K-fold CV is an alternative to LOOCV. This method randomly divides a set of observations into K groups, or folds, of equal-ish size. The first fold is a validation set, and the method is fit on the rest of the k − 1 folds. The mean squared error, MSE1, is then computed on the observations in the held-out fold. This procedure is repeated k times; each time, a different group of observations is treated as a validation set. This process results in k estimates of the test error, MSE1, MSE2,…, MSEk
This approach has two drawbacks compared to k-fold cross-validation.
In Chapter 4, we used logistic regression to predict the probability of default using income and balance on the Default data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis.
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.3
attach(Default)
set.seed(1)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default, subset = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.5830 -0.1428 -0.0573 -0.0213 3.3395
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.194e+01 6.178e-01 -19.333 < 2e-16 ***
## income 3.262e-05 7.024e-06 4.644 3.41e-06 ***
## balance 5.689e-03 3.158e-04 18.014 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1523.8 on 4999 degrees of freedom
## Residual deviance: 803.3 on 4997 degrees of freedom
## AIC: 809.3
##
## Number of Fisher Scoring iterations: 8
probs = predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm = rep("No", length(probs))
pred.glm[probs > 0.5] = "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0254
train = sample(dim(Default)[1], dim(Default)[1] / 2) #splitting
fit.glm=glm(default ~ income + balance, data = Default, family = "binomial", subset = train) #multiple regression w/ training subset
probs=predict(fit.glm, newdata = Default[-train, ], type = "response") #predicting
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default) #compute error
## [1] 0.0274
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244
After running the three, you can see the test error can be variable depending on which observations are in the training set and which observations are in the validation set.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance + student, data = Default, family = "binomial", subset = train)
pred.glm <- rep("No", length(probs))
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0278
No improvement in the Validation Set Estimate of the test error seen when adding the dummy “student” variable in the model.
We continue to consider the use of a logistic regression model to predict the probability of “default” using “income” and “balance” on the “Default” data set. In particular, we will now computes estimates for the standard errors of the “income” and “balance” logistic regression coefficients in two different ways : (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the glm() function. Do not forget to set a random seed before beginning your analysis.
A.) Using the summary() and glm() functions, determine the estimated standard errors for the coefficients associated with “income” and “balance” in a multiple logistic regression model that uses both predictors.
set.seed(1)
attach(Default)
## The following objects are masked from Default (pos = 3):
##
## balance, default, income, student
fit.glm = glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
The glm() estimates of the standard errors for the coefficients β0, β1 and β2 are respectively 0.4347564, 4.985167210^{-6} and 2.273731410^{-4}.
B.) Write a function, boot.fn(), that takes as input the “Default” data set as well as an index of the observations, and that outputs the coefficient estimates for “income” and “balance” in the multiple logistic regression model.
boot.fn = function(data, index) {
fit = glm(default ~ income + balance, data = data, family = "binomial", subset = index)
return (coef(fit))
}
C.) Use the boot() function together with your boot.fn() function to estimate the standard errors of the logistic regression coefficients for “income” and “balance”.
library(boot)
boot(Default, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -1.154047e+01 -3.945460e-02 4.344722e-01
## t2* 2.080898e-05 1.680317e-07 4.866284e-06
## t3* 5.647103e-03 1.855765e-05 2.298949e-04
The standard error is shown in the last column for the coefficients of β0, β1 and β2
D.) Comment on the estimated standard errors obtained using the glm() function and using your bootstrap function. The standard error from both the glm() method and the bootstrap method are close.
We will now consider the “Boston” housing data set, from the “MASS” library.
A.) Based on this data set, provide an estimate for the population mean of “medv”. Call this estimate μ^.
library(MASS)
attach(Boston)
mu.hat=mean(medv)
mu.hat
## [1] 22.53281
se.hat=sd(medv) / sqrt(dim(Boston)[1])
se.hat
## [1] 0.4088611
C. ) Now estimate the standard error of μ^ using the bootstrap. How does this compare to your answer from (b) ?
set.seed(1)
boot.fn <- function(data, index) {
mu <- mean(data[index])
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 22.53281 0.007650791 0.4106622
The bootstrap estimated standard error of μ^ of 0.4119 is very close to the estimate found in (b) of 0.4089.
D.) Based on your bootstrap estimate from (c), provide a 95% confidence interval for the mean of “medv”. Compare it to the results obtained using t.test(Boston$medv).
t.test(medv)
##
## One Sample t-test
##
## data: medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 21.72953 23.33608
## sample estimates:
## mean of x
## 22.53281
CI.mu.hat <- c(22.53 - 2 * 0.4119, 22.53 + 2 * 0.4119)
CI.mu.hat
## [1] 21.7062 23.3538
The bootstrap confidence interval is similar to the one provided by the t.test() function.
E.) Based on this data set, provide an estimate, μ^med, for the median value of “medv” in the population.
med.hat=median(medv)
med.hat
## [1] 21.2
F.) We now would like to estimate the standard error of μ^med. Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings.
boot.fn <- function(data, index) {
mu <- median(data[index])
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 21.2 -0.0386 0.3770241
an estimated median value of 21.2 which is equal to the value obtained in (e), with a standard error of 0.3874 which is relatively small compared to median value.
G. ) Based on this data set, provide an estimate for the tenth percentile of “medv” in Boston suburbs. Call this quantity μ^0.1.
percent.hat <- quantile(medv, c(0.1))
percent.hat
## 10%
## 12.75
H. Use the bootstrap to estimate the standard error of μ^0.1. Comment on your findings
boot.fn <- function(data, index) {
mu <- quantile(data[index], c(0.1))
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 12.75 0.0186 0.4925766
Estimate of 10th percentile value is 12.75, equal to the value previously seen in G. w/ a standard error of 0.5113 which is small compared to percentile value