options(scipen=999)
library (dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library (geobr)
## Warning: package 'geobr' was built under R version 4.0.4
## Loading required namespace: sf
library(corrplot)
## corrplot 0.84 loaded
library(RColorBrewer)
AZULAC <- colorRampPalette(brewer.pal(9,"Blues"))(25)
AZULRO <- colorRampPalette(brewer.pal(9,"Blues"))(52)
VERDE <- colorRampPalette(brewer.pal(9,"Greens"))(52)
VERMELHOAC <- colorRampPalette(brewer.pal(9,"Reds"))(25)
VERMELHORO <- colorRampPalette(brewer.pal(9,"Reds"))(52)
LARANJAAC <- colorRampPalette(brewer.pal(9,"Oranges"))(25)
LARANJARO <- colorRampPalette(brewer.pal(9,"Oranges"))(52)
CINZAAC <- colorRampPalette(brewer.pal(9,"Greys"))(25)
CINZARO <- colorRampPalette(brewer.pal(9,"Greys"))(52)
library(readxl)
AC_Tabela_Final <- read_excel("C:/Users/José Pegorim/Desktop/Relatorio final estatistica/AC_Tabela Final.xlsx")
library(readxl)
RO_Tabela_Final <- read_excel("C:/Users/José Pegorim/Desktop/Relatorio final estatistica/RO_Tabela Final.xlsx")
library(readxl)
Dicionario <- read_excel("C:/Users/José Pegorim/Desktop/Relatorio final estatistica/Dicionario.xlsx")
## O dicionário conta com a descrição de cada variável presente na base de dados.
boxplot(AC_Tabela_Final$`PIBpc`)
boxplot(RO_Tabela_Final$`PIBpc`)
boxplot(AC_Tabela_Final$`IAE`)
boxplot(RO_Tabela_Final$`IAE`)
boxplot(AC_Tabela_Final$`IEE`)
boxplot(RO_Tabela_Final$`IEE`)
#### Na comparação do Indice de Evasão, vemos que Rondônia apresenta aproximadamente 3,5% enquanto Acre 7,5% #### O que, a principio, pode ser corroborado também pelo maior índice de aprovação em Rondonia.
boxplot(AC_Tabela_Final$`PIBpc`~ AC_Tabela_Final$`IAE`)
boxplot(RO_Tabela_Final$`PIBpc`~ RO_Tabela_Final$`IAE`)
#### Para ambos casos é interessante perceber que parece não haver relação entre niveis de investimento percapta e indices de aprovação, já que temos municipios com quase 100% de aprovação e com a mesma media de investimento per capta.
plot(AC_Tabela_Final$IAE,AC_Tabela_Final$PIBpc,pch=19,col="lightblue",
xlab = "Indice de Aprovação Escolar",
ylab = "PIB percapta",
main = "ACRE: Diagrama de dispersão para o IAE em relação ao PIB")
abline(lsfit(AC_Tabela_Final$IAE,AC_Tabela_Final$PIBpc),
col="red")
plot(RO_Tabela_Final$IAE,RO_Tabela_Final$PIBpc,pch=19,col="lightblue",
xlab = "Indice de Aprovação Escolar",
ylab = "PIB percapta",
main = "RONDONIA: Diagrama de dispersão para o IAE em relação ao PIB")
abline(lsfit(RO_Tabela_Final$IAE,RO_Tabela_Final$PIBpc),
col="red")
cor(AC_Tabela_Final$`PIBpc`,AC_Tabela_Final$IAE)
## [1] -0.04870788
cor(RO_Tabela_Final$`PIBpc`,RO_Tabela_Final$IAE)
## [1] -0.1135748
ACRE_variaveis_quanti <- c("IAE","IRE","IEE","PIBpc","QFP")
correlacao <- cor(AC_Tabela_Final[,c("IAE","IRE","IEE","PIBpc","QFP")])
corrplot(correlacao)
RO_variaveis_quanti <- c("IAE","IRE","IEE","PIBpc","QFP")
correlacao2 <- cor(RO_Tabela_Final[,c("IAE", "IRE","IEE","PIBpc","QFP")])
corrplot(correlacao2)
#### Para o caso do Acre é possivel perceber alguns elementos que causam alguma estranheza, como por exemplo o indice de reprovação ter relação positiva com o PIB ou o indice de aprovação ter relação positiva com o a quantidade de familias pobres. #### Para o caso de Rondonia já pode ser percebido uma forte relação entre indice de evasão e o numero de familias pobres.
shapiro.test(AC_Tabela_Final$IAE)
##
## Shapiro-Wilk normality test
##
## data: AC_Tabela_Final$IAE
## W = 0.988, p-value = 0.9921
shapiro.test(AC_Tabela_Final$IRE)
##
## Shapiro-Wilk normality test
##
## data: AC_Tabela_Final$IRE
## W = 0.9285, p-value = 0.1142
shapiro.test(AC_Tabela_Final$IEE)
##
## Shapiro-Wilk normality test
##
## data: AC_Tabela_Final$IEE
## W = 0.94696, p-value = 0.2746
shapiro.test(AC_Tabela_Final$PIBpc)
##
## Shapiro-Wilk normality test
##
## data: AC_Tabela_Final$PIBpc
## W = 0.94701, p-value = 0.2752
shapiro.test(AC_Tabela_Final$QFP)
##
## Shapiro-Wilk normality test
##
## data: AC_Tabela_Final$QFP
## W = 0.73625, p-value = 0.00005873
library(dplyr)
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
summary(AC_Tabela_Final)
## AC CM name_muni IAE
## Length:22 Min. :1200013 Length:22 Min. :79.00
## Class :character 1st Qu.:1200215 Class :character 1st Qu.:84.04
## Mode :character Median :1200348 Mode :character Median :86.70
## Mean :1200351 Mean :86.86
## 3rd Qu.:1200433 3rd Qu.:89.55
## Max. :1200807 Max. :95.55
## IRE IEE PIBpc QFP
## Min. : 0.900 Min. : 2.700 Min. : 3888 Min. : 385.0
## 1st Qu.: 5.000 1st Qu.: 5.275 1st Qu.: 5164 1st Qu.: 791.8
## Median : 7.350 Median : 7.850 Median : 6348 Median :1337.5
## Mean : 8.505 Mean : 8.859 Mean : 6512 Mean :1791.4
## 3rd Qu.:12.000 3rd Qu.:12.025 3rd Qu.: 7411 3rd Qu.:2018.8
## Max. :23.700 Max. :17.600 Max. :10277 Max. :7400.0
AC_Tabela_Final$QFP <- as.double(AC_Tabela_Final$QFP)
AC_Tabela_Final$IAE <- as.double(AC_Tabela_Final$IAE)
AC_Tabela_Final$IRE <- as.double(AC_Tabela_Final$IRE)
AC_Tabela_Final$IEE <- as.double(AC_Tabela_Final$IEE)
AC_Tabela_Final$PIBpc <- as.double(AC_Tabela_Final$PIBpc)
PMW1 <- pairwise.wilcox.test(AC_Tabela_Final$QFP, AC_Tabela_Final$IAE, p.adjust.method="fdr")
PMW2 <- pairwise.wilcox.test(AC_Tabela_Final$QFP,
AC_Tabela_Final$IRE,
p.adjust.method="fdr")
PMW3 <- pairwise.wilcox.test(AC_Tabela_Final$QFP,
AC_Tabela_Final$IRE,
p.adjust.method="fdr")
PMW4 <- pairwise.wilcox.test(AC_Tabela_Final$QFP,
AC_Tabela_Final$PIBpc,
p.adjust.method="fdr")
AC_Tabela_Final$QFP <- as.numeric(AC_Tabela_Final$QFP)
AC_Tabela_Final$IAE <- as.numeric(AC_Tabela_Final$IAE)
AC_Tabela_Final$IRE <- as.numeric(AC_Tabela_Final$IRE)
AC_Tabela_Final$IEE <- as.numeric(AC_Tabela_Final$IEE)
AC_Tabela_Final$PIBpc <- as.numeric(AC_Tabela_Final$PIBpc)
cor.test(AC_Tabela_Final$QFP, AC_Tabela_Final$IAE, method = "spearman")
##
## Spearman's rank correlation rho
##
## data: AC_Tabela_Final$QFP and AC_Tabela_Final$IAE
## S = 1816, p-value = 0.9118
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.02540937
cor.test(AC_Tabela_Final$QFP, AC_Tabela_Final$IRE, method = "spearman")
##
## Spearman's rank correlation rho
##
## data: AC_Tabela_Final$QFP and AC_Tabela_Final$IRE
## S = 1616, p-value = 0.6979
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.08752117
cor.test(AC_Tabela_Final$QFP, AC_Tabela_Final$IEE, method = "spearman")
## Warning in cor.test.default(AC_Tabela_Final$QFP, AC_Tabela_Final$IEE, method =
## "spearman"): Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: AC_Tabela_Final$QFP and AC_Tabela_Final$IEE
## S = 1788, p-value = 0.9662
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.009601808
cor.test(AC_Tabela_Final$QFP, AC_Tabela_Final$PIBpc, method = "spearman")
##
## Spearman's rank correlation rho
##
## data: AC_Tabela_Final$QFP and AC_Tabela_Final$PIBpc
## S = 2538, p-value = 0.04535
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.4330887
modelo1 <- aov(IAE ~ PIBpc, data=AC_Tabela_Final)
residuos1 <- residuals(modelo1)
summary(residuos1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -7.6700 -2.8990 -0.2489 0.0000 2.8273 8.7447
modelo2 <- aov(IAE ~ IRE, data=AC_Tabela_Final)
residuos2 <- residuals(modelo2)
summary(residuos2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4.190 -2.094 -0.137 0.000 1.612 5.627
shapiro.test(residuos2)
##
## Shapiro-Wilk normality test
##
## data: residuos2
## W = 0.96413, p-value = 0.577
modelo3 <- aov(IAE ~ IEE, data=AC_Tabela_Final)
residuos3 <- residuals(modelo3)
summary(residuos3)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -5.2245 -1.7583 0.4124 0.0000 1.4011 4.7511
shapiro.test(residuos3)
##
## Shapiro-Wilk normality test
##
## data: residuos3
## W = 0.98413, p-value = 0.9676
modelo4 <- aov(IAE ~ PIBpc, data=AC_Tabela_Final)
residuos4 <- residuals(modelo4)
summary(residuos4)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -7.6700 -2.8990 -0.2489 0.0000 2.8273 8.7447
shapiro.test(residuos4)
##
## Shapiro-Wilk normality test
##
## data: residuos4
## W = 0.98965, p-value = 0.9967
shapiro.test(RO_Tabela_Final$IAE)
##
## Shapiro-Wilk normality test
##
## data: RO_Tabela_Final$IAE
## W = 0.94838, p-value = 0.02488
shapiro.test(RO_Tabela_Final$IRE)
##
## Shapiro-Wilk normality test
##
## data: RO_Tabela_Final$IRE
## W = 0.89503, p-value = 0.0002515
shapiro.test(RO_Tabela_Final$IEE)
##
## Shapiro-Wilk normality test
##
## data: RO_Tabela_Final$IEE
## W = 0.89366, p-value = 0.0002267
shapiro.test(RO_Tabela_Final$PIBpc)
##
## Shapiro-Wilk normality test
##
## data: RO_Tabela_Final$PIBpc
## W = 0.87646, p-value = 0.00006476
shapiro.test(RO_Tabela_Final$QFP)
##
## Shapiro-Wilk normality test
##
## data: RO_Tabela_Final$QFP
## W = 0.49847, p-value = 0.000000000004481
###ETAPA VI - CONSTRUÇÃO DOS MAPAS #### Mapa 1 - O Brasil e suas regiões
library(geobr)
library(dplyr)
AC_Tabela_Final2 <- read_excel("C:/Users/José Pegorim/Desktop/Relatorio final estatistica/AC_Tabela Final.xlsx") %>% rename(code_muni=CM)
RO_Tabela_Final2 <- read_excel("C:/Users/José Pegorim/Desktop/Relatorio final estatistica/RO_Tabela Final.xlsx") %>% rename(code_muni=CM)
AC1 <- read_municipality(code_muni="AC", year=2010)
## Using year 2010
##
|
| | 0%
|
|======================================================================| 100%
##
Downloading: 1.6 kB
Downloading: 1.6 kB
Downloading: 2 kB
Downloading: 2 kB
Downloading: 2.1 kB
Downloading: 2.1 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 26 kB
Downloading: 26 kB
Downloading: 26 kB
Downloading: 26 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 99 kB
Downloading: 99 kB
Downloading: 99 kB
Downloading: 99 kB
Downloading: 99 kB
Downloading: 99 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
library(ggplot2)
AC_Tabela_Final2$code_muni<-as.character(AC_Tabela_Final2$code_muni)
AC1$code_muni<-as.character(AC1$code_muni)
full_join(AC1,AC_Tabela_Final2,by="code_muni")
## Simple feature collection with 22 features and 11 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -73.99045 ymin: -11.14556 xmax: -66.62376 ymax: -7.111824
## geographic CRS: SIRGAS 2000
## First 10 features:
## code_muni name_muni.x code_state abbrev_state AC name_muni.y IAE
## 1 1200013 Acrelândia 12 AC AC Acrelândia 81.25
## 2 1200054 Assis Brasil 12 AC AC Assis Brasil 86.70
## 3 1200104 Brasiléia 12 AC AC Brasiléia 95.55
## 4 1200138 Bujari 12 AC AC Bujari 91.65
## 5 1200179 Capixaba 12 AC AC Capixaba 85.80
## 6 1200203 Cruzeiro Do Sul 12 AC AC Cruzeiro do Sul 85.45
## 7 1200252 Epitaciolândia 12 AC AC Epitaciolândia 83.65
## 8 1200302 Feijó 12 AC AC Feijó 83.60
## 9 1200328 Jordão 12 AC AC Jordão 88.65
## 10 1200336 Mâncio Lima 12 AC AC Mâncio Lima 93.80
## IRE IEE PIBpc QFP geom
## 1 17.8 14.9 10276.54 952 MULTIPOLYGON (((-67.14117 -...
## 2 7.2 6.2 6364.95 520 MULTIPOLYGON (((-69.79978 -...
## 3 2.9 2.7 7025.48 2133 MULTIPOLYGON (((-69.58835 -...
## 4 4.7 5.2 8811.72 670 MULTIPOLYGON (((-68.31643 -...
## 5 5.3 10.9 10134.17 881 MULTIPOLYGON (((-67.84667 -...
## 6 15.8 6.8 5052.59 7400 MULTIPOLYGON (((-72.89221 -...
## 7 13.3 13.4 6615.73 1187 MULTIPOLYGON (((-68.71719 -...
## 8 7.5 10.1 3887.67 3693 MULTIPOLYGON (((-70.57658 -...
## 9 0.9 7.9 6074.99 605 MULTIPOLYGON (((-71.79514 -...
## 10 1.6 5.1 4059.09 762 MULTIPOLYGON (((-73.71531 -...
unidosAC <- full_join(AC1,AC_Tabela_Final2,by="code_muni")
RO1 <- read_municipality(code_muni="RO", year=2010)
## Using year 2010
##
|
| | 0%
|
|======================================================================| 100%
##
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 2 kB
Downloading: 2 kB
Downloading: 2 kB
Downloading: 2 kB
Downloading: 3.5 kB
Downloading: 3.5 kB
Downloading: 3.5 kB
Downloading: 3.5 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 28 kB
Downloading: 28 kB
Downloading: 28 kB
Downloading: 28 kB
Downloading: 36 kB
Downloading: 36 kB
Downloading: 36 kB
Downloading: 36 kB
Downloading: 36 kB
Downloading: 36 kB
Downloading: 44 kB
Downloading: 44 kB
Downloading: 52 kB
Downloading: 52 kB
Downloading: 52 kB
Downloading: 52 kB
Downloading: 68 kB
Downloading: 68 kB
Downloading: 68 kB
Downloading: 68 kB
Downloading: 76 kB
Downloading: 76 kB
Downloading: 76 kB
Downloading: 76 kB
Downloading: 76 kB
Downloading: 76 kB
Downloading: 84 kB
Downloading: 84 kB
Downloading: 84 kB
Downloading: 84 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
library(ggplot2)
summary(RO_Tabela_Final2)
## RO code_muni name_muni IAE
## Length:52 Min. :1100015 Length:52 Min. :79.65
## Class :character 1st Qu.:1100144 Class :character 1st Qu.:88.72
## Mode :character Median :1100391 Mode :character Median :91.95
## Mean :1100682 Mean :91.03
## 3rd Qu.:1101327 3rd Qu.:94.16
## Max. :1101807 Max. :97.45
## IRE IEE PIBpc QFP
## Min. : 0.750 Min. :0.000 Min. : 4430 Min. : 73.0
## 1st Qu.: 3.775 1st Qu.:1.087 1st Qu.: 6425 1st Qu.: 902.5
## Median : 5.375 Median :1.975 Median : 7220 Median : 1633.0
## Mean : 6.209 Mean :2.760 Mean : 7914 Mean : 2295.5
## 3rd Qu.: 8.000 3rd Qu.:4.025 3rd Qu.: 9134 3rd Qu.: 2449.0
## Max. :19.300 Max. :9.150 Max. :15357 Max. :22827.0
RO_Tabela_Final2$code_muni<-as.character(RO_Tabela_Final2$code_muni)
RO1$code_muni<-as.character(RO1$code_muni)
summary(RO_Tabela_Final2)
## RO code_muni name_muni IAE
## Length:52 Length:52 Length:52 Min. :79.65
## Class :character Class :character Class :character 1st Qu.:88.72
## Mode :character Mode :character Mode :character Median :91.95
## Mean :91.03
## 3rd Qu.:94.16
## Max. :97.45
## IRE IEE PIBpc QFP
## Min. : 0.750 Min. :0.000 Min. : 4430 Min. : 73.0
## 1st Qu.: 3.775 1st Qu.:1.087 1st Qu.: 6425 1st Qu.: 902.5
## Median : 5.375 Median :1.975 Median : 7220 Median : 1633.0
## Mean : 6.209 Mean :2.760 Mean : 7914 Mean : 2295.5
## 3rd Qu.: 8.000 3rd Qu.:4.025 3rd Qu.: 9134 3rd Qu.: 2449.0
## Max. :19.300 Max. :9.150 Max. :15357 Max. :22827.0
glimpse(RO_Tabela_Final2)
## Rows: 52
## Columns: 8
## $ RO <chr> "RO", "RO", "RO", "RO", "RO", "RO", "RO", "RO", "RO", "RO...
## $ code_muni <chr> "1100015", "1100023", "1100031", "1100049", "1100056", "1...
## $ name_muni <chr> "Alta Floresta D'Oeste", "Ariquemes", "Cabixi", "Cacoal",...
## $ IAE <dbl> 93.10, 87.80, 93.80, 94.45, 93.20, 94.45, 95.40, 90.85, 9...
## $ IRE <dbl> 3.20, 7.60, 4.45, 4.00, 3.85, 4.80, 3.55, 7.45, 3.45, 8.5...
## $ IEE <dbl> 3.70, 4.60, 1.75, 1.55, 2.95, 0.75, 1.05, 1.70, 0.70, 1.7...
## $ PIBpc <dbl> 6688.43, 8443.84, 9299.26, 9471.29, 8604.37, 7783.84, 102...
## $ QFP <dbl> 1853, 1152, 2447, 2045, 6960, 5291, 349, 388, 5206, 1742,...
full_join(RO1,RO_Tabela_Final2,by="code_muni")
## Simple feature collection with 52 features and 11 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -66.81025 ymin: -13.6937 xmax: -59.77435 ymax: -7.969294
## geographic CRS: SIRGAS 2000
## First 10 features:
## code_muni name_muni.x code_state abbrev_state RO
## 1 1100015 Alta Floresta D'oeste 11 RO RO
## 2 1100023 Ariquemes 11 RO RO
## 3 1100031 Cabixi 11 RO RO
## 4 1100049 Cacoal 11 RO RO
## 5 1100056 Cerejeiras 11 RO RO
## 6 1100064 Colorado Do Oeste 11 RO RO
## 7 1100072 Corumbiara 11 RO RO
## 8 1100080 Costa Marques 11 RO RO
## 9 1100098 Espigão D'oeste 11 RO RO
## 10 1100106 Guajará-Mirim 11 RO RO
## name_muni.y IAE IRE IEE PIBpc QFP
## 1 Alta Floresta D'Oeste 93.10 3.20 3.70 6688.43 1853
## 2 Ariquemes 87.80 7.60 4.60 8443.84 1152
## 3 Cabixi 93.80 4.45 1.75 9299.26 2447
## 4 Cacoal 94.45 4.00 1.55 9471.29 2045
## 5 Cerejeiras 93.20 3.85 2.95 8604.37 6960
## 6 Colorado do Oeste 94.45 4.80 0.75 7783.84 5291
## 7 Corumbiara 95.40 3.55 1.05 10280.51 349
## 8 Costa Marques 90.85 7.45 1.70 5792.54 388
## 9 Espigão D'Oeste 95.85 3.45 0.70 7637.66 5206
## 10 Guajará-Mirim 89.80 8.50 1.70 8082.48 1742
## geom
## 1 MULTIPOLYGON (((-62.2462 -1...
## 2 MULTIPOLYGON (((-63.13712 -...
## 3 MULTIPOLYGON (((-60.52408 -...
## 4 MULTIPOLYGON (((-61.42679 -...
## 5 MULTIPOLYGON (((-61.41347 -...
## 6 MULTIPOLYGON (((-60.66352 -...
## 7 MULTIPOLYGON (((-60.73158 -...
## 8 MULTIPOLYGON (((-63.89618 -...
## 9 MULTIPOLYGON (((-61.05118 -...
## 10 MULTIPOLYGON (((-65.25284 -...
unidosRO <- full_join(RO1,RO_Tabela_Final2,by="code_muni")
unidosAC$IAE<-as.factor(unidosAC$IAE)
ggplot(unidosAC)+
geom_sf(aes(fill=IAE))+
scale_fill_manual(values = AZULAC)+
labs(title = "Indice de aprovação Escolar ACRE",
subtitle = "Municipios",
fill="Indice de Aprovação",
x=NULL,
y=NULL)+
geom_sf_text(data=AC1,aes(label = name_muni), size=2, color= "black")+
theme_bw()
## Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
## give correct results for longitude/latitude data
unidosRO$IAE<-as.factor(unidosRO$IAE)
ggplot(unidosRO)+
geom_sf(aes(fill=IAE))+
scale_fill_manual(values = AZULRO)+
labs(title = "Indice de aprovação Escolar Rondonia",
subtitle = "Municipios",
fill="Indice de Aprovação",
x=NULL,
y=NULL)+
geom_sf_text(data=RO1,aes(label =name_muni), size=2, color= "black")+
theme_bw()
## Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
## give correct results for longitude/latitude data
unidosAC$IEE<-as.factor(unidosAC$IEE)
ggplot(unidosAC)+
geom_sf(aes(fill=IEE))+
scale_fill_manual(values = VERMELHOAC)+
labs(title = "Indice de Evasão Escolar ACRE",
subtitle = "Municipios",
fill="Indice de Evasão",
x=NULL,
y=NULL)+
geom_sf_text(data=AC1,aes(label = name_muni), size=2, color= "black")+
theme_bw()
## Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
## give correct results for longitude/latitude data
unidosRO$IEE<-as.factor(unidosRO$IEE)
ggplot(unidosRO)+
geom_sf(aes(fill=IEE))+
scale_fill_manual(values = VERMELHORO)+
labs(title = "Indice de Evasão Escolar Rondonia",
subtitle = "Municipios",
fill="Indice de Evasão",
x=NULL,
y=NULL)+
geom_sf_text(data=RO1,aes(label =name_muni), size=2, color= "black")+
theme_bw()
## Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
## give correct results for longitude/latitude data
unidosAC$PIBpc<-as.factor(unidosAC$PIBpc)
ggplot(unidosAC)+
geom_sf(aes(fill=PIBpc))+
scale_fill_manual(values = LARANJAAC)+
labs(title = "PIB per capta ACRE",
subtitle = "Municipios",
fill="PIB per capta(R$)",
x=NULL,
y=NULL)+
geom_sf_text(data=AC1,aes(label = name_muni), size=2, color= "black")+
theme_bw()
## Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
## give correct results for longitude/latitude data
unidosRO$PIBpc<-as.factor(unidosRO$PIBpc)
ggplot(unidosRO)+
geom_sf(aes(fill=PIBpc))+
scale_fill_manual(values = LARANJARO)+
labs(title = "PIB per capta Rondonia",
subtitle = "Municipios",
fill="PIB per capta(R$)",
x=NULL,
y=NULL)+
geom_sf_text(data=RO1,aes(label = name_muni), size=2, color= "black")+
theme_bw()
## Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
## give correct results for longitude/latitude data
unidosAC$QFP<-as.factor(unidosAC$QFP)
ggplot(unidosAC)+
geom_sf(aes(fill=QFP))+
scale_fill_manual(values = CINZAAC)+
labs(title = "Quantidade de Familias Pobres",
subtitle = "Municipios",
fill="Quantidade de Familias pobres",
x=NULL,
y=NULL)+
geom_sf_text(data=AC1,aes(label = name_muni), size=2, color= "black")+
theme_bw()
## Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
## give correct results for longitude/latitude data
unidosRO$QFP<-as.factor(unidosRO$QFP)
ggplot(unidosRO)+
geom_sf(aes(fill=QFP))+
scale_fill_manual(values = CINZARO)+
labs(title = "Quantidade de Familias Pobres",
subtitle = "Municipios",
fill="Quantidade de Familias pobres",
x=NULL,
y=NULL)+
geom_sf_text(data=RO1,aes(label = name_muni), size=2, color= "black")+
theme_bw()
## Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
## give correct results for longitude/latitude data