系統參數設定
Sys.setlocale(category = "LC_ALL", locale = "zh_TW.UTF-8") # 避免中文亂碼## [1] ""
安裝需要的packages
# echo = T,results = 'hide'
packages = c("dplyr", "tidytext", "stringr", "wordcloud2", "ggplot2",'readr','data.table','reshape2','wordcloud','tidyr','scales')
existing = as.character(installed.packages()[,1])
for(pkg in packages[!(packages %in% existing)]) install.packages(pkg)讀進library
library(dplyr)
library(stringr)
library(tidytext)
library(wordcloud2)
library(data.table)
library(ggplot2)
library(reshape2)
library(wordcloud)
library(tidyr)
library(readr)
library(scales)
require(jiebaR)# 把文章和留言讀進來
MetaData = fread('../data/PTT_movie_articleMetaData.csv',encoding = 'UTF-8')
Reviews = fread('../data/PTT_movie_articleReviews.csv',encoding = 'UTF-8')
# 再篩一次文章 826 篇
keywords = c('你的名字')
toMatch = paste(keywords,collapse="|")
MetaData = with(MetaData, MetaData[grepl(toMatch,sentence)|grepl(toMatch,artTitle),])
# 挑選文章對應的留言
Reviews = left_join(MetaData, Reviews[,c("artUrl", "cmtContent")], by = "artUrl")(1). 文章斷詞
設定斷詞引擎
# 加入自定義的字典
jieba_tokenizer <- worker(user="../dict/user_dict_movie.txt", stop_word = "../dict/stop_words.txt")
# 設定斷詞function
customized_tokenizer <- function(t) {
lapply(t, function(x) {
tokens <- segment(x, jieba_tokenizer)
return(tokens)
})
}# 把文章和留言的斷詞結果併在一起
MToken <- MetaData %>% unnest_tokens(word, sentence, token=customized_tokenizer)
RToken <- Reviews %>% unnest_tokens(word, cmtContent, token=customized_tokenizer)
# 把資料併在一起
data <- rbind(MToken[,c("artDate","artUrl", "word")],RToken[,c("artDate","artUrl", "word")]) (2). 資料基本清理
# 格式化日期欄位
data$artDate= data$artDate %>% as.Date("%Y/%m/%d")
# 過濾特殊字元
data_select = data %>%
filter(!grepl('[[:punct:]]',word)) %>% # 去標點符號
filter(!grepl("['^0-9a-z']",word)) %>% # 去英文、數字
filter(nchar(.$word)>1)
# 算每天不同字的詞頻
# word_count:artDate,word,count
word_count <- data_select %>%
select(artDate,word) %>%
group_by(artDate,word) %>%
summarise(count=n()) %>% # 算字詞單篇總數用summarise
filter(count>3) %>% # 過濾出現太少次的字
arrange(desc(count))## `summarise()` has grouped output by 'artDate'. You can override using the `.groups` argument.
word_count## # A tibble: 7,786 x 3
## # Groups: artDate [100]
## artDate word count
## <date> <chr> <int>
## 1 2016-10-27 三葉 247
## 2 2016-11-05 忍無可忍 220
## 3 2016-11-05 一刷 208
## 4 2016-11-05 我斯 204
## 5 2016-10-15 三葉 179
## 6 2016-10-25 你的名字 166
## 7 2016-10-25 三葉 163
## 8 2016-10-14 三葉 136
## 9 2016-10-29 你的名字 126
## 10 2016-11-05 三葉 110
## # ... with 7,776 more rows
全名Linguistic Inquiry and Word Counts,由心理學家Pennebaker於2001出版 分為正向情緒與負向情緒
讀檔,字詞間以“,”將字分隔
P <- read_file("../dict/liwc/positive.txt") # 正向字典txt檔
N <- read_file("../dict/liwc/negative.txt") # 負向字典txt檔
#字典txt檔讀進來是一整個字串
typeof(P)## [1] "character"
分割字詞,並將兩個情緒字典併在一起
# 將字串依,分割
# strsplit回傳list , 我們取出list中的第一個元素
P = strsplit(P, ",")[[1]]
N = strsplit(N, ",")[[1]]
# 建立dataframe 有兩個欄位word,sentiments,word欄位內容是字典向量
P = data.frame(word = P, sentiment = "positive") #664
N = data.frame(word = N, sentiment = "negative") #1047
# 把兩個字典拼在一起
LIWC = rbind(P, N)
# 檢視字典
head(LIWC)## word sentiment
## 1 一流 positive
## 2 下定決心 positive
## 3 不拘小節 positive
## 4 不費力 positive
## 5 不錯 positive
## 6 主動 positive
在畫出情緒之前,先看看熱門發文情形,大約在2016年10月1號->2017月1月1號之前之才有較多的討論。
MetaData$artDate= MetaData$artDate %>% as.Date("%Y/%m/%d")
MetaData %>%
group_by(artDate) %>%
summarise(count = n()) %>%
ggplot()+
geom_line(aes(x=artDate,y=count))+
scale_x_date(labels = date_format("%m/%d")) > 找出文集中,對於LIWC字典是positive和negative的字
算出每天情緒總和(sentiment_count)
# sentiment_count:artDate,sentiment,count
sentiment_count = data_select %>%
select(artDate,word) %>%
inner_join(LIWC) %>%
group_by(artDate,sentiment) %>%
summarise(count=n()) ## Joining, by = "word"
## `summarise()` has grouped output by 'artDate'. You can override using the `.groups` argument.
畫出每天的情緒總分數,可以看到大概在10/1後至12/31,這幾個月內,情緒從正面為主,但負面總體來說也不少。約在11月之後討論度逐漸下降。
# 檢視資料的日期區間
range(sentiment_count$artDate) #"2021-03-03" "2021-03-21"## [1] "2016-09-11" "2017-07-07"
sentiment_count %>%
ggplot()+
geom_line(aes(x=artDate,y=count,colour=sentiment))+
scale_x_date(labels = date_format("%m/%d"),
limits = as.Date(c('2016-10-01','2016-12-31'))
)+
# 加上標示日期的線
geom_vline(aes(xintercept = as.numeric(artDate[which(sentiment_count$artDate == as.Date('2016-11-01'))
[1]])),colour = "red") ## Warning: Removed 65 row(s) containing missing values (geom_path).
畫出每天的情緒總分數,以10月21上映日期前後3天來看,可以說是好評不斷,正面評價逐漸上升,但後期正面評價有降低的趨勢,而負面評價有增多的趨勢。
# 檢視資料的日期區間
range(sentiment_count$artDate) #"2021-03-03" "2021-03-21"## [1] "2016-09-11" "2017-07-07"
sentiment_count %>%
ggplot()+
geom_line(aes(x=artDate,y=count,colour=sentiment))+
scale_x_date(labels = date_format("%m/%d"),
limits = as.Date(c('2016-10-18','2016-10-24'))
)+
# 加上標示日期的線
geom_vline(aes(xintercept = as.numeric(artDate[which(sentiment_count$artDate == as.Date('2016-10-21'))
[1]])),colour = "red") ## Warning: Removed 189 row(s) containing missing values (geom_path).
將情緒分數標準化後再畫一次圖,可以發現雖然正負面情緒都有波動,而正面情緒有降低的情形,負面情緒有增多的趨勢,不過總體來說,正面情緒還是來的高。(轉擇點,電影上映後,期待感並沒有滿足所有人,負面的情緒有稍稍增加)
sentiment_count %>%
# 標準化的部分
group_by(artDate) %>%
mutate(ratio = count/sum(count)) %>%
# 畫圖的部分
ggplot()+
geom_line(aes(x=artDate,y=ratio,colour=sentiment))+
scale_x_date(labels = date_format("%m/%d"),
limits = as.Date(c('2016-10-18','2016-10-24'))
)+
# 加上標示日期的線
geom_vline(aes(xintercept = as.numeric(artDate[which(sentiment_count$artDate == as.Date('2016-10-21'))
[1]])),colour = "red")## Warning: Removed 189 row(s) containing missing values (geom_path).
畫出每天的情緒總分數,加大時間來看,以10月21上映日期後30天來看,總體來看,正面評價還是蠻高的,負面情緒則不惶多讓,尤其是在11月5號的時候,正負面評價相差不多。
# 檢視資料的日期區間
range(sentiment_count$artDate) #"2021-03-03" "2021-03-21"## [1] "2016-09-11" "2017-07-07"
sentiment_count %>%
ggplot()+
geom_line(aes(x=artDate,y=count,colour=sentiment))+
scale_x_date(labels = date_format("%m/%d"),
limits = as.Date(c('2016-10-21','2016-11-21'))
)+
# 加上標示日期的線
geom_vline(aes(xintercept = as.numeric(artDate[which(sentiment_count$artDate == as.Date('2016-11-5'))
[1]])),colour = "red") ## Warning: Removed 139 row(s) containing missing values (geom_path).
將情緒分數標準化後再畫一次圖,可以發現正負面情緒都有波動,負面情緒一度超過正面情緒,而後又與正面情緒打平,之後則以正面情緒為高。
sentiment_count %>%
# 標準化的部分
group_by(artDate) %>%
mutate(ratio = count/sum(count)) %>%
# 畫圖的部分
ggplot()+
geom_line(aes(x=artDate,y=ratio,colour=sentiment))+
scale_x_date(labels = date_format("%m/%d"),
limits = as.Date(c('2016-10-21','2016-11-21'))
)+
# 加上標示日期的線
geom_vline(aes(xintercept = as.numeric(artDate[which(sentiment_count$artDate == as.Date('2016-11-5'))
[1]])),colour = "red")## Warning: Removed 139 row(s) containing missing values (geom_path).
我們挑出幾個情緒高點的日期 觀察每日情緒分數,約從10月14號(電影上映前)開始議題被大量討論,10月29號達到議題高峰,之後就慢慢下降。
# 查看每天的情緒分數排名
sentiment_count %>%
select(count,artDate) %>%
group_by(artDate) %>%
summarise(sum = sum(count)) %>%
arrange(desc(sum))## # A tibble: 103 x 2
## artDate sum
## <date> <int>
## 1 2016-10-29 745
## 2 2016-10-30 589
## 3 2016-10-27 582
## 4 2016-10-14 547
## 5 2016-10-25 510
## 6 2016-10-28 501
## 7 2016-10-17 485
## 8 2016-10-15 476
## 9 2016-10-31 459
## 10 2016-10-23 432
## # ... with 93 more rows
挑出有興趣的日期,畫出文字雲看看都在討論甚麼主題。
先從2016-10-29的情緒高點看起。
# 畫出文字雲
word_count %>%
filter(!(word %in% c("你的名字","覺得"))) %>%
filter(artDate == as.Date('2016-10-29')) %>%
select(word,count) %>%
group_by(word) %>%
summarise(count = sum(count)) %>%
arrange(desc(count)) %>%
filter(count>10) %>% # 過濾出現太少次的字
wordcloud2()## Adding missing grouping variables: `artDate`
看點影上映前的討論情況
以2016-10-14的文字雲來看。
# 畫出文字雲
plot_10_14 = word_count %>%
filter(!(word %in% c("真的","覺得"))) %>%
filter(artDate == as.Date('2016-10-14')) %>%
select(word,count) %>%
group_by(word) %>%
summarise(count = sum(count)) %>%
arrange(desc(count)) %>%
filter(count>12) %>% # 過濾出現太少次的字
wordcloud2()## Adding missing grouping variables: `artDate`
#plot_10_14最後看一下,正負名論差不多的日期,2016-11-05的文字雲
# 畫出文字雲
plot_1105 = word_count %>%
filter(!(word %in% c(""))) %>%
filter(artDate == as.Date('2016-11-05')) %>%
select(word,count) %>%
group_by(word) %>%
summarise(count = sum(count)) %>%
arrange(desc(count)) %>%
filter(count>10) %>% # 過濾出現太少次的字
wordcloud2()
#plot_1105 ## 5.找出情緒字典代表字
算出所有字詞的詞頻(sentiment_sum),找出情緒代表字
# sentiment_sum:word,sentiment,sum
sentiment_sum <-
word_count %>%
inner_join(LIWC) %>%
group_by(word,sentiment) %>%
summarise(
sum = sum(count)
) %>%
arrange(desc(sum)) %>%
data.frame() ## Joining, by = "word"
## `summarise()` has grouped output by 'word'. You can override using the `.groups` argument.
sentiment_sum %>%
top_n(30,wt = sum) %>%
mutate(word = reorder(word, sum)) %>%
ggplot(aes(word, sum, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
labs(y = "Contribution to sentiment",
x = NULL) +
theme(text=element_text(size=14))+
coord_flip() ### 正負情緒文字雲
sentiment_sum %>%
acast(word ~ sentiment, value.var = "sum", fill = 0) %>%
comparison.cloud(
colors = c("salmon", "#72bcd4"), # positive negative
max.words = 50)正面:299 負面:62 可以看出非常的正面
# 依據情緒值的正負比例歸類文章
article_type =
data_select %>%
inner_join(LIWC) %>%
group_by(artUrl,sentiment) %>%
summarise(count=n()) %>%
spread(sentiment,count,fill = 0) %>% #把正負面情緒展開,缺值補0
mutate(type = case_when(positive > negative ~ "positive",
TRUE ~ "negative")) %>%
data.frame() ## Joining, by = "word"
## `summarise()` has grouped output by 'artUrl'. You can override using the `.groups` argument.
# 看一下正負比例的文章各有幾篇
article_type %>%
group_by(type) %>%
summarise(count = n())## # A tibble: 2 x 2
## type count
## <chr> <int>
## 1 negative 62
## 2 positive 299
可以看到負面的文章不多。
#
article_type_date = left_join(article_type[,c("artUrl", "type")], MetaData[,c("artUrl", "artDate")], by = "artUrl")
article_type_date %>%
group_by(artDate,type) %>%
summarise(count = n()) %>%
ggplot(aes(x = artDate, y = count, fill = type)) +
geom_bar(stat = "identity", position = "dodge")+
scale_x_date(labels = date_format("%m/%d"),
limits = as.Date(c('2016-10-14','2016-11-05'))
)## `summarise()` has grouped output by 'artDate'. You can override using the `.groups` argument.
## Warning: Removed 95 rows containing missing values (geom_bar).
把正面和負面的文章挑出來,並和斷詞結果合併。
# negative_article:artUrl,word
negative_article <-
article_type %>%
filter(type=="negative")%>%
select(artUrl) %>%
left_join(data_select[,c("artUrl", "word")], by = "artUrl")
# positive_article:artUrl,word
positive_article <-
article_type %>%
filter(type=="positive")%>%
select(artUrl) %>%
left_join(data_select[,c("artUrl", "word")], by = "artUrl")畫出正負面文章情緒貢獻度較高的關鍵字
# 負面情緒關鍵字貢獻圖
negative_article %>%
inner_join(LIWC) %>%
group_by(word,sentiment) %>%
summarise(
sum = n()
)%>%
arrange(desc(sum)) %>%
data.frame() %>%
top_n(30,wt = sum) %>%
ungroup() %>%
mutate(word = reorder(word, sum)) %>%
ggplot(aes(word, sum, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
labs(y = "Contribution to negative sentiment",
x = NULL) +
theme(text=element_text(size=14))+
coord_flip()## Joining, by = "word"
## `summarise()` has grouped output by 'word'. You can override using the `.groups` argument.
### 情緒關鍵字:正面情緒文章
# 正面情緒關鍵字貢獻圖
positive_article %>%
inner_join(LIWC) %>%
group_by(word,sentiment) %>%
summarise(
sum = n()
)%>%
arrange(desc(sum)) %>%
data.frame() %>%
top_n(30,wt = sum) %>%
ungroup() %>%
mutate(word = reorder(word, sum)) %>%
ggplot(aes(word, sum, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
labs(y = "Contribution to positive sentiment",
x = NULL) +
theme(text=element_text(size=14))+
coord_flip()## Joining, by = "word"
## `summarise()` has grouped output by 'word'. You can override using the `.groups` argument.
無,文字平台無 資料