  
## fit2 7711 7842   -3828 -16.69  3       1

9.9 Unconstrained Model

9.9.1 Coeficients

coef(fit2, simplify = TRUE,standardized=T,prob=T,order=T)
##       Extrmt1 Extrmt2 Extrmt3 Extrmt4 Extrmt5 Extrmt6 Dscrmn
## AEC01  -2.460  -1.513  -0.691   0.461   1.464   1.961  3.745
## AEC02  -2.107  -1.485  -0.816   0.388   1.318   1.958  3.572
## AEC03  -2.371  -1.669  -0.643   0.512   1.671   2.210  2.089
## AEC04  -2.211  -1.521  -0.634   0.480   1.579   2.031  3.152

9.9.2 Information

information(fit2, c(-4, 4), items = c(1:4))
## 
## Call:
## grm(data = data, constrained = F, IRT.param = T, Hessian = T)
## 
## Total Information = 57.36
## Information in (-4, 4) = 57.2 (99.73%)
## Based on items 1, 2, 3, 4

9.10 Item Response Category Characteristic Curves

op <- par(mfrow = c(2,2))
plot(fit2, lwd = 2, legend = TRUE, ncol = 2)

9.10.1 Item Information Curve

plot(fit2, type = "IIC")

9.10.2 Item Information Curve

plot(fit2, type = "IIC",item=0,zrange = c(-4, 4))

9.10.3 Item Information Curve - Standard Error of Measurement

vals <- plot(fit2, type = "IIC", items = 0, plot = FALSE)
plot(vals[,1], 1 / sqrt(vals[, 2]), type = "l", lwd = 2,
     xlab = "Ability", ylab = "Standard Error", 
     main = "Standard Error of Measurement")

9.10.4 Operational Characteristic Curve itens (upper)

op <- par(mfrow = c(2,2))
plot(fit2, type = "OCCu")

9.10.5 Operational Characteristic Curve itens (lower)

op <- par(mfrow = c(2,2))
plot(fit2,type='OCCl')

9.10.6 Person Parameters Factor Score

f.scores<-ltm::factor.scores(fit2)
plot(f.scores, main = "KDE for Person Parameters")