Epidemic.TA System for Forecasting Covid-19 Cases Using Time Series and Neural Networks Models

Daily Covid 19 Infection cases in Far-Eastern Federal
Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”
Abotaleb mostafa“Аботалеб Мостафа”
Department of Electrical Engineering and Computer Science
South ural state university, Chelyabinsk, Russian federation
#Import
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## 
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(ascii)
library(pander)
## 
## Attaching package: 'pander'
## The following object is masked from 'package:ascii':
## 
##     Pandoc
##Global vriable##
Full_original_data <- read_excel("data2.xlsx", sheet = "far est") # path of your data ( time series data)
## New names:
## * region -> region...2
## * `daily infection` -> `daily infection...3`
## * region -> region...4
## * `daily infection` -> `daily infection...5`
## * region -> region...6
## * ...
original_data<-Full_original_data$Total
y_lab <- "Daily Covid 19 Infection cases in Far-Eastern Federal"   # input name of data
Actual_date_interval <- c("2020/03/12","2021/03/22")
Forecast_date_interval <- c("2021/03/23","2021/03/29")
validation_data_days <-4
Number_Neural<-5       # Number of Neural For model NNAR Model
NNAR_Model<- TRUE     #create new model (TRUE/FALSE)
frequency<-"days"
country.name <- "Far-Eastern Federal"
# Data Preparation & calculate some of statistics measures
summary(original_data) # Summary your time series
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0   274.0   369.5   522.0   896.0  1277.0
# calculate standard deviation 
data.frame(kurtosis=kurtosis(original_data))   # calculate Cofficient of kurtosis
##   kurtosis
## 1 2.046867
data.frame(skewness=skewness(original_data))  # calculate Cofficient of skewness
##    skewness
## 1 0.6353084
data.frame(Standard.deviation =sd(original_data))
##   Standard.deviation
## 1           390.8713
#processing on data (input data)
rows <- NROW(original_data) # calculate number of rows in time series (number of days)
training_data<-original_data[1:(rows-validation_data_days)] # Training data
testing_data<-original_data[(rows-validation_data_days+1):rows] #testing data
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD))  #calculate number of days that you want to forecasting
validation_dates<-tail(AD,validation_data_days) # select validation_dates
validation_data_by_name<-weekdays(validation_dates) # put names of validation dates
forecasting_data_by_name<-weekdays(FD)  # put names of Forecasting dates
#NNAR Model 
if(NNAR_Model==TRUE){
  data_series<-ts(training_data)
  model_NNAR<-nnetar(data_series, size = Number_Neural)
  saveRDS(model_NNAR, file = "model_NNAR.RDS")
  my_model <- readRDS("model_NNAR.RDS")
  accuracy(model_NNAR)  # accuracy on training data #Print Model Parameters
  model_NNAR
}
## Series: data_series 
## Model:  NNAR(1,5) 
## Call:   nnetar(y = data_series, size = Number_Neural)
## 
## Average of 20 networks, each of which is
## a 1-5-1 network with 16 weights
## options were - linear output units 
## 
## sigma^2 estimated as 527.4
if(NNAR_Model==FALSE){
  data_series<-ts(training_data)
  #model_NNAR<-nnetar(data_series, size = Number_Numeral)
  model_NNAR <- readRDS("model_NNAR.RDS")
  accuracy(model_NNAR)  # accuracy on training data #Print Model Parameters
  model_NNAR
}

# Testing Data Evaluation
forecasting_NNAR <- forecast(model_NNAR, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_NNAR$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using NNAR Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  4 days by using NNAR Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_Mean_All_NNAR<-round(mean(MAPE_Per_Day),3)
MAPE_NNAR<-paste(round(MAPE_Per_Day,3),"%")
MAPE_NNAR_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in NNAR Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  4  days in NNAR Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
paste(MAPE_Mean_All,"%")
## [1] "9.064 % MAPE  4 days Daily Covid 19 Infection cases in Far-Eastern Federal %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in NNAR Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  4  days in NNAR Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(date_NNAR=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_NNAR=validation_forecast,MAPE_NNAR_Model)), type = "rest")
## 
## +---+------------+-------------------------+-------------+------------------+-----------------+
## |   | date_NNAR  | validation_data_by_name | actual_data | forecasting_NNAR | MAPE_NNAR_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-03-19 | Friday                  | 215.00      | 213.04           | 0.91 %          |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-03-20 | Saturday                | 203.00      | 216.99           | 6.892 %         |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-03-21 | Sunday                  | 196.00      | 220.85           | 12.677 %        |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-03-22 | Monday                  | 194.00      | 224.61           | 15.778 %        |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+---------------------+
## |   | FD         | forecating_date | forecasting_by_NNAR |
## +===+============+=================+=====================+
## | 1 | 2021-03-23 | Tuesday         | 228.28              |
## +---+------------+-----------------+---------------------+
## | 2 | 2021-03-24 | Wednesday       | 231.87              |
## +---+------------+-----------------+---------------------+
## | 3 | 2021-03-25 | Thursday        | 235.37              |
## +---+------------+-----------------+---------------------+
## | 4 | 2021-03-26 | Friday          | 238.78              |
## +---+------------+-----------------+---------------------+
## | 5 | 2021-03-27 | Saturday        | 242.11              |
## +---+------------+-----------------+---------------------+
## | 6 | 2021-03-28 | Sunday          | 245.36              |
## +---+------------+-----------------+---------------------+
## | 7 | 2021-03-29 | Monday          | 248.53              |
## +---+------------+-----------------+---------------------+
plot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

##bats model
# Data Modeling
data_series<-ts(training_data) # make your data to time series
autoplot(data_series ,xlab=paste ("Time in", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                       ME     RMSE      MAE MPE MAPE      MASE       ACF1
## Training set -0.07515327 21.25501 15.36855 NaN  Inf 0.9348633 0.06110309
# Print Model Parameters
model_bats
## BATS(1, {0,0}, 0.979, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Alpha: 0.6125519
##   Beta: 0.08065608
##   Damping Parameter: 0.978863
## 
## Seed States:
##           [,1]
## [1,] -6.397747
## [2,]  3.425564
## 
## Sigma: 21.25501
## AIC: 4485.933
#ploting BATS Model
plot(model_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "))

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  4 days by using bats Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
MAPE_Mean_All.bats_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.bats<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  4  days in bats Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
paste(MAPE_Mean_All.bats,"%")
## [1] "1.614 % MAPE  4 days Daily Covid 19 Infection cases in Far-Eastern Federal %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  4  days in bats Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)), type = "rest")
## 
## +---+------------+-------------------------+-------------+------------------+-----------------+
## |   | date_bats  | validation_data_by_name | actual_data | forecasting_bats | MAPE_bats_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-03-19 | Friday                  | 215.00      | 205.36           | 4.482 %         |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-03-20 | Saturday                | 203.00      | 201.67           | 0.654 %         |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-03-21 | Sunday                  | 196.00      | 198.06           | 1.05 %          |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-03-22 | Monday                  | 194.00      | 194.52           | 0.268 %         |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## |   | FD         | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday         | 191.06              | 139.19    | 111.73    | 139.19    | 111.73    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday       | 187.67              | 129.20    | 98.24     | 129.20    | 98.24     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday        | 184.35              | 119.11    | 84.58     | 119.11    | 84.58     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday          | 181.10              | 108.95    | 70.76     | 108.95    | 70.76     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday        | 177.92              | 98.72     | 56.80     | 98.72     | 56.80     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday          | 174.81              | 88.43     | 42.70     | 88.43     | 42.70     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday          | 171.76              | 78.08     | 28.49     | 78.08     | 28.49     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

## TBATS Model
# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                      ME    RMSE     MAE MPE MAPE      MASE       ACF1
## Training set -0.2694393 21.1925 15.4965 NaN  Inf 0.9426468 0.05802645
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 0.6210192
##   Beta: 0.08213999
##   Damping Parameter: 1
##   Gamma-1 Values: -0.0006618662
##   Gamma-2 Values: 0.004646293
## 
## Seed States:
##            [,1]
## [1,] -6.5413072
## [2,]  3.5346848
## [3,]  0.6672096
## [4,]  0.8036221
## [5,]  0.5369366
## [6,] -0.6311739
## 
## Sigma: 21.1925
## AIC: 4493.742
plot(model_TBATS,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  4 days by using TBATS Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
MAPE_Mean_All.TBATS_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.TBATS<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  4  days in TBATS Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
paste(MAPE_Mean_All.TBATS,"%")
## [1] "1.646 % MAPE  4 days Daily Covid 19 Infection cases in Far-Eastern Federal %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  4  days in TBATS Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)), type = "rest")
## 
## +---+------------+-------------------------+-------------+-------------------+------------------+
## |   | date_TBATS | validation_data_by_name | actual_data | forecasting_TBATS | MAPE_TBATS_Model |
## +===+============+=========================+=============+===================+==================+
## | 1 | 2021-03-19 | Friday                  | 215.00      | 206.27            | 4.058 %          |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 2 | 2021-03-20 | Saturday                | 203.00      | 202.07            | 0.456 %          |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 3 | 2021-03-21 | Sunday                  | 196.00      | 194.93            | 0.547 %          |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 4 | 2021-03-22 | Monday                  | 194.00      | 191.04            | 1.525 %          |
## +---+------------+-------------------------+-------------+-------------------+------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## |   | FD         | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+======================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday         | 185.63               | 142.26    | 119.30    | 229.01    | 251.97    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday       | 179.63               | 133.18    | 108.60    | 226.07    | 250.66    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday        | 178.09               | 128.77    | 102.67    | 227.40    | 253.50    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday          | 173.88               | 121.77    | 94.18     | 226.00    | 253.58    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday        | 166.74               | 112.00    | 83.02     | 221.48    | 250.46    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday          | 162.85               | 105.60    | 75.29     | 220.10    | 250.41    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday          | 157.45               | 97.77     | 66.18     | 217.12    | 248.71    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph2

## Holt's linear trend
# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                      ME     RMSE      MAE MPE MAPE      MASE       ACF1
## Training set -0.1665026 21.34564 15.49228 NaN  Inf 0.9423899 0.05542732
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 1 
## 
##   Smoothing parameters:
##     alpha = 0.6278 
##     beta  = 0.0798 
## 
##   Initial states:
##     l = -2.1969 
##     b = -0.1091 
## 
##   sigma:  21.4568
## 
##      AIC     AICc      BIC 
## 4488.943 4489.107 4508.537 
## 
## Training set error measures:
##                      ME     RMSE      MAE MPE MAPE      MASE       ACF1
## Training set -0.1665026 21.34564 15.49228 NaN  Inf 0.9423899 0.05542732
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  4 days by using holt Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
MAPE_Mean_All.Holt_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.Holt<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  4  days in holt Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
paste(MAPE_Mean_All.Holt,"%")
## [1] "3.007 % MAPE  4 days Daily Covid 19 Infection cases in Far-Eastern Federal %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  4  days in holt Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)), type = "rest")
## 
## +---+------------+-------------------------+-------------+------------------+-----------------+
## |   | date_holt  | validation_data_by_name | actual_data | forecasting_holt | MAPE_holt_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-03-19 | Friday                  | 215.00      | 203.40           | 5.396 %         |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-03-20 | Saturday                | 203.00      | 198.35           | 2.291 %         |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-03-21 | Sunday                  | 196.00      | 193.30           | 1.378 %         |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-03-22 | Monday                  | 194.00      | 188.25           | 2.964 %         |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## |   | FD         | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday         | 183.20              | 129.80    | 101.54    | 236.60    | 264.87    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday       | 178.15              | 117.75    | 85.77     | 238.56    | 270.53    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday        | 173.10              | 105.47    | 69.66     | 240.74    | 276.55    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday          | 168.05              | 92.96     | 53.21     | 243.15    | 282.90    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday        | 163.00              | 80.23     | 36.41     | 245.78    | 289.60    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday          | 157.95              | 67.28     | 19.28     | 248.63    | 296.64    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday          | 152.91              | 54.12     | 1.82      | 251.70    | 304.00    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in", frequency ,y_lab , sep=" "),  ylab=y_lab)
graph3

#Auto arima model
##################
require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 3.577, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = 2.396, Truncation lag parameter = 5, p-value =
## 0.99
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = -0.52321, Lag order = 7, p-value = 0.9805
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main = "1nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 1.2075, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = -473.19, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = -3.0646, Lag order = 7, p-value = 0.1276
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab ,main = "2nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Daily Covid 19 Infection cases in Far-Eastern Federal"
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.010157, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -477.48, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -14.567, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 3662.991
##  ARIMA(0,2,1)                    : 3356.224
##  ARIMA(0,2,2)                    : 3325.564
##  ARIMA(0,2,3)                    : 3319.092
##  ARIMA(0,2,4)                    : 3320.482
##  ARIMA(0,2,5)                    : 3321.836
##  ARIMA(1,2,0)                    : 3521.758
##  ARIMA(1,2,1)                    : 3336.77
##  ARIMA(1,2,2)                    : 3319.301
##  ARIMA(1,2,3)                    : 3320.739
##  ARIMA(1,2,4)                    : 3322.249
##  ARIMA(2,2,0)                    : 3455.624
##  ARIMA(2,2,1)                    : 3328.69
##  ARIMA(2,2,2)                    : 3320.48
##  ARIMA(2,2,3)                    : Inf
##  ARIMA(3,2,0)                    : 3407.041
##  ARIMA(3,2,1)                    : 3324.162
##  ARIMA(3,2,2)                    : 3321.565
##  ARIMA(4,2,0)                    : 3382.23
##  ARIMA(4,2,1)                    : 3324.698
##  ARIMA(5,2,0)                    : 3367.146
## 
## 
## 
##  Best model: ARIMA(0,2,3)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(0,2,3) 
## 
## Coefficients:
##           ma1     ma2     ma3
##       -1.2474  0.2010  0.1512
## s.e.   0.0504  0.0772  0.0505
## 
## sigma^2 estimated as 451.3:  log likelihood=-1655.49
## AIC=3318.98   AICc=3319.09   BIC=3334.64
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}


bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 0 2 3
strtoi(bestmodel[3])
## [1] 3
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" ") , ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##           ma1     ma2     ma3
##       -1.2474  0.2010  0.1512
## s.e.   0.0504  0.0772  0.0505
## 
## sigma^2 estimated as 447.6:  log likelihood = -1655.49,  aic = 3318.98
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                       ME     RMSE      MAE  MPE MAPE      MASE        ACF1
## Training set -0.09054406 21.10068 15.30143 -Inf  Inf 0.9307802 0.003125754
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,2,3)
## Q* = 16.992, df = 7, p-value = 0.01745
## 
## Model df: 3.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 82.831, df = 20, p-value = 1.292e-09
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 87.302, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='black')

#Test data
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  4 days by using bats Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
MAPE_Mean_All.ARIMA_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.ARIMA<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  4  days in bats Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
paste(MAPE_Mean_All.ARIMA,"%")
## [1] "2.038 % MAPE  4 days Daily Covid 19 Infection cases in Far-Eastern Federal %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  4  days in bats Model for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)), type = "rest")
## 
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## |   | date_auto.arima | validation_data_by_name | actual_data | forecasting_auto.arima | MAPE_auto.arima_Model |
## +===+=================+=========================+=============+========================+=======================+
## | 1 | 2021-03-19      | Friday                  | 215.00      | 202.68                 | 5.729 %               |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 2 | 2021-03-20      | Saturday                | 203.00      | 199.57                 | 1.689 %               |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 3 | 2021-03-21      | Sunday                  | 196.00      | 196.15                 | 0.075 %               |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 4 | 2021-03-22      | Monday                  | 194.00      | 192.72                 | 0.659 %               |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## |   | FD         | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+===========================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday         | 189.30                    | 138.12    | 111.03    | 240.47    | 267.56    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday       | 185.87                    | 127.69    | 96.90     | 244.05    | 274.85    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday        | 182.45                    | 116.75    | 81.97     | 248.15    | 282.92    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday          | 179.02                    | 105.34    | 66.34     | 252.71    | 291.71    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday        | 175.60                    | 93.50     | 50.04     | 257.70    | 301.16    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday          | 172.17                    | 81.26     | 33.14     | 263.08    | 311.21    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday          | 168.75                    | 68.65     | 15.67     | 268.85    | 321.83    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph4

MAPE_Mean_All.ARIMA
## [1] "2.038 % MAPE  4 days Daily Covid 19 Infection cases in Far-Eastern Federal"
# Table for MAPE For counry
best_recommended_model <- min(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model)
paste("System Choose Least Error ==> ( MAPE %) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Choose Least Error ==> ( MAPE %) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
best_recommended_model
## [1] 1.614
x1<-if(best_recommended_model >= MAPE_Mean_All.bats_Model) {paste("BATS Model")}
x2<-if(best_recommended_model >= MAPE_Mean_All.TBATS_Model) {paste("TBATS Model")}
x3<-if(best_recommended_model >= MAPE_Mean_All.Holt_Model) {paste("Holt Model")}
x4<-if(best_recommended_model >= MAPE_Mean_All.ARIMA_Model) {paste("ARIMA Model")}
x5<-if(best_recommended_model >= MAPE_Mean_All_NNAR) {paste("NNAR Model")}
panderOptions('table.split.table', Inf)
paste("Forecasting by using BATS Model  ==> ", y_lab , sep=" ")
## [1] "Forecasting by using BATS Model  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## |   | FD         | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday         | 191.06              | 139.19    | 111.73    | 139.19    | 111.73    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday       | 187.67              | 129.20    | 98.24     | 129.20    | 98.24     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday        | 184.35              | 119.11    | 84.58     | 119.11    | 84.58     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday          | 181.10              | 108.95    | 70.76     | 108.95    | 70.76     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday        | 177.92              | 98.72     | 56.80     | 98.72     | 56.80     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday          | 174.81              | 88.43     | 42.70     | 88.43     | 42.70     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday          | 171.76              | 78.08     | 28.49     | 78.08     | 28.49     |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using TBATS Model  ==> ", y_lab , sep=" ")
## [1] "Forecasting by using TBATS Model  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## |   | FD         | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+======================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday         | 185.63               | 142.26    | 119.30    | 229.01    | 251.97    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday       | 179.63               | 133.18    | 108.60    | 226.07    | 250.66    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday        | 178.09               | 128.77    | 102.67    | 227.40    | 253.50    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday          | 173.88               | 121.77    | 94.18     | 226.00    | 253.58    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday        | 166.74               | 112.00    | 83.02     | 221.48    | 250.46    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday          | 162.85               | 105.60    | 75.29     | 220.10    | 250.41    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday          | 157.45               | 97.77     | 66.18     | 217.12    | 248.71    |
## +---+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using Holt's Linear Trend Model  ==> ", y_lab , sep=" ")
## [1] "Forecasting by using Holt's Linear Trend Model  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## |   | FD         | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday         | 183.20              | 129.80    | 101.54    | 236.60    | 264.87    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday       | 178.15              | 117.75    | 85.77     | 238.56    | 270.53    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday        | 173.10              | 105.47    | 69.66     | 240.74    | 276.55    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday          | 168.05              | 92.96     | 53.21     | 243.15    | 282.90    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday        | 163.00              | 80.23     | 36.41     | 245.78    | 289.60    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday          | 157.95              | 67.28     | 19.28     | 248.63    | 296.64    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday          | 152.91              | 54.12     | 1.82      | 251.70    | 304.00    |
## +---+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using ARIMA Model  ==> ", y_lab , sep=" ")
## [1] "Forecasting by using ARIMA Model  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## |   | FD         | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +===+============+=================+===========================+===========+===========+===========+===========+
## | 1 | 2021-03-23 | Tuesday         | 189.30                    | 138.12    | 111.03    | 240.47    | 267.56    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-03-24 | Wednesday       | 185.87                    | 127.69    | 96.90     | 244.05    | 274.85    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-03-25 | Thursday        | 182.45                    | 116.75    | 81.97     | 248.15    | 282.92    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-03-26 | Friday          | 179.02                    | 105.34    | 66.34     | 252.71    | 291.71    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-03-27 | Saturday        | 175.60                    | 93.50     | 50.04     | 257.70    | 301.16    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-03-28 | Sunday          | 172.17                    | 81.26     | 33.14     | 263.08    | 311.21    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-03-29 | Monday          | 168.75                    | 68.65     | 15.67     | 268.85    | 321.83    |
## +---+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using NNAR Model  ==> ", y_lab , sep=" ")
## [1] "Forecasting by using NNAR Model  ==>  Daily Covid 19 Infection cases in Far-Eastern Federal"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
## 
## +---+------------+-----------------+---------------------+
## |   | FD         | forecating_date | forecasting_by_NNAR |
## +===+============+=================+=====================+
## | 1 | 2021-03-23 | Tuesday         | 228.28              |
## +---+------------+-----------------+---------------------+
## | 2 | 2021-03-24 | Wednesday       | 231.87              |
## +---+------------+-----------------+---------------------+
## | 3 | 2021-03-25 | Thursday        | 235.37              |
## +---+------------+-----------------+---------------------+
## | 4 | 2021-03-26 | Friday          | 238.78              |
## +---+------------+-----------------+---------------------+
## | 5 | 2021-03-27 | Saturday        | 242.11              |
## +---+------------+-----------------+---------------------+
## | 6 | 2021-03-28 | Sunday          | 245.36              |
## +---+------------+-----------------+---------------------+
## | 7 | 2021-03-29 | Monday          | 248.53              |
## +---+------------+-----------------+---------------------+
result<-c(x1,x2,x3,x4,x5)
table.error<-data.frame(country.name,NNAR.model=MAPE_Mean_All_NNAR, BATS.Model=MAPE_Mean_All.bats_Model,TBATS.Model=MAPE_Mean_All.TBATS_Model,Holt.Model=MAPE_Mean_All.Holt_Model,ARIMA.Model=MAPE_Mean_All.ARIMA_Model,Best.Model=result)
library(ascii)
print(ascii(table(table.error)), type = "rest")
## 
## +---+---------------------+------------+------------+-------------+------------+-------------+------------+------+
## |   | country.name        | NNAR.model | BATS.Model | TBATS.Model | Holt.Model | ARIMA.Model | Best.Model | Freq |
## +===+=====================+============+============+=============+============+=============+============+======+
## | 1 | Far-Eastern Federal | 9.064      | 1.614      | 1.646       | 3.007      | 2.038       | BATS Model | 1.00 |
## +---+---------------------+------------+------------+-------------+------------+-------------+------------+------+
MAPE.Value<-c(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model)
Model<-c("NNAR.model","BATS.Model","TBATS.Model","Holt.Model","ARIMA.Model")
channel_data<-data.frame(Model,MAPE.Value)
# Normally, the entire expression below would be assigned to an object, but we're
# going bare bones here.
ggplot(channel_data, aes(x = Model, y = MAPE.Value)) +
  geom_bar(stat = "identity") +
  geom_text(aes(label = MAPE.Value)) +  # x AND y INHERITED. WE JUST NEED TO SPECIFY "label"
  coord_flip() +
  scale_y_continuous(expand = c(0, 0))

message("System finished Modelling and Forecasting  by using BATS, TBATS, Holt's Linear Trend, and ARIMA Model ==>",y_lab, sep=" ")
## System finished Modelling and Forecasting  by using BATS, TBATS, Holt's Linear Trend, and ARIMA Model ==>Daily Covid 19 Infection cases in Far-Eastern Federal
message(" Thank you for using our System For Modelling and Forecasting ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling and Forecasting ==> Daily Covid 19 Infection cases in Far-Eastern Federal