Make the following three vectors:
# -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
vector_1 <-seq(-1,1, .25)
# "a" "a" "b" "b" "c" "c" "d" "d" "e" "e" "f" "f" "g" "g"
[YOUR ANSWER..]
# "1_a" "2_b" "3_a" "4_b" "5_a" "6_b" "7_a" "8_b"
[YOUR ANSWER..]
Make a matrix named that has 5 columns and 6 rows, and fill it with random samples from the normal distribution (mean = 3, standard deviation = 1).
myMatrix <- matrix(NA, 6, 5)
for (i in 1:nrow(myMatrix)) {
myMatrix[i,] <- rnorm(5, 3,1)
}
myMatrix
## [,1] [,2] [,3] [,4] [,5]
## [1,] 2.187722 2.717107 5.411908 0.9039204 3.047016
## [2,] 2.864023 3.661594 1.349833 3.5902652 1.913081
## [3,] 3.359563 2.931281 2.380193 3.6101982 1.732351
## [4,] 4.045473 3.532376 3.830165 4.1213507 3.191283
## [5,] 2.795564 2.376155 1.233600 4.4541617 2.898028
## [6,] 3.481573 3.956819 3.247257 1.9437231 3.479346
Make a list with two items. The first item is a vector with all the of the matrix . The second item is a vector with all the of the matrix .
means <- apply(myMatrix, 2, mean)
medians <-apply(myMatrix, 1, median)
myList <- list(means, medians)
Load the dataset from the library MASS.
What are the standard deviations of horse power, for each level of , for each level of (e.g., the sd of horse power for cars with \(= 0\) and \(= 1\), etc.)?
Do this with an implicit loop.
library(MASS)
data("mtcars")
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
sd_vs <- tapply(mtcars$hp, mtcars$vs==1, sd)
sd_am <- tapply(mtcars$hp, mtcars$am==1, sd)
sd_vs
## FALSE TRUE
## 60.28150 24.42447
sd_am
## FALSE TRUE
## 53.90820 84.06232
Do this with an explicit loop.
mySubset_vs_1 <- numeric()
mySubset_vs_0 <- numeric()
mySubset_am_1 <- numeric()
mySubset_am_2 <- numeric()
thisSD_vs_1 <- numeric()
thisSD_vs_0 <- numeric()
thisSD_am_1 <- numeric()
thisSD_am_0 <- numeric()
# for (i in 1:nrow(mtcars)) {
# mySubset_vs_1[i] <- subset(myData$hp, mtcars$vs == 1[i])
# mySubset_vs_0[i] <- subset(myData$hp, mtcars$vs == 0[i])
# mySubset_am_1[i] <- subset(myData$hp, mtcars$am == 1[i])
# mySubset_am_2[i] <- subset(myData$hp, mtcars$am == 0[i])
#
# thisSd_vs_1 <- sd(mySubset_vs_1)
# thisSd_vs_0 <- sd(mySubset_vs_0)
# thisSd_am_1 <- sd(mySubset_am_1)
# thisSd_am_0 <- sd(mySubset_am_0)
# }
Write a function called numberFinder. This function takes in a single numeric argument, and the function keeps sampling a single random integer between 1 and 100, until it finds the specified number. The function then returns that number. (tip: first write the main code, and only write a function around it afterwards.)
x <- sample(100,1)
myFunction <- function(x){ if (sample[sample==99]) { print(“Hoera”) }else if(sample[sample==!99]) { print(“Boo”) } }
myFunction(x) #### b (1 pt) Adjust your code from question 4a, such that your function gives an error message if the specified argument is not numeric. If you did not succeed in 4a, simply write a function that gives an error message if the specified argument is not numeric.
[YOUR ANSWER..]
Adjust your code from question 4a, such that your function keeps track of the number of samples it has taken, and then returns a list with two items: 1) the number that was found, 2) the number of samples it took.
[YOUR ANSWER..]
Make the plot shown in the pdf. Use the following code to generate x1, x2 and y (tip: the green line is based on the linear regression model that predict y based on x1)
set.seed(21)
x1 <- rnorm(100) # Openness
x2 <- rnorm(100, 1, 3)
y <- x1 + x2 + rnorm(100, 0, .1) # Agreeableness
plot(y, main= "Association O/A", ylab = "Agreeableness Score", xlab = "Openness Score", pch=1, col= "orange", bty= "n", ylim = c(-10,10), xlim= c(-3,3))
points(y, col="orange")
abline(0,1, col="green")