Délai de Succès au MM

description

Chose que l’on n’avait pas vu tant que l’on travaillait sur des moyennes de temps de réponses aggrégées par individu et non au niveau expérience : le délai de succès au multimorphe à un « pic » énorme sur la modalité 40 qui correspond si j’ai bien compris, à ceux qui répondent seulement à la fin , c’est à dire au bout de 20 secondes ou après. Modéliser ce temps de réponse de façon linéaire va nous poser problème : les données ne sont pas normales, on voit bien qu’on a une rupture de cohérence dans le processus qui amène des valeurs <40, et les valeurs égales à 40.

Ici on a l’histrogramme pour nos 89 individus x 36 expériences (6 visages x 6 emotions) (8966=3204 observations)

Histogramme du Délai de succès chez BL et Témoins.

cliquez pour “dérouler” :
Histogrammes par emotion chez BL
Histogrammes par emotion chez T

Modélisation

Délai de succès

Graphes “splines” des relations entre les Dimensions Abandon et Intrusion et le Délai de Succès.

library(ggstance)
library(ggformula)
plot3 <- ggplot(data = DBMODEL_delai,aes(Dim.Abandon,DEL_SUCC, color=factor(borderline))) + geom_point()  + 
  geom_spline(aes(Dim.Abandon,DEL_SUCC, colour=factor(borderline)), df= 3 )
plot3

plot3 <- ggplot(data = DBMODEL_delai,aes(Dim.Intrusion,DEL_SUCC, color=factor(borderline))) + geom_point()  + 
  geom_spline(aes(Dim.Abandon,DEL_SUCC, colour=factor(borderline)), df= 3 )
plot3

Modèle linéaire mixte. On a introduit les effet linéaires et quadratiques (polynomes orthogonaux) de Dim.Abandon et Dim.Intrusion, ainsi que l’interaction de ces effets avec le fait d’être borderline.

lmm2 <- lme(DEL_SUCC ~ age + sexe + CSP_bin2  + traitement 
                     + poly_abandon_1   * borderline
                     + poly_abandon_2   * borderline
                     + poly_intrusion_1 * borderline
                     + poly_intrusion_2 * borderline
            , random = ~ 1 | z1,
            data = DBMODEL_delai)

summary(lmm2)
## Linear mixed-effects model fit by REML
##  Data: DBMODEL_delai 
##        AIC      BIC    logLik
##   13878.58 13968.14 -6923.289
## 
## Random effects:
##  Formula: ~1 | z1
##         (Intercept) Residual
## StdDev:    4.198124 7.518288
## 
## Fixed effects: DEL_SUCC ~ age + sexe + CSP_bin2 + traitement + poly_abandon_1 *      borderline + poly_abandon_2 * borderline + poly_intrusion_1 *      borderline + poly_intrusion_2 * borderline 
##                                 Value Std.Error   DF   t-value p-value
## (Intercept)                   40.5821   8.87938 1932  4.570373  0.0000
## age                           -0.7082   0.56779   61 -1.247255  0.2171
## sexe                          -1.3232   1.74263   61 -0.759296  0.4506
## CSP_bin2                       5.0410   1.45298   61  3.469406  0.0010
## traitement                     3.9263   2.01906   61  1.944603  0.0564
## poly_abandon_1               195.4783  85.64567 1932  2.282407  0.0226
## borderline                     3.8800   2.40000   61  1.616686  0.1111
## poly_abandon_2                40.5277  64.28532 1932  0.630434  0.5285
## poly_intrusion_1            -225.0702  91.62972 1932 -2.456301  0.0141
## poly_intrusion_2            -161.2001 101.37916 1932 -1.590071  0.1120
## poly_abandon_1:borderline   -383.6991 112.19613 1932 -3.419896  0.0006
## borderline:poly_abandon_2    108.2878  85.14600 1932  1.271790  0.2036
## borderline:poly_intrusion_1  196.2441 103.82272 1932  1.890184  0.0589
## borderline:poly_intrusion_2  224.9047 107.59080 1932  2.090371  0.0367
##  Correlation: 
##                             (Intr) age    sexe   CSP_b2 trtmnt ply_b_1 brdrln ply_b_2 ply_n_1 ply_n_2 pl__1: brdrln:ply_b_2 br:__1
## age                         -0.986                                                                                                
## sexe                         0.130 -0.258                                                                                         
## CSP_bin2                     0.235 -0.263  0.040                                                                                  
## traitement                  -0.004  0.001  0.052 -0.152                                                                           
## poly_abandon_1               0.097 -0.088  0.232  0.227 -0.022                                                                    
## borderline                   0.207 -0.223 -0.141  0.179 -0.455 -0.165                                                             
## poly_abandon_2               0.068 -0.068  0.188  0.250 -0.029  0.768  -0.109                                                     
## poly_intrusion_1             0.080 -0.065 -0.121 -0.120  0.015 -0.603   0.050 -0.494                                              
## poly_intrusion_2             0.129 -0.106 -0.191  0.021 -0.010 -0.285   0.085 -0.377   0.789                                      
## poly_abandon_1:borderline   -0.171  0.168 -0.221 -0.204  0.020 -0.777  -0.240 -0.597   0.457   0.211                              
## borderline:poly_abandon_2    0.075 -0.078 -0.103 -0.156  0.190 -0.567   0.352 -0.746   0.381   0.297   0.119                      
## borderline:poly_intrusion_1 -0.128  0.118  0.088  0.020 -0.083  0.510  -0.200  0.413  -0.875  -0.701  -0.380 -0.358               
## borderline:poly_intrusion_2 -0.069  0.044  0.189  0.063  0.018  0.287   0.052  0.375  -0.749  -0.936  -0.234 -0.249          0.538
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.64029926 -0.64881584  0.08122169  0.67533409  2.40472219 
## 
## Number of Observations: 2007
## Number of Groups: 67

Plot des résidus et question à propos de celui-ci

plot(lmm2)

On retrouve la même structure “pyramide” des résidus quelle que soit la spécification du modèle (même uniquement un intercept). En gros le modèle ne prédit jamais au dessus de 40. on revient à notre problème de données “censurées”. Est-ce grave pour l’estimation ?

Interprétation du modèle :

Effet linéaire positif de Abandon. Effet linéaire negatif de Intrusion. Effet positif de Borderline en moyenne par rapport aux témoins.

Moins facilement interprétable :

Si on est borderline, sur-effet linéaire négatif de la Dim.Abandon. Si on est borderline, sur-effet linéaire positif de la Dim.Intrusion Si on est borderline, sur-effet quadratique positif de la Dim.Intrusion (courbe en U)

Autres Modèles testés :

ECHANTILLON TOTAL : effets linéaires uniquement

lmm2 <- lme(DEL_SUCC ~ age + sexe + CSP_bin2 + traitement  
            + Dim.Abandon  
            + Dim.Intrusion
            , random = ~ 1 | z1,
            data = DBMODEL_delai)
summary(lmm2)
## Linear mixed-effects model fit by REML
##  Data: DBMODEL_delai 
##        AIC      BIC    logLik
##   13964.03 14014.44 -6973.015
## 
## Random effects:
##  Formula: ~1 | z1
##         (Intercept) Residual
## StdDev:    4.691951 7.518255
## 
## Fixed effects: DEL_SUCC ~ age + sexe + CSP_bin2 + traitement + Dim.Abandon +      Dim.Intrusion 
##                  Value Std.Error   DF   t-value p-value
## (Intercept)   35.88603  9.346324 1940  3.839587  0.0001
## age           -0.38885  0.598314   60 -0.649910  0.5182
## sexe          -2.50440  1.780057   60 -1.406918  0.1646
## CSP_bin2       4.16816  1.478600   60  2.818991  0.0065
## traitement     3.68200  1.578522   60  2.332564  0.0230
## Dim.Abandon    0.22638  0.454973   60  0.497558  0.6206
## Dim.Intrusion  0.10077  0.467940   60  0.215340  0.8302
##  Correlation: 
##               (Intr) age    sexe   CSP_b2 trtmnt Dm.Abn
## age           -0.986                                   
## sexe           0.151 -0.297                            
## CSP_bin2       0.175 -0.207  0.049                     
## traitement     0.046 -0.062 -0.119 -0.069              
## Dim.Abandon    0.118 -0.113  0.012  0.059 -0.093       
## Dim.Intrusion  0.023 -0.018  0.067 -0.066 -0.334 -0.405
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.67831798 -0.64824176  0.09671342  0.66127955  2.39158349 
## 
## Number of Observations: 2007
## Number of Groups: 67

ECHANTILLON TOTAL : effets quadratiques (polynomes orthogonaux)

lmm2 <- lme(DEL_SUCC ~ age + sexe + CSP_bin2  + traitement
              + poly_abandon_1   
              + poly_abandon_2   
              + poly_intrusion_1 
              + poly_intrusion_2 
                        , random = ~ 1 | z1,
            data = DBMODEL_delai)
summary(lmm2)
## Linear mixed-effects model fit by REML
##  Data: DBMODEL_delai 
##        AIC      BIC    logLik
##   13932.21 13993.81 -6955.107
## 
## Random effects:
##  Formula: ~1 | z1
##         (Intercept) Residual
## StdDev:      4.6897 7.518248
## 
## Fixed effects: DEL_SUCC ~ age + sexe + CSP_bin2 + traitement + poly_abandon_1 +      poly_abandon_2 + poly_intrusion_1 + poly_intrusion_2 
##                      Value Std.Error   DF   t-value p-value
## (Intercept)       36.03466   9.38769 1936  3.838501  0.0001
## age               -0.39198   0.60084   62 -0.652374  0.5166
## sexe              -2.64533   1.79210   62 -1.476103  0.1450
## CSP_bin2           4.44829   1.52022   62  2.926091  0.0048
## traitement         3.46049   1.65086   62  2.096180  0.0402
## poly_abandon_1    35.85362  34.22989 1936  1.047436  0.2950
## poly_abandon_2   -23.87573  28.99438 1936 -0.823461  0.4103
## poly_intrusion_1 -12.08667  32.88340 1936 -0.367561  0.7132
## poly_intrusion_2  33.21350  27.19820 1936  1.221165  0.2222
##  Correlation: 
##                  (Intr) age    sexe   CSP_b2 trtmnt ply_b_1 ply_b_2 ply_n_1
## age              -0.986                                                    
## sexe              0.138 -0.283                                             
## CSP_bin2          0.190 -0.219  0.019                                      
## traitement        0.071 -0.085 -0.137 -0.021                               
## poly_abandon_1    0.124 -0.116 -0.027  0.132 -0.081                        
## poly_abandon_2    0.074 -0.077 -0.055  0.086  0.282 -0.129                 
## poly_intrusion_1  0.003 -0.003  0.095 -0.133 -0.288 -0.513   0.125         
## poly_intrusion_2  0.061 -0.054 -0.102  0.212  0.067  0.428  -0.060  -0.399 
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.67143356 -0.64993215  0.08266817  0.66861487  2.39329838 
## 
## Number of Observations: 2007
## Number of Groups: 67

ECHANTILLON TOTAL : effets quadratiques avec interaction BORDERLINE (MODELE RETENU)

lmm2 <- lme(DEL_SUCC ~ age + sexe + CSP_bin2   + traitement
              + poly_abandon_1   *borderline
              + poly_abandon_2   *borderline
              + poly_intrusion_1 *borderline
              + poly_intrusion_2 *borderline
            
            , random = ~ 1 | z1,
            data = DBMODEL_delai)
summary(lmm2)
## Linear mixed-effects model fit by REML
##  Data: DBMODEL_delai 
##        AIC      BIC    logLik
##   13878.58 13968.14 -6923.289
## 
## Random effects:
##  Formula: ~1 | z1
##         (Intercept) Residual
## StdDev:    4.198124 7.518288
## 
## Fixed effects: DEL_SUCC ~ age + sexe + CSP_bin2 + traitement + poly_abandon_1 *      borderline + poly_abandon_2 * borderline + poly_intrusion_1 *      borderline + poly_intrusion_2 * borderline 
##                                 Value Std.Error   DF   t-value p-value
## (Intercept)                   40.5821   8.87938 1932  4.570373  0.0000
## age                           -0.7082   0.56779   61 -1.247255  0.2171
## sexe                          -1.3232   1.74263   61 -0.759296  0.4506
## CSP_bin2                       5.0410   1.45298   61  3.469406  0.0010
## traitement                     3.9263   2.01906   61  1.944603  0.0564
## poly_abandon_1               195.4783  85.64567 1932  2.282407  0.0226
## borderline                     3.8800   2.40000   61  1.616686  0.1111
## poly_abandon_2                40.5277  64.28532 1932  0.630434  0.5285
## poly_intrusion_1            -225.0702  91.62972 1932 -2.456301  0.0141
## poly_intrusion_2            -161.2001 101.37916 1932 -1.590071  0.1120
## poly_abandon_1:borderline   -383.6991 112.19613 1932 -3.419896  0.0006
## borderline:poly_abandon_2    108.2878  85.14600 1932  1.271790  0.2036
## borderline:poly_intrusion_1  196.2441 103.82272 1932  1.890184  0.0589
## borderline:poly_intrusion_2  224.9047 107.59080 1932  2.090371  0.0367
##  Correlation: 
##                             (Intr) age    sexe   CSP_b2 trtmnt ply_b_1 brdrln ply_b_2 ply_n_1 ply_n_2 pl__1: brdrln:ply_b_2 br:__1
## age                         -0.986                                                                                                
## sexe                         0.130 -0.258                                                                                         
## CSP_bin2                     0.235 -0.263  0.040                                                                                  
## traitement                  -0.004  0.001  0.052 -0.152                                                                           
## poly_abandon_1               0.097 -0.088  0.232  0.227 -0.022                                                                    
## borderline                   0.207 -0.223 -0.141  0.179 -0.455 -0.165                                                             
## poly_abandon_2               0.068 -0.068  0.188  0.250 -0.029  0.768  -0.109                                                     
## poly_intrusion_1             0.080 -0.065 -0.121 -0.120  0.015 -0.603   0.050 -0.494                                              
## poly_intrusion_2             0.129 -0.106 -0.191  0.021 -0.010 -0.285   0.085 -0.377   0.789                                      
## poly_abandon_1:borderline   -0.171  0.168 -0.221 -0.204  0.020 -0.777  -0.240 -0.597   0.457   0.211                              
## borderline:poly_abandon_2    0.075 -0.078 -0.103 -0.156  0.190 -0.567   0.352 -0.746   0.381   0.297   0.119                      
## borderline:poly_intrusion_1 -0.128  0.118  0.088  0.020 -0.083  0.510  -0.200  0.413  -0.875  -0.701  -0.380 -0.358               
## borderline:poly_intrusion_2 -0.069  0.044  0.189  0.063  0.018  0.287   0.052  0.375  -0.749  -0.936  -0.234 -0.249          0.538
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.64029926 -0.64881584  0.08122169  0.67533409  2.40472219 
## 
## Number of Observations: 2007
## Number of Groups: 67
                   abandon (+) et intrusion (-) linéaires
                    abandon*borderline (-)  lineaire
                    intrusion*borderline (+) lineaire ET Quadratique

CHEZ BORDERLINES : effets linéaires uniquement rien de significatif

lmm2 <- lme(DEL_SUCC ~ age + sexe + CSP_bin2  + traitement
            + Dim.Abandon  
            + Dim.Intrusion
            , random = ~ 1 | z1,
            data = DBMODEL_delai[which(DBMODEL_delai$borderline==1),])
summary(lmm2)
## Linear mixed-effects model fit by REML
##  Data: DBMODEL_delai[which(DBMODEL_delai$borderline == 1), ] 
##        AIC      BIC    logLik
##   5278.264 5319.987 -2630.132
## 
## Random effects:
##  Formula: ~1 | z1
##         (Intercept) Residual
## StdDev:    5.250472  7.17253
## 
## Fixed effects: DEL_SUCC ~ age + sexe + CSP_bin2 + traitement + Dim.Abandon +      Dim.Intrusion 
##                  Value Std.Error  DF    t-value p-value
## (Intercept)   39.16488 18.049597 743  2.1698478  0.0303
## age           -0.35317  0.932627  19 -0.3786871  0.7091
## sexe          -5.09337  6.176838  19 -0.8245914  0.4198
## CSP_bin2       2.82102  2.779094  19  1.0150850  0.3228
## traitement     2.83789  2.439131  19  1.1634863  0.2590
## Dim.Abandon   -0.67020  0.819356  19 -0.8179645  0.4235
## Dim.Intrusion  0.53105  0.629983  19  0.8429598  0.4097
##  Correlation: 
##               (Intr) age    sexe   CSP_b2 trtmnt Dm.Abn
## age           -0.936                                   
## sexe          -0.524  0.217                            
## CSP_bin2      -0.109 -0.016  0.337                     
## traitement    -0.163  0.067  0.062 -0.212              
## Dim.Abandon   -0.028 -0.006 -0.117 -0.093  0.321       
## Dim.Intrusion  0.023 -0.007 -0.084 -0.028 -0.209 -0.062
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.8044082 -0.6398352  0.1149749  0.6301366  2.4657282 
## 
## Number of Observations: 769
## Number of Groups: 26

CHEZ BORDERLINES : effets quadratiques (polynomes orthogonaux) Abandon² presque sign.

lmm2 <- lme(DEL_SUCC ~ age + sexe + CSP_bin2 + traitement 
            + poly_abandon_1   
            + poly_abandon_2   
            + poly_intrusion_1 
            + poly_intrusion_2 
            , random = ~ 1 | z1,
            data = DBMODEL_delai[which(DBMODEL_delai$borderline==1),])
summary(lmm2)
## Linear mixed-effects model fit by REML
##  Data: DBMODEL_delai[which(DBMODEL_delai$borderline == 1), ] 
##        AIC      BIC    logLik
##   5239.877 5290.844 -2608.939
## 
## Random effects:
##  Formula: ~1 | z1
##         (Intercept) Residual
## StdDev:    4.661887 7.172654
## 
## Fixed effects: DEL_SUCC ~ age + sexe + CSP_bin2 + traitement + poly_abandon_1 +      poly_abandon_2 + poly_intrusion_1 + poly_intrusion_2 
##                       Value Std.Error  DF    t-value p-value
## (Intercept)        53.05833  17.03239 739  3.1151431  0.0019
## age                -0.99309   0.87114  21 -1.1399956  0.2671
## sexe               -5.17703   5.54278  21 -0.9340130  0.3609
## CSP_bin2            3.75285   2.63579  21  1.4238032  0.1692
## traitement          4.01812   2.25509  21  1.7817979  0.0893
## poly_abandon_1   -188.09806  78.16514 739 -2.4064188  0.0164
## poly_abandon_2    153.18401  63.23849 739  2.4223225  0.0157
## poly_intrusion_1  -22.39643  56.40078 739 -0.3970944  0.6914
## poly_intrusion_2   59.47347  42.94661 739  1.3848232  0.1665
##  Correlation: 
##                  (Intr) age    sexe   CSP_b2 trtmnt ply_b_1 ply_b_2 ply_n_1
## age              -0.942                                                    
## sexe             -0.497  0.207                                             
## CSP_bin2         -0.050 -0.060  0.336                                      
## traitement       -0.087  0.008  0.049 -0.211                               
## poly_abandon_1   -0.236  0.190 -0.049 -0.056  0.006                        
## poly_abandon_2    0.291 -0.258 -0.029  0.022  0.243 -0.772                 
## poly_intrusion_1 -0.117  0.119 -0.095 -0.270 -0.108  0.036  -0.127         
## poly_intrusion_2  0.180 -0.170  0.053  0.328 -0.019 -0.109   0.203  -0.766 
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.7902189 -0.6434046  0.1374795  0.6350782  2.4659157 
## 
## Number of Observations: 769
## Number of Groups: 26

CHEZ TEMOINS : effets linéaires uniquement Abandon et Intrusion significatifs

lmm2 <- lme(DEL_SUCC ~ age + sexe + CSP_bin2 
            + Dim.Abandon  
            + Dim.Intrusion
            , random = ~ 1 | z1,
            data = DBMODEL_delai[which(DBMODEL_delai$borderline==0),])
summary(lmm2)
## Linear mixed-effects model fit by REML
##  Data: DBMODEL_delai[which(DBMODEL_delai$borderline == 0), ] 
##        AIC      BIC    logLik
##   8667.784 8708.715 -4325.892
## 
## Random effects:
##  Formula: ~1 | z1
##         (Intercept) Residual
## StdDev:    4.147555 7.725046
## 
## Fixed effects: DEL_SUCC ~ age + sexe + CSP_bin2 + Dim.Abandon + Dim.Intrusion 
##                  Value Std.Error   DF   t-value p-value
## (Intercept)   42.00502 12.866072 1197  3.264789  0.0011
## age           -0.79858  0.841957   35 -0.948485  0.3494
## sexe          -1.65328  1.982276   35 -0.834032  0.4099
## CSP_bin2       5.51011  1.777304   35  3.100264  0.0038
## Dim.Abandon    2.31621  0.809420   35  2.861573  0.0071
## Dim.Intrusion -1.73680  0.826455   35 -2.101508  0.0429
##  Correlation: 
##               (Intr) age    sexe   CSP_b2 Dm.Abn
## age           -0.993                            
## sexe           0.381 -0.464                     
## CSP_bin2       0.257 -0.274 -0.029              
## Dim.Abandon    0.109 -0.102  0.166  0.066       
## Dim.Intrusion  0.031 -0.031  0.132 -0.180 -0.602
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.58487614 -0.66052447  0.06249996  0.72305560  2.32834850 
## 
## Number of Observations: 1238
## Number of Groups: 41

CHEZ TEMOINS : effets quadratiques (polynomes orthogonaux) abandon (+) et intrusion (-) linéaires

lmm2 <- lme(DEL_SUCC ~ age + sexe + CSP_bin2 
            + poly_abandon_1   
            + poly_abandon_2   
            + poly_intrusion_1 
            + poly_intrusion_2 
            , random = ~ 1 | z1,
            data = DBMODEL_delai[which(DBMODEL_delai$borderline==0),])
summary(lmm2)
## Linear mixed-effects model fit by REML
##  Data: DBMODEL_delai[which(DBMODEL_delai$borderline == 0), ] 
##        AIC      BIC    logLik
##   8631.158 8682.306 -4305.579
## 
## Random effects:
##  Formula: ~1 | z1
##         (Intercept) Residual
## StdDev:    4.095516 7.725035
## 
## Fixed effects: DEL_SUCC ~ age + sexe + CSP_bin2 + poly_abandon_1 + poly_abandon_2 +      poly_intrusion_1 + poly_intrusion_2 
##                       Value Std.Error   DF    t-value p-value
## (Intercept)        39.18754  13.12489 1197  2.9857417  0.0029
## age                -0.63592   0.85565   33 -0.7432040  0.4626
## sexe               -1.08528   2.00650   33 -0.5408845  0.5922
## CSP_bin2            5.41670   1.88267   33  2.8771320  0.0070
## poly_abandon_1    203.51929  85.84562   33  2.3707590  0.0237
## poly_abandon_2     46.81697  64.41797   33  0.7267687  0.4725
## poly_intrusion_1 -232.24736  90.40097   33 -2.5690803  0.0149
## poly_intrusion_2 -167.01823 100.11750   33 -1.6682221  0.1047
##  Correlation: 
##                  (Intr) age    sexe   CSP_b2 ply_b_1 ply_b_2 ply_n_1
## age              -0.994                                             
## sexe              0.365 -0.449                                      
## CSP_bin2          0.312 -0.324  0.016                               
## poly_abandon_1    0.171 -0.167  0.250  0.281                        
## poly_abandon_2    0.131 -0.132  0.191  0.309  0.777                 
## poly_intrusion_1  0.087 -0.076 -0.082 -0.131 -0.594  -0.492         
## poly_intrusion_2  0.149 -0.130 -0.157  0.060 -0.265  -0.355   0.782 
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.56719787 -0.66130432  0.05848505  0.70920234  2.33556815 
## 
## Number of Observations: 1238
## Number of Groups: 41

QUESTIONS

  • Le délai de succès au Multimorphe, avec son pic à 40 (expliqué au début du doc) me tracasse : comment modéliser ce phenomène (donnée censurée ?) ? Notre régression linéaire est-elle justifiable, sachant qu’on ne prend pas en compte cet aspect ?



  • Jusque ici , nous avons considéré la structure de variance suivante : les expériences sont groupées uniquement par individus. Or, chaque individu passe l’expérience pour les mêmes 6 émotions, avec les mêmes 6 visages (36 expériences par individu )

    • Peut-on / doit-on aussi introduire des effets aléatoires par émotion et par visage ? (crossed random factors)
    • quelles conséquences ?



  • Comment interpréter les coefficients des polynomes orthogonaux dans les modèles ? Il parait difficile (mes recherches sont infructueuses et apparemment je ne suis pas le seul à avoir essayé) de “revenir” aux polynomes standards pour avoir les coefficients du type ax+bx² qui nous permettraient d’avoir une interprétation plus directe de nos résultats.



  • Nous avons modélisé jusqu’ici le délai de réponse au multimorphe, mais nous avons aussi le “succès” à chaque expérience. Nous aimerions modéliser la probabilité de succèe de la même façon. Or, j’ai tenté des modèles mixtes logistiques mais souvent l’estimation plante pour cause de matrice de var-covar singulière. Que faire ?

Modèles supplémentaires

visage et émotion comme effets fixes

Modèle où l’on introduit le visage et l’émotion comme effets fixes.

lmm2 <- lme(DEL_SUCC ~ age + sexe + CSP_bin2  
            + stats::poly(Dim.Abandon,2)   *borderline
            + stats::poly(Dim.Intrusion,2) *borderline 
            + traitement
            + emotion.f
            + face.f
            , random = ~ 1 | z1,
            data = DBMODEL_delai)

summary(lmm2)
## Linear mixed-effects model fit by REML
##  Data: DBMODEL_delai 
##       AIC     BIC  logLik
##   13410.4 13555.8 -6679.2
## 
## Random effects:
##  Formula: ~1 | z1
##         (Intercept) Residual
## StdDev:    4.326075 6.646568
## 
## Fixed effects: DEL_SUCC ~ age + sexe + CSP_bin2 + stats::poly(Dim.Abandon, 2) *      borderline + stats::poly(Dim.Intrusion, 2) * borderline +      traitement + emotion.f + face.f 
##                                               Value Std.Error   DF    t-value p-value
## (Intercept)                                 43.4034   9.04449 1922   4.798879  0.0000
## age                                         -0.7539   0.57729   61  -1.305874  0.1965
## sexe                                        -1.4716   1.77179   61  -0.830566  0.4095
## CSP_bin2                                     5.0650   1.47797   61   3.426972  0.0011
## stats::poly(Dim.Abandon, 2)1               194.4855  87.12353 1922   2.232296  0.0257
## stats::poly(Dim.Abandon, 2)2                41.5611  65.38832 1922   0.635604  0.5251
## borderline                                   3.8109   2.44274   61   1.560107  0.1239
## stats::poly(Dim.Intrusion, 2)1            -222.4133  93.21722 1922  -2.385968  0.0171
## stats::poly(Dim.Intrusion, 2)2            -158.4803 103.15279 1922  -1.536364  0.1246
## traitement                                   3.9374   2.05435   61   1.916622  0.0600
## emotion.fDisgust                             0.0190   0.53978 1922   0.035118  0.9720
## emotion.fFear                                0.9215   0.52785 1922   1.745831  0.0810
## emotion.fHappiness                          -8.5438   0.50929 1922 -16.775813  0.0000
## emotion.fSadness                             0.0614   0.53498 1922   0.114771  0.9086
## emotion.fSurprise                           -2.2459   0.53412 1922  -4.204786  0.0000
## face.f2                                     -1.0219   0.52436 1922  -1.948819  0.0515
## face.f4                                     -0.1047   0.52518 1922  -0.199389  0.8420
## face.f5                                     -0.5428   0.51754 1922  -1.048776  0.2944
## face.f6                                      0.7292   0.52303 1922   1.394120  0.1634
## face.f7                                      0.5182   0.53062 1922   0.976637  0.3289
## stats::poly(Dim.Abandon, 2)1:borderline   -380.8371 114.15452 1922  -3.336154  0.0009
## stats::poly(Dim.Abandon, 2)2:borderline    106.2910  86.62552 1922   1.227018  0.2200
## borderline:stats::poly(Dim.Intrusion, 2)1  195.8977 105.61772 1922   1.854781  0.0638
## borderline:stats::poly(Dim.Intrusion, 2)2  218.4036 109.44670 1922   1.995524  0.0461
##  Correlation: 
##                                           (Intr) age    sexe   CSP_b2 st::(D.A,2)1 st::(D.A,2)2 brdrln s::(D.I,2)1 s::(D.I,2)2 trtmnt emtn.D emtn.F emtn.H emtn.fSd emtn.fSr fac.f2 fac.f4 fac.f5 fac.f6 fac.f7 s::(D.A,2)1: s::(D.A,2)2: b:::(D.I,2)1
## age                                       -0.985                                                                                                                                                                                                      
## sexe                                       0.130 -0.258                                                                                                                                                                                               
## CSP_bin2                                   0.235 -0.263  0.040                                                                                                                                                                                        
## stats::poly(Dim.Abandon, 2)1               0.097 -0.088  0.233  0.226                                                                                                                                                                                 
## stats::poly(Dim.Abandon, 2)2               0.068 -0.068  0.188  0.249  0.768                                                                                                                                                                          
## borderline                                 0.207 -0.223 -0.141  0.179 -0.164       -0.108                                                                                                                                                             
## stats::poly(Dim.Intrusion, 2)1             0.080 -0.065 -0.121 -0.120 -0.603       -0.494        0.050                                                                                                                                                
## stats::poly(Dim.Intrusion, 2)2             0.130 -0.106 -0.191  0.020 -0.285       -0.377        0.085  0.789                                                                                                                                         
## traitement                                -0.004  0.001  0.052 -0.152 -0.022       -0.029       -0.455  0.015      -0.010                                                                                                                             
## emotion.fDisgust                          -0.033 -0.001  0.008 -0.004  0.003        0.003       -0.001 -0.001      -0.003      -0.001                                                                                                                 
## emotion.fFear                             -0.035  0.000  0.003 -0.002  0.004        0.001       -0.002 -0.002      -0.002       0.000  0.523                                                                                                          
## emotion.fHappiness                        -0.038  0.002  0.007 -0.004  0.002        0.000       -0.001 -0.001      -0.002       0.000  0.538  0.553                                                                                                   
## emotion.fSadness                          -0.033 -0.002  0.005 -0.005 -0.001       -0.003       -0.001  0.001      -0.001       0.000  0.514  0.529  0.546                                                                                            
## emotion.fSurprise                         -0.034  0.000  0.005 -0.004  0.003        0.000        0.001 -0.004      -0.004      -0.002  0.510  0.524  0.542  0.517                                                                                     
## face.f2                                   -0.036  0.004 -0.003  0.001  0.002        0.003        0.001 -0.005      -0.004       0.000  0.025  0.041  0.043  0.048    0.066                                                                            
## face.f4                                   -0.036  0.002  0.002  0.001  0.004        0.005       -0.002 -0.003      -0.005       0.003  0.092  0.097  0.074  0.083    0.052    0.514                                                                   
## face.f5                                   -0.038  0.004  0.000 -0.001  0.003        0.003        0.000 -0.002      -0.003       0.002  0.051  0.068  0.072  0.097    0.052    0.524  0.526                                                            
## face.f6                                   -0.040  0.005  0.000 -0.003  0.002        0.001       -0.001 -0.003      -0.003       0.002  0.060  0.097  0.082  0.106    0.069    0.518  0.522  0.531                                                     
## face.f7                                   -0.038  0.004  0.000 -0.001  0.004        0.003       -0.002 -0.003      -0.003       0.000  0.088  0.094  0.075  0.092    0.075    0.511  0.516  0.521  0.518                                              
## stats::poly(Dim.Abandon, 2)1:borderline   -0.170  0.168 -0.221 -0.204 -0.777       -0.597       -0.240  0.457       0.211       0.021 -0.003 -0.004 -0.003  0.001   -0.003   -0.002 -0.004 -0.004 -0.003 -0.002                                       
## stats::poly(Dim.Abandon, 2)2:borderline    0.075 -0.078 -0.103 -0.156 -0.567       -0.745        0.352  0.380       0.297       0.189 -0.001 -0.001  0.001  0.002    0.001   -0.001 -0.001 -0.001  0.000 -0.002  0.118                                
## borderline:stats::poly(Dim.Intrusion, 2)1 -0.128  0.118  0.088  0.020  0.510        0.413       -0.200 -0.875      -0.701      -0.083  0.002  0.002  0.001 -0.001    0.004    0.003  0.002  0.002  0.003  0.002 -0.380       -0.358                   
## borderline:stats::poly(Dim.Intrusion, 2)2 -0.069  0.044  0.190  0.063  0.287        0.375        0.052 -0.749      -0.936       0.018  0.003  0.001  0.003  0.000    0.004    0.005  0.004  0.003  0.003  0.003 -0.234       -0.249        0.538      
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.81962668 -0.71299277 -0.04695377  0.67133253  2.93269453 
## 
## Number of Observations: 2007
## Number of Groups: 67
plot(fitted.values(lmm2),residuals(lmm2))

qqnorm(residuals(lmm2))

visage et émotion comme effets aléatoires

Modèle où l’on introduit le visage et l’émotion comme effets aléatoires. (crossed random effects)

############### TEST AVEC LME4 :  ON RAJOUTE EMOTION ET FACE COMME NIVEAUX  (crossed)
# on créé les variables polynomes orthogonaux 
DBMODEL_delai$poly_abandon_1 <- stats::poly(DBMODEL_delai$Dim.Abandon,2)[,1]
DBMODEL_delai$poly_abandon_2 <- stats::poly(DBMODEL_delai$Dim.Abandon,2)[,2]
DBMODEL_delai$poly_intrusion_1 <- stats::poly(DBMODEL_delai$Dim.Intrusion,2)[,1]
DBMODEL_delai$poly_intrusion_2 <- stats::poly(DBMODEL_delai$Dim.Intrusion,2)[,2]

DBMODEL_succes$poly_abandon_1 <- stats::poly(DBMODEL_succes$Dim.Abandon,2)[,1]
DBMODEL_succes$poly_abandon_2 <- stats::poly(DBMODEL_succes$Dim.Abandon,2)[,2]
DBMODEL_succes$poly_intrusion_1 <- stats::poly(DBMODEL_succes$Dim.Intrusion,2)[,1]
DBMODEL_succes$poly_intrusion_2 <- stats::poly(DBMODEL_succes$Dim.Intrusion,2)[,2]

lmm2 <- lmer(DEL_SUCC ~ age + sexe + CSP_bin2  
            + poly_abandon_1   *borderline
            + poly_abandon_2   *borderline
            + poly_intrusion_1 *borderline
            + poly_intrusion_2 *borderline
            + (1 | z1) 
            + (1 | emotion.f)
            + (1 | face.f)
            ,
            data = DBMODEL_delai)

summary(lmm2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: DEL_SUCC ~ age + sexe + CSP_bin2 + poly_abandon_1 * borderline +      poly_abandon_2 * borderline + poly_intrusion_1 * borderline +      poly_intrusion_2 * borderline + (1 | z1) + (1 | emotion.f) +      (1 | face.f)
##    Data: DBMODEL_delai
## 
## REML criterion at convergence: 13405.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.81281 -0.71657 -0.04859  0.66307  2.96014 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  z1        (Intercept) 19.6770  4.4359  
##  emotion.f (Intercept) 12.4633  3.5303  
##  face.f    (Intercept)  0.2922  0.5405  
##  Residual              44.1788  6.6467  
## Number of obs: 2007, groups:  z1, 67; emotion.f, 6; face.f, 6
## 
## Fixed effects:
##                              Estimate Std. Error t value
## (Intercept)                   41.7715     9.3536   4.466
## age                           -0.7559     0.5908  -1.279
## sexe                          -1.6500     1.8109  -0.911
## CSP_bin2                       5.5019     1.4951   3.680
## poly_abandon_1               198.1630    89.1527   2.223
## borderline                     5.9472     2.2269   2.671
## poly_abandon_2                45.2973    66.8990   0.677
## poly_intrusion_1            -225.2621    95.4019  -2.361
## poly_intrusion_2            -156.7295   105.5795  -1.484
## poly_abandon_1:borderline   -385.4446   116.8206  -3.299
## borderline:poly_abandon_2     74.9334    87.0626   0.861
## borderline:poly_intrusion_1  212.6911   107.7328   1.974
## borderline:poly_intrusion_2  214.8693   112.0052   1.918
library(car)
Anova(lmm2)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: DEL_SUCC
##                               Chisq Df Pr(>Chisq)    
## age                          1.6367  1  0.2007840    
## sexe                         0.8302  1  0.3622249    
## CSP_bin2                    13.5413  1  0.0002334 ***
## poly_abandon_1               0.2940  1  0.5876618    
## borderline                   2.5482  1  0.1104180    
## poly_abandon_2               4.0709  1  0.0436292 *  
## poly_intrusion_1             1.7185  1  0.1898809    
## poly_intrusion_2             0.7907  1  0.3738803    
## poly_abandon_1:borderline   10.8864  1  0.0009687 ***
## borderline:poly_abandon_2    0.7408  1  0.3894119    
## borderline:poly_intrusion_1  3.8977  1  0.0483537 *  
## borderline:poly_intrusion_2  3.6802  1  0.0550619 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(fitted.values(lmm2),residuals(lmm2))

qqnorm(residuals(lmm2))

# abandon
p <- ggplot(DBMODEL_delai, aes(Dim.Abandon, DEL_SUCC, color=factor(borderline))) +
  geom_jitter() +
  geom_smooth(method = "lm", formula = y ~ poly(x, 2), se = TRUE) +
  geom_smooth(method = "lm", formula = y ~ poly(x, 1), se = TRUE)

p

# intrusion
p <- ggplot(DBMODEL_delai, aes(Dim.Intrusion, DEL_SUCC, color=factor(borderline))) +
  geom_jitter() +
  geom_smooth(method = "lm", formula = y ~ poly(x, 2), se = TRUE)+
  geom_smooth(method = "lm", formula = y ~ poly(x, 1), se = TRUE)

p

# intrusion sans l'outlier

p <- ggplot(DBMODEL_delai[which(DBMODEL_delai$Dim.Intrusion <6),], aes(Dim.Intrusion, DEL_SUCC, color=factor(borderline))) +
  geom_jitter() +
  geom_smooth(method = "lm", formula = y ~ poly(x, 2), se = TRUE)+
  geom_smooth(method = "lm", formula = y ~ poly(x, 1), se = TRUE)


p

Modèle de probabilité de succès

En enlevant age et CSP, on réussit à avoir des estimations qui convergent. Le modèle ne révèle aucune influence significative d’Abandon et Intrusion sur la probabilité de Succès. (on teste des effets linéaires et quadratiques)

lmm <- glmer(SUC_FIN ~ sexe
             + poly(Dim.Intrusion,2) * borderline
             + poly(Dim.Abandon,2) * borderline
             + traitement
             + emotion.f
             + face.f
             + (1 | z1 ) , 
             data = DBMODEL_succes,
             family = binomial(link = "probit"))

summary(lmm)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( probit )
## Formula: SUC_FIN ~ sexe + poly(Dim.Intrusion, 2) * borderline + poly(Dim.Abandon,      2) * borderline + traitement + emotion.f + face.f + (1 |      z1)
##    Data: DBMODEL_succes
## 
##      AIC      BIC   logLik deviance df.resid 
##   2025.3   2158.4   -989.6   1979.3     2389 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.5277   0.0924   0.4060   0.5034   1.3867 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  z1     (Intercept) 0.002449 0.04949 
## Number of obs: 2412, groups:  z1, 67
## 
## Fixed effects:
##                                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                          0.344168   0.123030   2.797 0.005151 ** 
## sexe                                 0.340251   0.097424   3.492 0.000479 ***
## poly(Dim.Intrusion, 2)1             -0.794918   7.993168  -0.099 0.920781    
## poly(Dim.Intrusion, 2)2              0.437354   7.711870   0.057 0.954775    
## borderline                           0.066590   0.145259   0.458 0.646646    
## poly(Dim.Abandon, 2)1                3.396440   5.546128   0.612 0.540274    
## poly(Dim.Abandon, 2)2               -1.899436   4.117253  -0.461 0.644558    
## traitement                          -0.003583   0.122053  -0.029 0.976583    
## emotion.fDisgust                     0.045717   0.099709   0.459 0.646592    
## emotion.fFear                        0.352912   0.105351   3.350 0.000809 ***
## emotion.fHappiness                   1.630351   0.199979   8.153 3.56e-16 ***
## emotion.fSadness                     0.154300   0.101017   1.527 0.126645    
## emotion.fSurprise                    0.134051   0.100975   1.328 0.184319    
## face.f2                              0.175588   0.108135   1.624 0.104423    
## face.f4                              0.189166   0.108260   1.747 0.080579 .  
## face.f5                              0.431078   0.114112   3.778 0.000158 ***
## face.f6                              0.254502   0.109475   2.325 0.020085 *  
## face.f7                              0.043656   0.105683   0.413 0.679542    
## poly(Dim.Intrusion, 2)1:borderline -11.794143   8.584224  -1.374 0.169463    
## poly(Dim.Intrusion, 2)2:borderline   1.316854   8.138171   0.162 0.871454    
## borderline:poly(Dim.Abandon, 2)1    -6.687963   7.370201  -0.907 0.364178    
## borderline:poly(Dim.Abandon, 2)2     4.528851   5.585898   0.811 0.417501    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1