library(readxl)
## Warning: package 'readxl' was built under R version 4.0.3
Data <- read_excel("C:/Users/Admin/Desktop/R/Data.xlsx",
sheet = "MBA", col_types = c("text",
"text", "text", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric"))
attach(Data)
library(BMA)
X=cbind(Viscera,Fillet,`Abd. fat`,Liver,`Weight gain`)
Y=Data$`Body Weight`
David=bicreg(X,Y,strict = FALSE,OR=20)
summary(David)
##
## Call:
## bicreg(x = X, y = Y, strict = FALSE, OR = 20)
##
##
## 9 models were selected
## Best 5 models (cumulative posterior probability = 0.8803 ):
##
## p!=0 EV SD model 1 model 2 model 3 model 4
## Intercept 100.0 487.3367 187.7807 463.2453 567.0210 494.3460 452.7882
## Viscera 16.8 0.3088 1.6673 . . . 0.6159
## Fillet 100.0 2.3921 0.4077 2.4153 2.3874 2.6329 2.3135
## Abd..fat 15.4 -0.2804 3.0526 . . . .
## Liver 12.7 -0.4356 4.3880 . . -4.1359 .
## Weight.gain 20.7 -0.1254 0.4670 . -0.5030 . .
##
## nVar 1 2 2 2
## r2 0.807 0.811 0.808 0.808
## BIC -36.3097 -33.6052 -33.2827 -33.2339
## post prob 0.464 0.120 0.102 0.100
## model 5
## Intercept 463.3482
## Viscera .
## Fillet 2.4222
## Abd..fat -0.1631
## Liver .
## Weight.gain .
##
## nVar 2
## r2 0.807
## BIC -33.1342
## post prob 0.095
imageplot.bma(David)
Model 1 shows that Fillet accouting for 80.7% of contribution (R^2=0.870) The probability of model 1 is 46.4%