The purpose of this assignment is to use the methods of section 2.5.8 as a template to recreate the choropleth of median housing values done in the March 1 notes.
library(tidycensus)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.0.6 v dplyr 1.0.4
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tmap)
library(tmaptools)
library(janitor)
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(sf)
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
Copy the code from the March 22 notes to reproduce the choropleth.
# Place the code here.
EW = st_read("C:/Users/Braden/Documents/CSC495/statistical-gis-boundaries-london/Local_Authority_Districts_(December_2015)_Boundaries.shp")
## Reading layer `Local_Authority_Districts_(December_2015)_Boundaries' from data source `C:\Users\Braden\Documents\CSC495\statistical-gis-boundaries-london\Local_Authority_Districts_(December_2015)_Boundaries.shp' using driver `ESRI Shapefile'
## Simple feature collection with 380 features and 6 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: 5513 ymin: 5333.602 xmax: 655989 ymax: 1220302
## projected CRS: OSGB 1936 / British National Grid
load(file = "~/CSC495/gv.RData")
#EW is the data we read in straight from the web
BoroughDataMap <- EW %>%
clean_names()%>%
# the . here just means use the data already loaded
filter(str_detect(lad15cd, "^E09"))%>%
merge(.,
LondonData,
by.x="lad15cd",
by.y="new_code",
no.dups = TRUE)%>%
distinct(.,lad15cd,
.keep_all = TRUE)
Use qtm() to produce a simple choropleth.
# Place your code here.
qtm(BoroughDataMap,
fill = "rate_of_job_seekers_allowance_jsa_claimants_2015")
Use the code in section 2.5.8 as a template to create a better choropleth.
# Place your code here.
qtm(BoroughDataMap,
fill = "population_2015") +
tm_bubbles("median_house_price_2014", "red", border.col = "black", title.size="median house price 2014") +
tm_scale_bar() +
tm_compass(position = c("left", "bottom"),type = "arrow") +
tm_layout(title = "Population and House Price", legend.outside = TRUE) +
tmap_style("natural")
## tmap style set to "natural"
## other available styles are: "white", "gray", "cobalt", "col_blind", "albatross", "beaver", "bw", "classic", "watercolor"
## Legend labels were too wide. Therefore, legend.text.size has been set to 0.54. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.