South ural state university, Chelyabinsk, Russian federation
#Import
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2 3.3.2 v fma 2.4
## v forecast 8.13 v expsmooth 2.3
##
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package: markovchain
## Version: 0.8.5-3
## Date: 2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
library(ascii)
library(pander)
##
## Attaching package: 'pander'
## The following object is masked from 'package:ascii':
##
## Pandoc
##Global vriable##
Full_original_data <- read_excel("data2.xlsx", sheet = "Central Federal District") # path of your data ( time series data)
## New names:
## * region -> region...2
## * infection -> infection...3
## * `daily infection` -> `daily infection...4`
## * region -> region...5
## * infection -> infection...6
## * ...
original_data<-Full_original_data$`daily total`
y_lab <- "Daily Covid 19 Infection cases in Central Federal District" # input name of data
Actual_date_interval <- c("2020/03/12","2021/03/22")
Forecast_date_interval <- c("2021/03/23","2021/03/29")
validation_data_days <-4
Number_Neural<-5 # Number of Neural For model NNAR Model
NNAR_Model<- TRUE #create new model (TRUE/FALSE)
frequency<-"days"
country.name <- "Central Federal District"
# Data Preparation & calculate some of statistics measures
summary(original_data) # Summary your time series
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3 1546 4092 4721 7384 12789
# calculate standard deviation
data.frame(kurtosis=kurtosis(original_data)) # calculate Cofficient of kurtosis
## kurtosis
## 1 2.17122
data.frame(skewness=skewness(original_data)) # calculate Cofficient of skewness
## skewness
## 1 0.5303821
data.frame(Standard.deviation =sd(original_data))
## Standard.deviation
## 1 3335.148
#processing on data (input data)
rows <- NROW(original_data) # calculate number of rows in time series (number of days)
training_data<-original_data[1:(rows-validation_data_days)] # Training data
testing_data<-original_data[(rows-validation_data_days+1):rows] #testing data
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency) #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency) #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) #calculate number of days that you want to forecasting
validation_dates<-tail(AD,validation_data_days) # select validation_dates
validation_data_by_name<-weekdays(validation_dates) # put names of validation dates
forecasting_data_by_name<-weekdays(FD) # put names of Forecasting dates
#NNAR Model
if(NNAR_Model==TRUE){
data_series<-ts(training_data)
model_NNAR<-nnetar(data_series, size = Number_Neural)
saveRDS(model_NNAR, file = "model_NNAR.RDS")
my_model <- readRDS("model_NNAR.RDS")
accuracy(model_NNAR) # accuracy on training data #Print Model Parameters
model_NNAR
}
## Series: data_series
## Model: NNAR(22,5)
## Call: nnetar(y = data_series, size = Number_Neural)
##
## Average of 20 networks, each of which is
## a 22-5-1 network with 121 weights
## options were - linear output units
##
## sigma^2 estimated as 50444
if(NNAR_Model==FALSE){
data_series<-ts(training_data)
#model_NNAR<-nnetar(data_series, size = Number_Numeral)
model_NNAR <- readRDS("model_NNAR.RDS")
accuracy(model_NNAR) # accuracy on training data #Print Model Parameters
model_NNAR
}
# Testing Data Evaluation
forecasting_NNAR <- forecast(model_NNAR, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_NNAR$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using NNAR Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 4 days by using NNAR Model for ==> Daily Covid 19 Infection cases in Central Federal District"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_Mean_All_NNAR<-round(mean(MAPE_Per_Day),3)
MAPE_NNAR<-paste(round(MAPE_Per_Day,3),"%")
MAPE_NNAR_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in NNAR Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 4 days in NNAR Model for ==> Daily Covid 19 Infection cases in Central Federal District"
paste(MAPE_Mean_All,"%")
## [1] "10.352 % MAPE 4 days Daily Covid 19 Infection cases in Central Federal District %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in NNAR Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 4 days in NNAR Model for ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(date_NNAR=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_NNAR=validation_forecast,MAPE_NNAR_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_NNAR | validation_data_by_name | actual_data | forecasting_NNAR | MAPE_NNAR_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-03-19 | Friday | 3828.00 | 4162.76 | 8.745 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-03-20 | Saturday | 3792.00 | 4021.04 | 6.04 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-03-21 | Sunday | 3582.00 | 4243.27 | 18.461 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-03-22 | Monday | 3641.00 | 3938.25 | 8.164 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+
## | | FD | forecating_date | forecasting_by_NNAR |
## +===+============+=================+=====================+
## | 1 | 2021-03-23 | Tuesday | 3637.03 |
## +---+------------+-----------------+---------------------+
## | 2 | 2021-03-24 | Wednesday | 3497.78 |
## +---+------------+-----------------+---------------------+
## | 3 | 2021-03-25 | Thursday | 3700.08 |
## +---+------------+-----------------+---------------------+
## | 4 | 2021-03-26 | Friday | 3818.79 |
## +---+------------+-----------------+---------------------+
## | 5 | 2021-03-27 | Saturday | 3859.92 |
## +---+------------+-----------------+---------------------+
## | 6 | 2021-03-28 | Sunday | 3867.52 |
## +---+------------+-----------------+---------------------+
## | 7 | 2021-03-29 | Monday | 3624.34 |
## +---+------------+-----------------+---------------------+
plot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

##bats model
# Data Modeling
data_series<-ts(training_data) # make your data to time series
autoplot(data_series ,xlab=paste ("Time in", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE
## Training set -11.56274 512.1173 330.1956 -1.255719 9.208574 0.9184615
## ACF1
## Training set -0.01819034
# Print Model Parameters
model_bats
## BATS(0.33, {5,0}, 0.988, -)
##
## Call: bats(y = data_series)
##
## Parameters
## Lambda: 0.329879
## Alpha: 0.3417832
## Beta: 0.4186048
## Damping Parameter: 0.988125
## AR coefficients: -0.068597 -0.393501 -0.432189 -0.318341 -0.438089
##
## Seed States:
## [,1]
## [1,] 2.1709919
## [2,] 0.1531641
## [3,] 0.0000000
## [4,] 0.0000000
## [5,] 0.0000000
## [6,] 0.0000000
## [7,] 0.0000000
## attr(,"lambda")
## [1] 0.3298794
##
## Sigma: 1.483529
## AIC: 6524.984
#ploting BATS Model
plot(model_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "))

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 4 days by using bats Model for ==> Daily Covid 19 Infection cases in Central Federal District"
MAPE_Mean_All.bats_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.bats<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 4 days in bats Model for ==> Daily Covid 19 Infection cases in Central Federal District"
paste(MAPE_Mean_All.bats,"%")
## [1] "14.184 % MAPE 4 days Daily Covid 19 Infection cases in Central Federal District %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 4 days in bats Model for ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_bats | validation_data_by_name | actual_data | forecasting_bats | MAPE_bats_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-03-19 | Friday | 3828.00 | 4030.37 | 5.286 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-03-20 | Saturday | 3792.00 | 4369.63 | 15.233 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-03-21 | Sunday | 3582.00 | 4263.59 | 19.028 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-03-22 | Monday | 3641.00 | 4266.92 | 17.191 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday | 3954.18 | 3087.96 | 2685.77 | 3087.96 | 2685.77 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday | 4082.08 | 3093.37 | 2641.85 | 3093.37 | 2641.85 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday | 4314.04 | 3110.84 | 2576.35 | 3110.84 | 2576.35 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday | 4674.28 | 3196.12 | 2558.92 | 3196.12 | 2558.92 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday | 4843.21 | 3130.07 | 2415.07 | 3130.07 | 2415.07 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday | 4926.86 | 3018.74 | 2246.70 | 3018.74 | 2246.70 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday | 4789.65 | 2755.17 | 1962.14 | 2755.17 | 1962.14 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

## TBATS Model
# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE, seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -1.251272 552.6561 370.9579 4.990058 23.10966 1.031845 0.05812329
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
##
## Call: NULL
##
## Parameters
## Alpha: 0.6785127
## Beta: 0.02231515
## Damping Parameter: 1
## Gamma-1 Values: 0.0008546957
## Gamma-2 Values: 0.004888894
##
## Seed States:
## [,1]
## [1,] 336.23188
## [2,] -36.35355
## [3,] -26.00546
## [4,] 12.08496
## [5,] 14.51022
## [6,] -32.92694
##
## Sigma: 552.6561
## AIC: 6919.992
plot(model_TBATS,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 4 days by using TBATS Model for ==> Daily Covid 19 Infection cases in Central Federal District"
MAPE_Mean_All.TBATS_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.TBATS<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 4 days in TBATS Model for ==> Daily Covid 19 Infection cases in Central Federal District"
paste(MAPE_Mean_All.TBATS,"%")
## [1] "3.9 % MAPE 4 days Daily Covid 19 Infection cases in Central Federal District %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 4 days in TBATS Model for ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | | date_TBATS | validation_data_by_name | actual_data | forecasting_TBATS | MAPE_TBATS_Model |
## +===+============+=========================+=============+===================+==================+
## | 1 | 2021-03-19 | Friday | 3828.00 | 3624.72 | 5.31 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 2 | 2021-03-20 | Saturday | 3792.00 | 3481.35 | 8.192 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 3 | 2021-03-21 | Sunday | 3582.00 | 3590.68 | 0.242 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 4 | 2021-03-22 | Monday | 3641.00 | 3573.39 | 1.857 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+======================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday | 3356.44 | 2156.29 | 1520.97 | 4556.60 | 5191.92 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday | 3376.88 | 2084.84 | 1400.87 | 4668.92 | 5352.89 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday | 3344.28 | 1966.04 | 1236.44 | 4722.52 | 5452.12 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday | 3200.91 | 1738.53 | 964.40 | 4663.28 | 5437.42 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday | 3310.23 | 1768.91 | 952.98 | 4851.56 | 5667.49 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday | 3292.95 | 1676.52 | 820.84 | 4909.37 | 5765.06 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday | 3076.00 | 1387.09 | 493.04 | 4764.91 | 5658.96 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph2

## Holt's linear trend
# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -32.52648 566.443 362.4023 -2.283294 10.4225 1.008047 0.08859095
# Print Model Parameters
summary(model_holt$model)
## Holt's method
##
## Call:
## holt(y = data_series, h = N_forecasting_days + validation_data_days,
##
## Call:
## lambda = "auto")
##
## Box-Cox transformation: lambda= 0.3512
##
## Smoothing parameters:
## alpha = 0.632
## beta = 0.0467
##
## Initial states:
## l = 3.8709
## b = 0.6696
##
## sigma: 1.9101
##
## AIC AICc BIC
## 2689.294 2689.458 2708.889
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -32.52648 566.443 362.4023 -2.283294 10.4225 1.008047 0.08859095
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 4 days by using holt Model for ==> Daily Covid 19 Infection cases in Central Federal District"
MAPE_Mean_All.Holt_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.Holt<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 4 days in holt Model for ==> Daily Covid 19 Infection cases in Central Federal District"
paste(MAPE_Mean_All.Holt,"%")
## [1] "3.708 % MAPE 4 days Daily Covid 19 Infection cases in Central Federal District %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 4 days in holt Model for ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_holt | validation_data_by_name | actual_data | forecasting_holt | MAPE_holt_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-03-19 | Friday | 3828.00 | 3602.65 | 5.887 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-03-20 | Saturday | 3792.00 | 3581.48 | 5.552 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-03-21 | Sunday | 3582.00 | 3560.39 | 0.603 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-03-22 | Monday | 3641.00 | 3539.38 | 2.791 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday | 3518.45 | 2706.00 | 2330.36 | 4474.46 | 5042.30 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday | 3497.60 | 2608.29 | 2203.88 | 4563.22 | 5203.66 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday | 3476.83 | 2512.41 | 2081.27 | 4653.84 | 5369.57 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday | 3456.14 | 2418.14 | 1962.22 | 4746.73 | 5540.72 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday | 3435.53 | 2325.34 | 1846.57 | 4842.17 | 5717.70 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday | 3415.00 | 2233.96 | 1734.23 | 4940.40 | 5900.97 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday | 3394.55 | 2143.96 | 1625.17 | 5041.62 | 6090.96 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph3

#Auto arima model
##################
require(tseries) # need to install tseries tj test Stationarity in time series
paste ("tests For Check Stationarity in series ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series ==> Daily Covid 19 Infection cases in Central Federal District"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: data_series
## KPSS Level = 2.5203, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series) # applay pp test
##
## Phillips-Perron Unit Root Test
##
## data: data_series
## Dickey-Fuller Z(alpha) = -3.1587, Truncation lag parameter = 5, p-value
## = 0.9269
## alternative hypothesis: stationary
adf.test(data_series) # applay adf test
##
## Augmented Dickey-Fuller Test
##
## data: data_series
## Dickey-Fuller = -1.3471, Lag order = 7, p-value = 0.8526
## alternative hypothesis: stationary
ndiffs(data_series) # Doing first diffrencing on data
## [1] 1
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main = "1nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in ==> Daily Covid 19 Infection cases in Central Federal District"
kpss.test(diff1_x1) # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value greater than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff1_x1
## KPSS Level = 0.27985, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff1_x1) # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff1_x1
## Dickey-Fuller Z(alpha) = -375.71, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff1_x1) # applay adf test after taking first differences
## Warning in adf.test(diff1_x1): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff1_x1
## Dickey-Fuller = -4.4905, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab ,main = "2nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Daily Covid 19 Infection cases in Central Federal District"
kpss.test(diff2_x1) # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff2_x1
## KPSS Level = 0.014636, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1) # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff2_x1
## Dickey-Fuller Z(alpha) = -457.83, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1) # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff2_x1
## Dickey-Fuller = -14.605, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp")) #applaying auto arima
##
## ARIMA(0,1,0) : 5765.955
## ARIMA(0,1,0) with drift : 5767.853
## ARIMA(0,1,1) : 5748.387
## ARIMA(0,1,1) with drift : 5750.197
## ARIMA(0,1,2) : 5744.879
## ARIMA(0,1,2) with drift : 5746.634
## ARIMA(0,1,3) : 5746.813
## ARIMA(0,1,3) with drift : 5748.576
## ARIMA(0,1,4) : 5740.068
## ARIMA(0,1,4) with drift : 5741.884
## ARIMA(0,1,5) : 5729.738
## ARIMA(0,1,5) with drift : 5731.618
## ARIMA(1,1,0) : 5753.889
## ARIMA(1,1,0) with drift : 5755.751
## ARIMA(1,1,1) : 5745.692
## ARIMA(1,1,1) with drift : 5747.451
## ARIMA(1,1,2) : 5746.866
## ARIMA(1,1,2) with drift : 5748.631
## ARIMA(1,1,3) : 5748.043
## ARIMA(1,1,3) with drift : 5749.812
## ARIMA(1,1,4) : 5724.541
## ARIMA(1,1,4) with drift : 5726.461
## ARIMA(2,1,0) : 5748.118
## ARIMA(2,1,0) with drift : 5749.938
## ARIMA(2,1,1) : 5746.509
## ARIMA(2,1,1) with drift : 5748.271
## ARIMA(2,1,2) : 5699.974
## ARIMA(2,1,2) with drift : 5701.78
## ARIMA(2,1,3) : 5742.869
## ARIMA(2,1,3) with drift : 5744.671
## ARIMA(3,1,0) : 5746.847
## ARIMA(3,1,0) with drift : 5748.634
## ARIMA(3,1,1) : 5748.01
## ARIMA(3,1,1) with drift : 5749.774
## ARIMA(3,1,2) : 5749.798
## ARIMA(3,1,2) with drift : 5751.579
## ARIMA(4,1,0) : 5748.733
## ARIMA(4,1,0) with drift : 5750.519
## ARIMA(4,1,1) : 5749.953
## ARIMA(4,1,1) with drift : 5751.72
## ARIMA(5,1,0) : 5741.607
## ARIMA(5,1,0) with drift : 5743.299
##
##
##
## Best model: ARIMA(2,1,2)
model1 # show the result of autoarima
## Series: data_series
## ARIMA(2,1,2)
##
## Coefficients:
## ar1 ar2 ma1 ma2
## 1.2174 -0.7476 -1.5253 0.9149
## s.e. 0.0450 0.0471 0.0317 0.0272
##
## sigma^2 estimated as 269725: log likelihood=-2844.9
## AIC=5699.81 AICc=5699.97 BIC=5719.39
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE)
{
order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
m <- order[7]
result <- paste("ARIMA(", order[1], ",", order[2], ",",
order[3], ")", sep = "")
if (m > 1 && sum(order[4:6]) > 0) {
result <- paste(result, "(", order[4], ",", order[5],
",", order[6], ")[", m, "]", sep = "")
}
if (padding && m > 1 && sum(order[4:6]) == 0) {
result <- paste(result, " ", sep = "")
if (m <= 9) {
result <- paste(result, " ", sep = "")
}
else if (m <= 99) {
result <- paste(result, " ", sep = "")
}
else {
result <- paste(result, " ", sep = "")
}
}
if (!is.null(object$xreg)) {
if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
result <- paste(result, "with drift ")
}
else {
result <- paste("Regression with", result, "errors")
}
}
else {
if (is.element("constant", names(object$coef)) || is.element("intercept",
names(object$coef))) {
result <- paste(result, "with non-zero mean")
}
else if (order[2] == 0 && order[5] == 0) {
result <- paste(result, "with zero mean ")
}
else {
result <- paste(result, " ")
}
}
if (!padding) {
result <- gsub("[ ]*$", "", result)
}
return(result)
}
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 2 1 2
strtoi(bestmodel[3])
## [1] 2
#2. Using ACF and PACF Function
#par(mfrow=c(1,2)) # Code for making two plot in one graph
acf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" ") , ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast) # install library forecast
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima for forecasting
x1_model1 # Show result of best model of auto arima
##
## Call:
## arima(x = data_series, order = c(bestmodel))
##
## Coefficients:
## ar1 ar2 ma1 ma2
## 1.2174 -0.7476 -1.5253 0.9149
## s.e. 0.0450 0.0471 0.0317 0.0272
##
## sigma^2 estimated as 266817: log likelihood = -2844.9, aic = 5699.81
paste ("accuracy of autoarima Model For ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For ==> Daily Covid 19 Infection cases in Central Federal District"
accuracy(x1_model1) # aacuracy of best model from auto arima
## ME RMSE MAE MPE MAPE MASE
## Training set 13.75884 515.8487 337.3809 -0.6479731 10.16959 0.9384479
## ACF1
## Training set -0.04567735
x1_model1$x # show result of best model from auto arima
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab) # checkresiduals from best model from using auto arima

##
## Ljung-Box test
##
## data: Residuals from ARIMA(2,1,2)
## Q* = 40.914, df = 6, p-value = 3.011e-07
##
## Model df: 4. Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for ==> Daily Covid 19 Infection cases in Central Federal District"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box") # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
##
## Box-Ljung test
##
## data: x1_model1$residuals^2
## X-squared = 310.46, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals) # Do test jarque.bera.test
##
## Jarque Bera Test
##
## data: x1_model1$residuals
## X-squared = 94.032, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model
lines(fitted(x1_model1), col='black')

#Test data
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 4 days by using bats Model for ==> Daily Covid 19 Infection cases in Central Federal District"
MAPE_Mean_All.ARIMA_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.ARIMA<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 4 days in bats Model for ==> Daily Covid 19 Infection cases in Central Federal District"
paste(MAPE_Mean_All.ARIMA,"%")
## [1] "8.074 % MAPE 4 days Daily Covid 19 Infection cases in Central Federal District %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 4 days in bats Model for ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)), type = "rest")
##
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | | date_auto.arima | validation_data_by_name | actual_data | forecasting_auto.arima | MAPE_auto.arima_Model |
## +===+=================+=========================+=============+========================+=======================+
## | 1 | 2021-03-19 | Friday | 3828.00 | 4166.70 | 8.848 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 2 | 2021-03-20 | Saturday | 3792.00 | 4171.71 | 10.013 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 3 | 2021-03-21 | Sunday | 3582.00 | 3974.66 | 10.962 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 4 | 2021-03-22 | Monday | 3641.00 | 3731.03 | 2.473 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+===========================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday | 3581.74 | 2583.21 | 2054.61 | 4580.28 | 5108.87 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday | 3582.14 | 2463.34 | 1871.08 | 4700.94 | 5293.20 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday | 3694.24 | 2433.89 | 1766.71 | 4954.58 | 5621.77 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday | 3830.41 | 2440.02 | 1704.00 | 5220.80 | 5956.83 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday | 3912.39 | 2421.24 | 1631.87 | 5403.55 | 6192.91 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday | 3910.39 | 2345.42 | 1516.97 | 5475.35 | 6303.80 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday | 3846.65 | 2222.81 | 1363.20 | 5470.49 | 6330.10 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph4

MAPE_Mean_All.ARIMA
## [1] "8.074 % MAPE 4 days Daily Covid 19 Infection cases in Central Federal District"
# Table for MAPE For counry
best_recommended_model <- min(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model)
paste("System Choose Least Error ==> ( MAPE %) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> ", y_lab , sep=" ")
## [1] "System Choose Least Error ==> ( MAPE %) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> Daily Covid 19 Infection cases in Central Federal District"
best_recommended_model
## [1] 3.708
x1<-if(best_recommended_model >= MAPE_Mean_All.bats_Model) {paste("BATS Model")}
x2<-if(best_recommended_model >= MAPE_Mean_All.TBATS_Model) {paste("TBATS Model")}
x3<-if(best_recommended_model >= MAPE_Mean_All.Holt_Model) {paste("Holt Model")}
x4<-if(best_recommended_model >= MAPE_Mean_All.ARIMA_Model) {paste("ARIMA Model")}
x5<-if(best_recommended_model >= MAPE_Mean_All_NNAR) {paste("NNAR Model")}
panderOptions('table.split.table', Inf)
paste("Forecasting by using BATS Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using BATS Model ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday | 3954.18 | 3087.96 | 2685.77 | 3087.96 | 2685.77 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday | 4082.08 | 3093.37 | 2641.85 | 3093.37 | 2641.85 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday | 4314.04 | 3110.84 | 2576.35 | 3110.84 | 2576.35 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday | 4674.28 | 3196.12 | 2558.92 | 3196.12 | 2558.92 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday | 4843.21 | 3130.07 | 2415.07 | 3130.07 | 2415.07 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday | 4926.86 | 3018.74 | 2246.70 | 3018.74 | 2246.70 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday | 4789.65 | 2755.17 | 1962.14 | 2755.17 | 1962.14 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using TBATS Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using TBATS Model ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+======================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday | 3356.44 | 2156.29 | 1520.97 | 4556.60 | 5191.92 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday | 3376.88 | 2084.84 | 1400.87 | 4668.92 | 5352.89 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday | 3344.28 | 1966.04 | 1236.44 | 4722.52 | 5452.12 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday | 3200.91 | 1738.53 | 964.40 | 4663.28 | 5437.42 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday | 3310.23 | 1768.91 | 952.98 | 4851.56 | 5667.49 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday | 3292.95 | 1676.52 | 820.84 | 4909.37 | 5765.06 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday | 3076.00 | 1387.09 | 493.04 | 4764.91 | 5658.96 |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using Holt's Linear Trend Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using Holt's Linear Trend Model ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday | 3518.45 | 2706.00 | 2330.36 | 4474.46 | 5042.30 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday | 3497.60 | 2608.29 | 2203.88 | 4563.22 | 5203.66 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday | 3476.83 | 2512.41 | 2081.27 | 4653.84 | 5369.57 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday | 3456.14 | 2418.14 | 1962.22 | 4746.73 | 5540.72 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday | 3435.53 | 2325.34 | 1846.57 | 4842.17 | 5717.70 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday | 3415.00 | 2233.96 | 1734.23 | 4940.40 | 5900.97 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday | 3394.55 | 2143.96 | 1625.17 | 5041.62 | 6090.96 |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using ARIMA Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using ARIMA Model ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+===========================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday | 3581.74 | 2583.21 | 2054.61 | 4580.28 | 5108.87 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday | 3582.14 | 2463.34 | 1871.08 | 4700.94 | 5293.20 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday | 3694.24 | 2433.89 | 1766.71 | 4954.58 | 5621.77 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday | 3830.41 | 2440.02 | 1704.00 | 5220.80 | 5956.83 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday | 3912.39 | 2421.24 | 1631.87 | 5403.55 | 6192.91 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday | 3910.39 | 2345.42 | 1516.97 | 5475.35 | 6303.80 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday | 3846.65 | 2222.81 | 1363.20 | 5470.49 | 6330.10 |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using NNAR Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using NNAR Model ==> Daily Covid 19 Infection cases in Central Federal District"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
##
## +---+------------+-----------------+---------------------+
## | | FD | forecating_date | forecasting_by_NNAR |
## +===+============+=================+=====================+
## | 1 | 2021-03-23 | Tuesday | 3637.03 |
## +---+------------+-----------------+---------------------+
## | 2 | 2021-03-24 | Wednesday | 3497.78 |
## +---+------------+-----------------+---------------------+
## | 3 | 2021-03-25 | Thursday | 3700.08 |
## +---+------------+-----------------+---------------------+
## | 4 | 2021-03-26 | Friday | 3818.79 |
## +---+------------+-----------------+---------------------+
## | 5 | 2021-03-27 | Saturday | 3859.92 |
## +---+------------+-----------------+---------------------+
## | 6 | 2021-03-28 | Sunday | 3867.52 |
## +---+------------+-----------------+---------------------+
## | 7 | 2021-03-29 | Monday | 3624.34 |
## +---+------------+-----------------+---------------------+
result<-c(x1,x2,x3,x4,x5)
table.error<-data.frame(country.name,NNAR.model=MAPE_Mean_All_NNAR, BATS.Model=MAPE_Mean_All.bats_Model,TBATS.Model=MAPE_Mean_All.TBATS_Model,Holt.Model=MAPE_Mean_All.Holt_Model,ARIMA.Model=MAPE_Mean_All.ARIMA_Model,Best.Model=result)
library(ascii)
print(ascii(table(table.error)), type = "rest")
##
## +---+--------------------------+------------+------------+-------------+------------+-------------+------------+------+
## | | country.name | NNAR.model | BATS.Model | TBATS.Model | Holt.Model | ARIMA.Model | Best.Model | Freq |
## +===+==========================+============+============+=============+============+=============+============+======+
## | 1 | Central Federal District | 10.352 | 14.184 | 3.9 | 3.708 | 8.074 | Holt Model | 1.00 |
## +---+--------------------------+------------+------------+-------------+------------+-------------+------------+------+
MAPE.Value<-c(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model)
Model<-c("NNAR.model","BATS.Model","TBATS.Model","Holt.Model","ARIMA.Model")
channel_data<-data.frame(Model,MAPE.Value)
# Normally, the entire expression below would be assigned to an object, but we're
# going bare bones here.
ggplot(channel_data, aes(x = Model, y = MAPE.Value)) +
geom_bar(stat = "identity") +
geom_text(aes(label = MAPE.Value)) + # x AND y INHERITED. WE JUST NEED TO SPECIFY "label"
coord_flip() +
scale_y_continuous(expand = c(0, 0))

message("System finished Modelling and Forecasting by using BATS, TBATS, Holt's Linear Trend, and ARIMA Model ==>",y_lab, sep=" ")
## System finished Modelling and Forecasting by using BATS, TBATS, Holt's Linear Trend, and ARIMA Model ==>Daily Covid 19 Infection cases in Central Federal District
message(" Thank you for using our System For Modelling and Forecasting ==> ",y_lab, sep=" ")
## Thank you for using our System For Modelling and Forecasting ==> Daily Covid 19 Infection cases in Central Federal District