Picture
url <- "https://raw.githubusercontent.com/uplotnik/CUNY_DATA_608/master/Final%20Project/Covid.csv"
datasetx <- read.csv(url)
datasetx2 <-tail(datasetx)
datasetx2
vaccines <- unique(datasetx$vaccines)
vaccines
## [1] "Oxford/AstraZeneca"
## [2] "Pfizer/BioNTech"
## [3] "Sputnik V"
## [4] "Oxford/AstraZeneca, Sinopharm/Beijing, Sputnik V"
## [5] "Oxford/AstraZeneca, Pfizer/BioNTech"
## [6] "Moderna, Oxford/AstraZeneca, Pfizer/BioNTech"
## [7] "Sinovac"
## [8] "Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing, Sputnik V"
## [9] "Oxford/AstraZeneca, Sinovac"
## [10] "Sinopharm/Beijing"
## [11] "Pfizer/BioNTech, Sinovac"
## [12] "Sinopharm/Beijing, Sinopharm/Wuhan, Sinovac"
## [13] "Moderna, Pfizer/BioNTech"
## [14] "Moderna"
## [15] "Moderna, Oxford/AstraZeneca"
## [16] "Moderna, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing, Sputnik V"
## [17] "Covaxin, Oxford/AstraZeneca"
## [18] "Pfizer/BioNTech, Sinopharm/Beijing"
## [19] "Pfizer/ BioNTech, Sinopharm/Beijing"
## [20] "Oxford/AstraZeneca, Pfizer/BioNTech, Sputnik V"
## [21] "Sinopharm/Beijing, Sputnik V"
## [22] "Oxford/AstraZeneca, Sinopharm/Beijing"
## [23] "EpiVacCorona, Sputnik V"
## [24] "Johnson&Johnson"
## [25] "Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing, Sinopharm/Wuhan, Sputnik V"
## [26] "Johnson&Johnson, Moderna, Pfizer/BioNTech"
summary (datasetx)
## country iso_code date total_vaccinations
## Length:6998 Length:6998 Length:6998 Min. : 0
## Class :character Class :character Class :character 1st Qu.: 36551
## Mode :character Mode :character Mode :character Median : 247933
## Mean : 2292320
## 3rd Qu.: 1168025
## Max. :113037627
## NA's :2621
## people_vaccinated people_fully_vaccinated daily_vaccinations_raw
## Min. : 0 Min. : 1 Min. : 0
## 1st Qu.: 33783 1st Qu.: 17527 1st Qu.: 2654
## Median : 227648 Median : 94680 Median : 13399
## Mean : 1867102 Mean : 765339 Mean : 85333
## 3rd Qu.: 927998 3rd Qu.: 452054 3rd Qu.: 56572
## Max. :73669956 Max. :39989196 Max. :4575496
## NA's :3104 NA's :4364 NA's :3313
## daily_vaccinations total_vaccinations_per_hundred
## Min. : 1 Min. : 0.000
## 1st Qu.: 1038 1st Qu.: 0.700
## Median : 6229 Median : 3.370
## Mean : 58365 Mean : 9.146
## 3rd Qu.: 27383 3rd Qu.: 9.620
## Max. :2541597 Max. :146.410
## NA's :180 NA's :2621
## people_vaccinated_per_hundred people_fully_vaccinated_per_hundred
## Min. : 0.0000 Min. : 0.000
## 1st Qu.: 0.7025 1st Qu.: 0.360
## Median : 2.9700 Median : 1.310
## Mean : 7.0658 Mean : 3.234
## 3rd Qu.: 7.5675 3rd Qu.: 2.870
## Max. :88.3000 Max. :58.110
## NA's :3104 NA's :4364
## daily_vaccinations_per_million vaccines source_name
## Min. : 0 Length:6998 Length:6998
## 1st Qu.: 358 Class :character Class :character
## Median : 1254 Mode :character Mode :character
## Mean : 2686
## 3rd Qu.: 3050
## Max. :54264
## NA's :180
I intend to create a map or interactive web app that shows countries where the vaccination program is more advanced. I want to create line graphs or barcharts showing which country is using what vaccine. I also want to investigate where are vaccinated more people per day in terms of percent from entire population.
For my project I will use packages in R such as plotly and tidyverse for rendering interactive graphics and visualization as well as Shiny for creating web app.
During Pandemic time Covid-19 Vaccination is one of the most discussed and hot topics. My analysis is mostly for informational and educational purposes.