Import data

load("~/madness/nmhss_2019_puf_R.RData")

load("~/madness/N-MHSS-2010-DS0001-data-r.rda")

rename data sets

treatments_2019 <- PUF
treatments_2010 <- da34945.0001
library(skimr)
## Warning: package 'skimr' was built under R version 4.0.3
skim(da34945.0001)
Data summary
Name da34945.0001
Number of rows 10374
Number of columns 237
_______________________
Column type frequency:
factor 119
numeric 118
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
STFIPS 0 1.00 FALSE 52 (06: 927, (36: 685, (42: 541, (17: 512
MODE 0 1.00 FALSE 4 (4): 5538, (3): 2535, (1): 1726, (2): 575
MHINTAKE 623 0.94 FALSE 2 (1): 8208, (0): 1543
MHDIAGEVAL 622 0.94 FALSE 2 (1): 8253, (0): 1499
MHREFERRAL 626 0.94 FALSE 2 (1): 6630, (0): 3118
SASERV 625 0.94 FALSE 2 (1): 4897, (0): 4852
MENTALHTHSERV 0 1.00 FALSE 1 (1): 10374
ADMINSERV 653 0.94 FALSE 2 (1): 5802, (0): 3919
SETTINGIP 0 1.00 FALSE 2 (0): 8399, (1): 1975
SETTINGRC 0 1.00 FALSE 2 (0): 8100, (1): 2274
SETTINGOP 0 1.00 FALSE 2 (1): 7931, (0): 2443
FACILITYTYPE 0 1.00 FALSE 6 (5): 6468, (2): 1238, (4): 878, (3): 781
FOCUS 630 0.94 FALSE 2 (1): 7287, (3): 2457
OWNERSHIP 0 1.00 FALSE 8 (2): 6968, (1): 996, (7): 953, (3): 727
RELIGIOUS 682 0.93 FALSE 2 (0): 8876, (1): 816
TREATACTVTYTHRPY 1297 0.87 FALSE 2 (1): 4676, (0): 4401
TREATBEHAVMOD 1294 0.88 FALSE 2 (1): 5950, (0): 3130
TREATCOGTHRPY 1291 0.88 FALSE 2 (1): 8061, (0): 1022
TREATFAMTHRPY 1293 0.88 FALSE 2 (1): 6129, (0): 2952
TREATELECTRO 1342 0.87 FALSE 2 (0): 8459, (1): 573
TREATGRPTHRPY 1292 0.88 FALSE 2 (1): 7742, (0): 1340
TREATPSYCHOTHRPY 1286 0.88 FALSE 2 (1): 7844, (0): 1244
TREATDUALMHSA 1331 0.87 FALSE 2 (1): 4967, (0): 4076
TREATPSYCHOMED 1289 0.88 FALSE 2 (1): 7601, (0): 1484
TREATTELEMEDINCE 1372 0.87 FALSE 2 (0): 7593, (1): 1409
TREATOTH 1240 0.88 FALSE 2 (0): 8371, (1): 763
ASSERTCOMM 1333 0.87 FALSE 2 (0): 7420, (1): 1621
MHCASEMGMT 1298 0.87 FALSE 2 (1): 6741, (0): 2335
MHCHRONIC 1351 0.87 FALSE 2 (0): 7174, (1): 1849
MHCONSUMER 1327 0.87 FALSE 2 (0): 7352, (1): 1695
MHEDUCATION 1317 0.87 FALSE 2 (0): 4991, (1): 4066
FAMPSYCHED 1316 0.87 FALSE 2 (1): 5490, (0): 3568
MHHOUSING 1333 0.87 FALSE 2 (0): 6870, (1): 2171
ILLNESSMGMT 1341 0.87 FALSE 2 (0): 6006, (1): 3027
MHLEGAL 1358 0.87 FALSE 2 (0): 8250, (1): 766
MHEMGCY 1328 0.87 FALSE 2 (0): 5654, (1): 3392
MHPSYCHREHAB 1334 0.87 FALSE 2 (0): 4693, (1): 4347
SMOKINGCESSATION 1326 0.87 FALSE 2 (0): 6858, (1): 2190
MHSUICIDE 1325 0.87 FALSE 2 (1): 5230, (0): 3819
SUPPEMPLOY 1333 0.87 FALSE 2 (0): 7157, (1): 1884
SUPPHOUSING 1339 0.87 FALSE 2 (0): 7336, (1): 1699
FOSTERCARE 1354 0.87 FALSE 2 (0): 8370, (1): 650
MHVOCREHAB 1351 0.87 FALSE 2 (0): 7564, (1): 1459
MHOTH 1241 0.88 FALSE 2 (0): 8605, (1): 528
CHILDADOL 1242 0.88 FALSE 2 (1): 5781, (0): 3351
ADULTS 1250 0.88 FALSE 2 (1): 7810, (0): 1314
SENIORS 1247 0.88 FALSE 2 (1): 6870, (0): 2257
SED 1266 0.88 FALSE 2 (0): 5164, (1): 3944
TRANSITIONAGE 1280 0.88 FALSE 2 (0): 6347, (1): 2747
SPMI 1277 0.88 FALSE 2 (1): 5738, (0): 3359
ALZHDEMENTIA 1298 0.87 FALSE 2 (0): 7911, (1): 1165
MHANDSA 1276 0.88 FALSE 2 (1): 5333, (0): 3765
MHANDOTHER 1288 0.88 FALSE 2 (0): 4787, (1): 4299
POSTTRAUM 1275 0.88 FALSE 2 (1): 4569, (0): 4530
VETERNS 1317 0.87 FALSE 2 (0): 6971, (1): 2086
TRAUMATICBRAIN 1322 0.87 FALSE 2 (0): 7995, (1): 1057
GLBT 1304 0.87 FALSE 2 (0): 6665, (1): 2405
FORENSIC 1288 0.88 FALSE 2 (0): 6100, (1): 2986
PROGOTH 1237 0.88 FALSE 2 (0): 8569, (1): 568
HEARIMPAIR 1322 0.87 FALSE 2 (1): 5510, (0): 3542
LANGENGLISH 1247 0.88 FALSE 2 (1): 9084, (0): 43
LANGSPANISH 1250 0.88 FALSE 2 (0): 5705, (1): 3419
LANGOTH 1249 0.88 FALSE 2 (0): 8367, (1): 758
CRISISTEAM 1278 0.88 FALSE 4 (4): 3803, (3): 2185, (1): 2157, (2): 951
COMPRESULTRPTG 1277 0.88 FALSE 2 (0): 5331, (1): 3766
COMPCPOE 1301 0.87 FALSE 2 (0): 6407, (1): 2666
COMPCLINDATA 1298 0.87 FALSE 2 (0): 6283, (1): 2793
COMPREFERRALS 1284 0.88 FALSE 2 (0): 7059, (1): 2031
COMPTREATPLAN 1267 0.88 FALSE 2 (1): 6166, (0): 2941
COMPSATISFYSURVEY 1292 0.88 FALSE 2 (0): 6462, (1): 2620
COMPMEDCHECK 1332 0.87 FALSE 2 (0): 5358, (1): 3684
COMPBILLING 1304 0.87 FALSE 2 (1): 7478, (0): 1592
COMPPATIENTSCHED 1286 0.88 FALSE 2 (1): 5767, (0): 3321
COMPPROCESSNOTE 1286 0.88 FALSE 2 (1): 5852, (0): 3236
COMPOTH 1241 0.88 FALSE 2 (0): 8745, (1): 388
EDUCREQUIRE 1257 0.88 FALSE 2 (1): 8147, (0): 970
CASEREVIEW 1258 0.88 FALSE 2 (1): 8342, (0): 774
COMMITTEE 1273 0.88 FALSE 2 (1): 6399, (0): 2702
OUTCOME 1279 0.88 FALSE 2 (1): 4882, (0): 4213
UTILIZATION 1275 0.88 FALSE 2 (1): 8298, (0): 801
SATISFYSURVEY 1266 0.88 FALSE 2 (1): 8583, (0): 525
NOCHARGE 1298 0.87 FALSE 2 (1): 5537, (0): 3539
FEESCALE 1361 0.87 FALSE 2 (1): 5527, (0): 3486
FUNDMEDICAID 1263 0.88 FALSE 2 (1): 8062, (0): 1049
FUNDMEDICARE 1279 0.88 FALSE 2 (1): 6324, (0): 2771
FUNDSMHA 1354 0.87 FALSE 2 (1): 6466, (0): 2554
FUNDSTATEWELFARE 1341 0.87 FALSE 2 (0): 4941, (1): 4092
FUNDSTATEJUV 1319 0.87 FALSE 2 (0): 6123, (1): 2932
FUNDSTATEEDUC 1345 0.87 FALSE 2 (0): 7107, (1): 1922
FUNDLOCALGOV 1341 0.87 FALSE 2 (0): 4540, (1): 4493
FUNDVA 1335 0.87 FALSE 2 (0): 6862, (1): 2177
FUNDCSBG 1403 0.86 FALSE 2 (0): 6757, (1): 2214
FUNDCMHG 1392 0.87 FALSE 2 (0): 5607, (1): 3375
FUNDCLIENTFEES 1282 0.88 FALSE 2 (1): 7689, (0): 1403
FUNDPRVTINS 1291 0.88 FALSE 2 (1): 7166, (0): 1917
FUNDOTHPUB 1261 0.88 FALSE 2 (0): 8586, (1): 527
FUNDOTHPRVT 1268 0.88 FALSE 2 (0): 8419, (1): 687
MAJORSINGLEFUND 1445 0.86 FALSE 2 (1): 5913, (0): 3016
MAJORFUNDTYPE 4522 0.56 FALSE 14 (01: 3320, (03: 958, (02: 402, (12: 269
SMOKINGPOLICY 1256 0.88 FALSE 5 (2): 4537, (1): 3806, (3): 714, (5): 55
USEDSECLUSION 1289 0.88 FALSE 2 (0): 6476, (1): 2609
ADOPTSECLUSION 1643 0.84 FALSE 2 (0): 4796, (1): 3935
LICENSESMHA 1341 0.87 FALSE 2 (1): 6727, (0): 2306
LICENSESA 1362 0.87 FALSE 2 (0): 6241, (1): 2771
LICENSEDPH 1399 0.87 FALSE 2 (0): 5318, (1): 3657
LICENSEHOSPLIC 1429 0.86 FALSE 2 (0): 7540, (1): 1405
LICENSEJC 1376 0.87 FALSE 2 (0): 5725, (1): 3273
LICENSECARF 1393 0.87 FALSE 2 (0): 7180, (1): 1801
LICENSECOA 1500 0.86 FALSE 2 (0): 7933, (1): 941
LICENSEDFCS 1436 0.86 FALSE 2 (0): 7428, (1): 1510
LICENSEDHHS 1546 0.85 FALSE 2 (0): 7534, (1): 1294
LICENSEMEDICARE 1502 0.86 FALSE 2 (0): 4467, (1): 4405
LICENSEMEDICAID 1466 0.86 FALSE 2 (1): 5743, (0): 3165
LICENSEOTHORG 1319 0.87 FALSE 2 (0): 8407, (1): 648
FACONLY 0 1.00 FALSE 3 (1): 7473, (3): 2209, (2): 692
IPSERV 0 1.00 FALSE 2 (0): 8386, (1): 1988
RCSERV 0 1.00 FALSE 2 (0): 8048, (1): 2326
OPSERV 0 1.00 FALSE 2 (1): 7871, (0): 2503
SRVCHAR 0 1.00 FALSE 2 (1): 9139, (0): 1235

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
CASEID 0 1.00 5187.50 2994.86 1 2594.25 5187.5 7780.75 10374 ▇▇▇▇▇
TOTALFAC 9682 0.07 3.93 2.97 2 2.00 3.0 5.00 27 ▇▁▁▁▁
IPTOTAL 8386 0.19 50.05 90.53 1 12.00 23.0 52.00 1506 ▇▁▁▁▁
IPSEXTOTM 8386 0.19 29.65 66.30 0 6.00 12.0 27.00 1157 ▇▁▁▁▁
IPSEXPERM 8386 0.19 52.62 17.46 0 42.00 51.0 61.00 100 ▁▃▇▃▁
IPSEXTOTF 8386 0.19 20.40 31.06 0 6.00 11.0 22.00 371 ▇▁▁▁▁
IPSEXPERF 8386 0.19 47.38 17.46 0 39.00 49.0 58.00 100 ▁▃▇▂▁
IPAGETOT017 8386 0.19 10.37 35.95 0 0.00 0.0 10.00 923 ▇▁▁▁▁
IPAGEPER017 8386 0.19 20.23 33.74 0 0.00 0.0 28.00 100 ▇▂▁▁▂
IPAGETOT1864 8386 0.19 33.99 77.34 0 4.00 14.0 30.00 1409 ▇▁▁▁▁
IPAGEPER1864 8386 0.19 61.69 36.82 0 33.75 75.0 93.00 100 ▅▁▂▃▇
IPAGETOT65 8386 0.19 5.69 13.29 0 0.00 2.0 7.00 238 ▇▁▁▁▁
IPAGEPER65 8386 0.19 18.08 28.21 0 0.00 7.0 20.00 100 ▇▁▁▁▁
IPETHTOTHISP 8386 0.19 3.56 15.93 0 0.00 0.0 1.00 338 ▇▁▁▁▁
IPETHPERHISP 8386 0.19 5.33 13.01 0 0.00 0.0 5.00 100 ▇▁▁▁▁
IPETHTOTNONHISP 8386 0.19 25.82 71.12 0 0.00 6.0 21.00 1168 ▇▁▁▁▁
IPETHPERNONHISP 8386 0.19 48.70 46.12 0 0.00 65.0 97.00 100 ▇▁▁▁▇
IPETHTOTUNK 8386 0.19 20.68 52.55 0 0.00 2.0 23.00 923 ▇▁▁▁▁
IPETHPERUNK 8386 0.19 45.97 49.13 0 0.00 4.0 100.00 100 ▇▁▁▁▇
IPRACETOTINDIAN 8386 0.19 0.21 1.62 0 0.00 0.0 0.00 40 ▇▁▁▁▁
IPRACEPERINDIAN 8386 0.19 0.42 2.68 0 0.00 0.0 0.00 50 ▇▁▁▁▁
IPRACETOTASIAN 8386 0.19 0.48 2.69 0 0.00 0.0 0.00 56 ▇▁▁▁▁
IPRACEPERASIAN 8386 0.19 0.69 2.70 0 0.00 0.0 0.00 50 ▇▁▁▁▁
IPRACETOTBLK 8386 0.19 7.94 28.70 0 0.00 0.0 3.00 457 ▇▁▁▁▁
IPRACEPERBLK 8386 0.19 10.35 17.84 0 0.00 0.0 15.00 100 ▇▁▁▁▁
IPRACETOTHAWPAC 8386 0.19 0.09 1.51 0 0.00 0.0 0.00 53 ▇▁▁▁▁
IPRACEPERHAWPAC 8386 0.19 0.14 2.72 0 0.00 0.0 0.00 85 ▇▁▁▁▁
IPRACETOTWHIT 8386 0.19 17.85 50.04 0 0.00 2.0 15.00 775 ▇▁▁▁▁
IPRACEPERWHIT 8386 0.19 37.33 39.93 0 0.00 20.5 78.00 100 ▇▁▂▂▃
IPRACETOTMR 8386 0.19 1.06 18.45 0 0.00 0.0 0.00 757 ▇▁▁▁▁
IPRACEPERMR 8386 0.19 1.42 8.26 0 0.00 0.0 0.00 100 ▇▁▁▁▁
IPRACETOTUNK 8386 0.19 22.41 49.67 0 0.00 6.5 25.00 923 ▇▁▁▁▁
IPRACEPERUNK 8386 0.19 49.66 48.47 0 0.00 27.0 100.00 100 ▇▁▁▁▇
IPLEGALTOTVOL 8386 0.19 20.69 32.01 0 5.00 12.0 25.00 522 ▇▁▁▁▁
IPLEGALPERVOL 8386 0.19 59.63 36.84 0 26.75 67.0 100.00 100 ▅▂▃▂▇
IPLEGALTOTNONFOREN 8386 0.19 19.00 49.95 0 0.00 4.0 16.00 923 ▇▁▁▁▁
IPLEGALPERNONFOREN 8386 0.19 31.67 32.98 0 0.00 20.0 55.00 100 ▇▂▂▂▂
IPLEGALTOTFOREN 8386 0.19 10.36 57.91 0 0.00 0.0 0.00 1506 ▇▁▁▁▁
IPLEGALPERFOREN 8386 0.19 8.70 24.68 0 0.00 0.0 0.00 100 ▇▁▁▁▁
IPBEDS 8386 0.19 57.13 89.25 1 18.00 31.0 60.00 1506 ▇▁▁▁▁
RCTOTAL 8048 0.22 26.12 34.13 1 8.00 15.0 30.00 427 ▇▁▁▁▁
RCSEXTOTM 8048 0.22 17.90 27.88 0 4.00 9.0 22.00 422 ▇▁▁▁▁
RCSEXPERM 8048 0.22 64.41 28.30 0 50.00 62.0 97.00 100 ▂▂▇▆▇
RCSEXTOTF 8048 0.22 8.23 12.62 0 0.00 4.0 10.00 159 ▇▁▁▁▁
RCSEXPERF 8048 0.22 35.59 28.30 0 3.00 38.0 50.00 100 ▇▇▇▂▂
RCAGETOT017 8048 0.22 13.71 25.79 0 0.00 0.0 17.00 360 ▇▁▁▁▁
RCAGEPER017 8048 0.22 41.63 46.95 0 0.00 0.0 100.00 100 ▇▁▁▁▆
RCAGETOT1864 8048 0.22 10.96 25.07 0 0.00 5.0 13.00 402 ▇▁▁▁▁
RCAGEPER1864 8048 0.22 52.52 44.61 0 0.00 67.0 100.00 100 ▇▁▁▁▇
RCAGETOT65 8048 0.22 1.46 6.69 0 0.00 0.0 0.00 186 ▇▁▁▁▁
RCAGEPER65 8048 0.22 5.85 15.99 0 0.00 0.0 0.00 100 ▇▁▁▁▁
RCETHTOTHISP 8048 0.22 1.88 5.14 0 0.00 0.0 1.00 60 ▇▁▁▁▁
RCETHPERHISP 8048 0.22 6.99 13.70 0 0.00 0.0 9.00 100 ▇▁▁▁▁
RCETHTOTNONHISP 8048 0.22 15.69 27.99 0 0.00 7.5 17.00 406 ▇▁▁▁▁
RCETHPERNONHISP 8048 0.22 63.08 42.72 0 0.00 87.0 100.00 100 ▅▁▁▂▇
RCETHTOTUNK 8048 0.22 8.55 21.53 0 0.00 0.0 7.00 320 ▇▁▁▁▁
RCETHPERUNK 8048 0.22 29.93 44.64 0 0.00 0.0 100.00 100 ▇▁▁▁▃
RCRACETOTINDIAN 8048 0.22 0.36 1.85 0 0.00 0.0 0.00 29 ▇▁▁▁▁
RCRACEPERINDIAN 8048 0.22 1.52 7.19 0 0.00 0.0 0.00 100 ▇▁▁▁▁
RCRACETOTASIAN 8048 0.22 0.17 0.74 0 0.00 0.0 0.00 13 ▇▁▁▁▁
RCRACEPERASIAN 8048 0.22 0.79 3.45 0 0.00 0.0 0.00 50 ▇▁▁▁▁
RCRACETOTBLK 8048 0.22 4.80 11.43 0 0.00 1.0 4.00 198 ▇▁▁▁▁
RCRACEPERBLK 8048 0.22 17.50 23.72 0 0.00 5.0 30.00 100 ▇▂▁▁▁
RCRACETOTHAWPAC 8048 0.22 0.09 0.93 0 0.00 0.0 0.00 24 ▇▁▁▁▁
RCRACEPERHAWPAC 8048 0.22 0.57 5.80 0 0.00 0.0 0.00 100 ▇▁▁▁▁
RCRACETOTWHIT 8048 0.22 9.93 18.98 0 0.00 5.0 11.00 359 ▇▁▁▁▁
RCRACEPERWHIT 8048 0.22 44.38 37.11 0 0.00 49.5 78.00 100 ▇▂▃▅▅
RCRACETOTMR 8048 0.22 0.79 3.10 0 0.00 0.0 0.00 80 ▇▁▁▁▁
RCRACEPERMR 8048 0.22 2.88 8.17 0 0.00 0.0 0.00 100 ▇▁▁▁▁
RCRACETOTUNK 8048 0.22 9.98 23.71 0 0.00 0.0 9.00 400 ▇▁▁▁▁
RCRACEPERUNK 8048 0.22 32.37 44.56 0 0.00 0.0 100.00 100 ▇▁▁▁▃
RCLEGALTOTVOL 8048 0.22 15.57 26.78 0 1.00 8.0 17.00 427 ▇▁▁▁▁
RCLEGALPERVOL 8048 0.22 66.39 42.78 0 11.00 100.0 100.00 100 ▃▁▁▁▇
RCLEGALTOTNONFOREN 8048 0.22 6.75 18.37 0 0.00 0.0 5.00 288 ▇▁▁▁▁
RCLEGALPERNONFOREN 8048 0.22 20.25 33.08 0 0.00 0.0 37.00 100 ▇▁▁▁▁
RCLEGALTOTFOREN 8048 0.22 3.80 15.67 0 0.00 0.0 0.00 336 ▇▁▁▁▁
RCLEGALPERFOREN 8048 0.22 13.36 29.38 0 0.00 0.0 0.00 100 ▇▁▁▁▁
RCBEDS 8048 0.22 29.26 40.20 1 8.00 16.0 34.00 713 ▇▁▁▁▁
OPTOTAL 2503 0.76 384.50 584.28 1 60.00 200.0 465.00 14332 ▇▁▁▁▁
OPSEXTOTM 2503 0.76 188.66 356.57 0 30.00 97.0 220.00 13375 ▇▁▁▁▁
OPSEXPERM 2503 0.76 49.31 14.60 0 42.00 49.0 55.00 100 ▁▂▇▁▁
OPSEXTOTF 2503 0.76 195.83 293.48 0 29.00 99.0 239.00 4791 ▇▁▁▁▁
OPSEXPERF 2503 0.76 50.69 14.60 0 45.00 51.0 58.00 100 ▁▂▇▂▁
OPAGETOT017 2503 0.76 105.56 240.11 0 0.00 35.0 115.00 5127 ▇▁▁▁▁
OPAGEPER017 2503 0.76 30.93 32.27 0 0.00 24.0 41.00 100 ▇▅▂▁▂
OPAGETOT1864 2503 0.76 248.71 414.88 0 24.00 112.0 295.00 8018 ▇▁▁▁▁
OPAGEPER1864 2503 0.76 61.57 30.97 0 48.00 68.0 86.00 100 ▅▁▅▇▇
OPAGETOT65 2503 0.76 30.23 112.20 0 0.00 8.0 26.50 6314 ▇▁▁▁▁
OPAGEPER65 2503 0.76 7.50 12.97 0 0.00 4.0 10.00 100 ▇▁▁▁▁
OPETHTOTHISP 2503 0.76 32.98 122.14 0 0.00 2.0 18.00 3320 ▇▁▁▁▁
OPETHPERHISP 2503 0.76 8.96 17.43 0 0.00 1.0 10.00 100 ▇▁▁▁▁
OPETHTOTNONHISP 2503 0.76 200.33 389.41 0 0.00 44.0 231.00 8594 ▇▁▁▁▁
OPETHPERNONHISP 2503 0.76 54.95 43.21 0 0.00 75.0 96.00 100 ▆▁▁▂▇
OPETHTOTUNK 2503 0.76 151.19 447.03 0 0.00 3.0 100.00 14332 ▇▁▁▁▁
OPETHPERUNK 2503 0.76 36.09 46.26 0 0.00 1.0 100.00 100 ▇▁▁▁▅
OPRACETOTINDIAN 2503 0.76 2.29 9.79 0 0.00 0.0 1.00 334 ▇▁▁▁▁
OPRACEPERINDIAN 2503 0.76 0.93 4.72 0 0.00 0.0 0.00 100 ▇▁▁▁▁
OPRACETOTASIAN 2503 0.76 3.53 26.89 0 0.00 0.0 1.00 1148 ▇▁▁▁▁
OPRACEPERASIAN 2503 0.76 0.81 4.34 0 0.00 0.0 0.00 100 ▇▁▁▁▁
OPRACETOTBLK 2503 0.76 44.09 138.19 0 0.00 1.0 24.00 2365 ▇▁▁▁▁
OPRACEPERBLK 2503 0.76 11.79 20.07 0 0.00 1.0 15.00 100 ▇▁▁▁▁
OPRACETOTHAWPAC 2503 0.76 1.37 16.29 0 0.00 0.0 0.00 567 ▇▁▁▁▁
OPRACEPERHAWPAC 2503 0.76 0.39 3.77 0 0.00 0.0 0.00 99 ▇▁▁▁▁
OPRACETOTWHIT 2503 0.76 149.76 343.79 0 0.00 16.0 160.00 12017 ▇▁▁▁▁
OPRACEPERWHIT 2503 0.76 40.28 38.80 0 0.00 40.0 80.00 100 ▇▁▂▂▅
OPRACETOTMR 2503 0.76 7.32 39.34 0 0.00 0.0 1.00 1470 ▇▁▁▁▁
OPRACEPERMR 2503 0.76 2.13 7.48 0 0.00 0.0 1.00 100 ▇▁▁▁▁
OPRACETOTUNK 2503 0.76 176.14 424.82 0 0.00 18.0 162.50 7482 ▇▁▁▁▁
OPRACEPERUNK 2503 0.76 43.67 47.03 0 0.00 12.0 100.00 100 ▇▁▁▁▆
OPLEGALTOTVOL 2503 0.76 313.24 536.21 0 25.00 133.0 378.00 14332 ▇▁▁▁▁
OPLEGALPERVOL 2503 0.76 82.01 34.49 0 87.00 100.0 100.00 100 ▂▁▁▁▇
OPLEGALTOTNONFOREN 2503 0.76 13.87 114.73 0 0.00 0.0 0.00 7141 ▇▁▁▁▁
OPLEGALPERNONFOREN 2503 0.76 3.75 12.49 0 0.00 0.0 0.00 100 ▇▁▁▁▁
OPLEGALTOTFOREN 2503 0.76 57.39 243.48 0 0.00 0.0 6.00 7482 ▇▁▁▁▁
OPLEGALPERFOREN 2503 0.76 14.24 32.28 0 0.00 0.0 3.00 100 ▇▁▁▁▁
PERCENTCP 3197 0.69 27.40 25.81 0 5.00 20.0 40.00 100 ▇▃▂▁▁
MHADMISSIONS 6 1.00 801.14 1835.69 0 91.00 480.0 786.00 60000 ▇▁▁▁▁
PERCENTVA 3478 0.66 5.60 15.87 0 0.00 1.0 5.00 100 ▇▁▁▁▁

Clean 2019

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.0.3
treat_cleaned_2019 <- treatments_2019 %>%
  #select treatment variables
  select(starts_with("TREAT")) %>%
  pivot_longer(cols = everything(), names_to = "treatment", values_to = "count") %>%
  #compute percentage of facilities that offer the treatment
  group_by(treatment) %>%
  summarise(percent2019 = mean(count)) %>%
  mutate(treatment = case_when(
    treatment == "TREATPSYCHOTHRPY" ~ "psychotherapy",
    treatment == "TREATFAMTHRPY" ~ "family therapy",
    treatment == "TREATGRPTHRPY" ~ "group therapy",
    treatment == "TREATCOGTHRPY" ~ "cognitive behavioral therapy",
    treatment == "TREATDIALTHRPY" ~ "dialectical behavior therapy",
    treatment == "TREATBEHAVMOD" ~ "behavior modification",
    treatment == "TREATDUALMHSA" ~ "integrated dual disorders treatment",
    treatment == "TREATTRAUMATHRPY" ~ "trauma therapy",
    treatment == "TREATACTVTYTHRPY" ~ "activity therapy",
    treatment == "TREATELECTRO" ~ "electroconvulsive therapy",
    treatment == "TREATTELEMEDINCE" ~ "telemedicine therapy",
    treatment == "TREATPSYCHOMED" ~ "psychotropic medication",
    treatment == "TREATOTH" ~ "mentalhealth treatment approach",
    treatment == "TREATMT" ~ "substanceuse treatment",
    TRUE ~ as.character(treatment)))

treat_cleaned_2019
## # A tibble: 14 x 2
##    treatment                           percent2019
##  * <chr>                                     <dbl>
##  1 activity therapy                         0.446 
##  2 behavior modification                    0.660 
##  3 cognitive behavioral therapy             0.902 
##  4 dialectical behavior therapy             0.563 
##  5 integrated dual disorders treatment      0.566 
##  6 electroconvulsive therapy                0.0410
##  7 family therapy                           0.725 
##  8 group therapy                            0.856 
##  9 substanceuse treatment                   0.563 
## 10 mentalhealth treatment approach          0.0585
## 11 psychotropic medication                  0.818 
## 12 psychotherapy                            0.916 
## 13 telemedicine therapy                     0.380 
## 14 trauma therapy                           0.773

Clean 2010 data

library(readr)
## Warning: package 'readr' was built under R version 4.0.3
treat_cleaned_2010 <- treatments_2010 %>%
  select(starts_with("TREAT")) %>%
  pivot_longer(cols = everything(), names_to = "treatment", values_to = "count") %>%
  mutate(count = parse_number(as.character(count))) %>%
  group_by(treatment) %>%
  summarise(percent2010 = mean(count, na.rm = TRUE)) %>%
  mutate(treatment = case_when(
    treatment == "TREATPSYCHOTHRPY" ~ "psychotherapy",
    treatment == "TREATFAMTHRPY" ~ "family therapy",
    treatment == "TREATGRPTHRPY" ~ "group therapy",
    treatment == "TREATCOGTHRPY" ~ "cognitive behavioral therapy",
    treatment == "TREATDIALTHRPY" ~ "dialectical behavior therapy",
    treatment == "TREATBEHAVMOD" ~ "behavior modification",
    treatment == "TREATDUALMHSA" ~ "integrated dual disorders treatment",
    treatment == "TREATTRAUMATHRPY" ~ "trauma therapy",
    treatment == "TREATACTVTYTHRPY" ~ "activity therapy",
    treatment == "TREATELECTRO" ~ "electroconvulsive therapy",
    treatment == "TREATTELEMEDINCE" ~ "telemedicine therapy",
    treatment == "TREATPSYCHOMED" ~ "psychotropic medication",
    treatment == "TREATOTH" ~ "mentalhealth treatment approach",
    treatment == "TREATMT" ~ "substanceuse treatment",
    TRUE ~ as.character(treatment)))

treat_cleaned_2010
## # A tibble: 11 x 2
##    treatment                           percent2010
##  * <chr>                                     <dbl>
##  1 activity therapy                         0.515 
##  2 behavior modification                    0.655 
##  3 cognitive behavioral therapy             0.887 
##  4 integrated dual disorders treatment      0.549 
##  5 electroconvulsive therapy                0.0634
##  6 family therapy                           0.675 
##  7 group therapy                            0.852 
##  8 mentalhealth treatment approach          0.0835
##  9 psychotropic medication                  0.837 
## 10 psychotherapy                            0.863 
## 11 telemedicine therapy                     0.157

Join data

treat <- full_join(treat_cleaned_2010, treat_cleaned_2019) %>%
  mutate(percent2010 = ifelse(is.na(percent2010),0,percent2010),
         treatment = forcats::fct_reorder(treatment,percent2019)) %>%
  pivot_longer(cols = -treatment, names_to = "year", values_to = "percent")
## Joining, by = "treatment"
treat
## # A tibble: 28 x 3
##    treatment                           year        percent
##    <fct>                               <chr>         <dbl>
##  1 activity therapy                    percent2010  0.515 
##  2 activity therapy                    percent2019  0.446 
##  3 behavior modification               percent2010  0.655 
##  4 behavior modification               percent2019  0.660 
##  5 cognitive behavioral therapy        percent2010  0.887 
##  6 cognitive behavioral therapy        percent2019  0.902 
##  7 integrated dual disorders treatment percent2010  0.549 
##  8 integrated dual disorders treatment percent2019  0.566 
##  9 electroconvulsive therapy           percent2010  0.0634
## 10 electroconvulsive therapy           percent2019  0.0410
## # ... with 18 more rows

Visualize data

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.4
library(scales)
## Warning: package 'scales' was built under R version 4.0.4
## 
## Attaching package: 'scales'
## The following object is masked from 'package:readr':
## 
##     col_factor
ggplot(treat, 
       aes(x = percent, 
           y = treatment,
           fill = year)) +
  geom_bar(stat = "identity", position = "dodge")+  
labs(title = "Popular Mental Illness treatments in the US",
     y = NULL,
     x = "Percent of Facilities",
     caption = "Data Source: SAMHSA, National Mental Health Services Survey")

Methods and practices for treating the mentally ill have changed drastically over time. Current methods most commonly consist of therapy and a wide variety of medicines including antidepressants that increase dopamine levels in people, and more. In the data used in class we found that the most common treatments are varieties of therapy. For example, family therapy, group therapy, cognitive behavior therapy, and psychotherapy just to name a few. This reflects back in history on Phillipe Pinel and his theories and practices. Pinel believed that the mentally ill should not be chained up. He believed methods like rotational therapy, malarial infection therapy, insulin coma therapy and electroconvulsive therapy were inhumane and unnecessary because. He had a strong believe that kindness and discipline go hand in hand and this is still seen today in modern medicine. Pinel was not satisfied with the state of madhouses and how their patients were being treated. Everyone was treated like animals and given the same treatments, even though everyone is different and has their own personal illness. Pinel believed that moral treatment was going to be incredibly beneficial for patients, along with cohorts so people are not all receiving the same treatment that are likely not making a difference. This is similar to practices today, therapists meet with a certain amount of patients who struggle with a variety of mental illnesses, and together focus on ways to improve.

One popular method in today’s current treatment is cognitive behavioral therapy, which is a hybrid of cognitive and behavioral therapy. This reflects back on the theory developed by Aaron Beck and Albert Ellis, who had the idea of one of the most successful innovations during its time, cognitive behavioral therapy. Beck found that, “depressed patients tended to be overwhelmed by spontaneous negative thoughts, and that challenging the veracity of these thoughts more often than not led to recovery”(Eghigian, 2021). This is still seen today, a great practice to help with depression is mindfulness and turning negative thoughts into positive ones, although that is difficult for metnally ill people. Beck believed it is not necessary to travel into one’s past, and that a patient is ill as they are now, not in the past. He believed peoples current problems do not have to do with past trauma, everything is in the now, and any struggles mentally are completely conscious. This is interesting to compare to therapy nowadays, often mental illness is characterized by past trauma, and therapists work with their patients to get down to the bottom of where their mental illness first sprung from, so there is some contrast regarding Becks’ beliefs in comparison to today.

In the passage “Osheroff v. Chestnut Lodge”, Rafael Osheroff, a physician himself, was admitted to the psychiatric treatment center Chestnut Lodge, where a variety of treatments were done to him. Osheroff later filed a lawsuit against the facility for refusing to provide him with the proper treatment he knew he should have received. The treatments he received were similar to treatments still used today, like drugs and psychotherapy. This passage addresses efficacy and how Osheroff was not treated with efficacy by the Chestnut Lodge. Nowadays efficacy is very important in mental illness facilities and things like diagnosing patients incorrectly and prescribing them with improper medication is not tolerated and/or is hard to pass by.

Current day facilities that house the mentally ill are often seen as very beneficial for the patients, they receive proper hands on care and learn coping mechanisms tailored to their illness. The passage “Insulin and I” by an anonymous author shared about her asylum experiences, and described it as being fun and beneficial. She said she played games and hung out with friends after receiving her treatments. The treatment given to her was insulin therapy, where patients would receive an overdose of insulin till their body went into a coma, and the idea was when they wake up from their coma their mental illness would be cured. The anonymous author did not share much about her experience with these treatments, besides that it was beneficial to her. It is important to recognise that this passage could have been written by anyone. Insulin treatment is something that has been long discontinued in today’s modern medicine, this is a drastic difference when comparing past treatments to todays. There are no unethical treatments that are commonly used today, and different kinds of therapy are now the most popular forms of treatment.

Throughout the year treatment methods have grown and developed into smart and beneficial practices. We have come a long way from unethical treatments like insulin therapy, and have learned from people like Phillipe Pinel and Aaron Beck to have evolved where we are today.

Work Cited:

Eghigian, Greg, editor. From Madness to Mental Health : Psychiatric Disorder and Its Treatment in Western Civilization. Rutgers University Press, 2010. Accessed 14 April. 2021.