Converting some data columns into factors
Running Binomial Logistic Regression Model (Model1)
##
## Call:
## glm(formula = Default ~ CreditLimit + Education, family = binomial(),
## data = CCdefault.dt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8824 -0.7812 -0.6503 -0.4299 2.5123
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.089e-01 3.421e-02 -23.646 < 2e-16 ***
## CreditLimit -3.199e-06 1.307e-07 -24.482 < 2e-16 ***
## Education2 7.351e-02 3.284e-02 2.239 0.025164 *
## Education3 9.840e-02 4.266e-02 2.307 0.021059 *
## Education4 -1.342e+00 3.909e-01 -3.432 0.000599 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 31427 on 29600 degrees of freedom
## Residual deviance: 30629 on 29596 degrees of freedom
## AIC: 30639
##
## Number of Fisher Scoring iterations: 5
Running Binomial Logistic Regression Model With Interaction (Model2)
##
## Call:
## glm(formula = Default ~ CreditLimit + Education + CreditLimit *
## Education, family = binomial(), data = CCdefault.dt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8940 -0.7733 -0.6529 -0.4536 2.8191
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.262e-01 4.470e-02 -20.719 < 2e-16 ***
## CreditLimit -2.555e-06 2.005e-07 -12.747 < 2e-16 ***
## Education2 2.493e-01 5.453e-02 4.572 4.83e-06 ***
## Education3 2.507e-01 6.689e-02 3.748 0.000178 ***
## Education4 1.318e-01 9.503e-01 0.139 0.889700
## CreditLimit:Education2 -1.125e-06 2.824e-07 -3.983 6.80e-05 ***
## CreditLimit:Education3 -9.762e-07 4.067e-07 -2.400 0.016390 *
## CreditLimit:Education4 -8.732e-06 5.802e-06 -1.505 0.132360
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 31427 on 29600 degrees of freedom
## Residual deviance: 30610 on 29593 degrees of freedom
## AIC: 30626
##
## Number of Fisher Scoring iterations: 6
Full Model – Running Binomial Logistic Regression Model With Interactions (Model3)
##
## Call:
## glm(formula = Default ~ CreditLimit + Male + Education + MaritalStatus +
## Age + BillOutstanding + LastPayment + CreditLimit * Male +
## CreditLimit * Education + CreditLimit * MaritalStatus + CreditLimit *
## Age + CreditLimit * BillOutstanding + CreditLimit * LastPayment,
## family = binomial(), data = CCdefault.dt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.8760 -0.7729 -0.6405 -0.3706 3.9782
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.497e-01 1.157e-01 -3.887 0.000102 ***
## CreditLimit -6.111e-06 6.773e-07 -9.023 < 2e-16 ***
## Male1 1.640e-01 4.533e-02 3.619 0.000296 ***
## Education2 1.535e-01 5.523e-02 2.780 0.005442 **
## Education3 1.489e-01 6.952e-02 2.142 0.032222 *
## Education4 5.819e-02 9.464e-01 0.061 0.950977
## MaritalStatus2 -2.545e-01 5.204e-02 -4.891 1.00e-06 ***
## MaritalStatus3 -4.309e-02 1.879e-01 -0.229 0.818591
## Age -6.267e-03 2.605e-03 -2.406 0.016146 *
## BillOutstanding 2.053e-07 4.769e-07 0.431 0.666816
## LastPayment -3.292e-05 4.886e-06 -6.738 1.61e-11 ***
## CreditLimit:Male1 -7.796e-08 2.528e-07 -0.308 0.757817
## CreditLimit:Education2 -9.232e-07 2.851e-07 -3.238 0.001204 **
## CreditLimit:Education3 -1.028e-06 4.104e-07 -2.504 0.012296 *
## CreditLimit:Education4 -8.349e-06 5.773e-06 -1.446 0.148108
## CreditLimit:MaritalStatus2 3.766e-07 2.864e-07 1.315 0.188434
## CreditLimit:MaritalStatus3 -8.342e-07 1.686e-06 -0.495 0.620816
## CreditLimit:Age 7.844e-08 1.526e-08 5.139 2.76e-07 ***
## CreditLimit:BillOutstanding 5.185e-12 1.432e-12 3.622 0.000292 ***
## CreditLimit:LastPayment 2.387e-11 1.803e-11 1.324 0.185499
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 31427 on 29600 degrees of freedom
## Residual deviance: 30250 on 29581 degrees of freedom
## AIC: 30290
##
## Number of Fisher Scoring iterations: 6
StepAIC Model – Running Binomial Logistic Regression Model With Interactions (Model4)
## Start: AIC=30290.43
## Default ~ CreditLimit + Male + Education + MaritalStatus + Age +
## BillOutstanding + LastPayment + CreditLimit * Male + CreditLimit *
## Education + CreditLimit * MaritalStatus + CreditLimit * Age +
## CreditLimit * BillOutstanding + CreditLimit * LastPayment
##
## Df Deviance AIC
## - CreditLimit:MaritalStatus 2 30253 30289
## - CreditLimit:Male 1 30251 30289
## - CreditLimit:LastPayment 1 30252 30290
## <none> 30250 30290
## - CreditLimit:Education 3 30265 30299
## - CreditLimit:BillOutstanding 1 30264 30302
## - CreditLimit:Age 1 30276 30314
##
## Step: AIC=30288.49
## Default ~ CreditLimit + Male + Education + MaritalStatus + Age +
## BillOutstanding + LastPayment + CreditLimit:Male + CreditLimit:Education +
## CreditLimit:Age + CreditLimit:BillOutstanding + CreditLimit:LastPayment
##
## Df Deviance AIC
## - CreditLimit:Male 1 30253 30287
## - CreditLimit:LastPayment 1 30254 30288
## <none> 30253 30289
## - CreditLimit:Education 3 30269 30299
## - CreditLimit:BillOutstanding 1 30266 30300
## - CreditLimit:Age 1 30278 30312
## - MaritalStatus 2 30290 30322
##
## Step: AIC=30286.55
## Default ~ CreditLimit + Male + Education + MaritalStatus + Age +
## BillOutstanding + LastPayment + CreditLimit:Education + CreditLimit:Age +
## CreditLimit:BillOutstanding + CreditLimit:LastPayment
##
## Df Deviance AIC
## - CreditLimit:LastPayment 1 30254 30286
## <none> 30253 30287
## - CreditLimit:Education 3 30269 30297
## - CreditLimit:BillOutstanding 1 30266 30298
## - CreditLimit:Age 1 30278 30310
## - Male 1 30279 30311
## - MaritalStatus 2 30290 30320
##
## Step: AIC=30286.22
## Default ~ CreditLimit + Male + Education + MaritalStatus + Age +
## BillOutstanding + LastPayment + CreditLimit:Education + CreditLimit:Age +
## CreditLimit:BillOutstanding
##
## Df Deviance AIC
## <none> 30254 30286
## - CreditLimit:Education 3 30271 30297
## - CreditLimit:BillOutstanding 1 30275 30305
## - CreditLimit:Age 1 30280 30310
## - Male 1 30281 30311
## - MaritalStatus 2 30292 30320
## - LastPayment 1 30434 30464
##
## Call:
## glm(formula = Default ~ CreditLimit + Male + Education + MaritalStatus +
## Age + BillOutstanding + LastPayment + CreditLimit:Education +
## CreditLimit:Age + CreditLimit:BillOutstanding, family = binomial(),
## data = CCdefault.dt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7631 -0.7746 -0.6425 -0.3637 4.3991
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.332e-01 1.007e-01 -5.296 1.18e-07 ***
## CreditLimit -5.537e-06 5.391e-07 -10.271 < 2e-16 ***
## Male1 1.509e-01 2.921e-02 5.164 2.42e-07 ***
## Education2 1.655e-01 5.483e-02 3.018 0.002546 **
## Education3 1.601e-01 6.927e-02 2.311 0.020827 *
## Education4 6.554e-02 9.466e-01 0.069 0.944803
## MaritalStatus2 -2.010e-01 3.298e-02 -6.095 1.10e-09 ***
## MaritalStatus3 -1.026e-01 1.311e-01 -0.783 0.433761
## Age -5.040e-03 2.426e-03 -2.077 0.037778 *
## BillOutstanding 4.235e-08 4.562e-07 0.093 0.926033
## LastPayment -2.771e-05 2.683e-06 -10.327 < 2e-16 ***
## CreditLimit:Education2 -9.933e-07 2.818e-07 -3.525 0.000424 ***
## CreditLimit:Education3 -1.087e-06 4.097e-07 -2.653 0.007988 **
## CreditLimit:Education4 -8.406e-06 5.774e-06 -1.456 0.145449
## CreditLimit:Age 6.942e-08 1.352e-08 5.136 2.81e-07 ***
## CreditLimit:BillOutstanding 5.939e-12 1.307e-12 4.544 5.51e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 31427 on 29600 degrees of freedom
## Residual deviance: 30254 on 29585 degrees of freedom
## AIC: 30286
##
## Number of Fisher Scoring iterations: 6