R Markdown

3

  1. Explain how k-fold cross-validation is implemented

A k-fold cross validation is implemented by taking n, the amount of observations, and randomly splitting them into non-overlapping groups of length, n/k.

  1. What are the advantages and disadvantages of k-fold crossvalidation relative to:
  1. The validation set approach?

The disadvantages of the validation set approach is the estimate of the test error rate can be highly variable, and only a subset of the obervations used to fit the model.

  1. LOOCV?

LOOCV has less bias, and performing the LOOCV multiple times will yield the same results.

5

  1. Fit a logistic regression model that uses income and balance to predict default.
library(ISLR)
attach(Default)
set.seed(1)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = Default)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4725  -0.1444  -0.0574  -0.0211   3.7245  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.154e+01  4.348e-01 -26.545  < 2e-16 ***
## income       2.081e-05  4.985e-06   4.174 2.99e-05 ***
## balance      5.647e-03  2.274e-04  24.836  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1579.0  on 9997  degrees of freedom
## AIC: 1585
## 
## Number of Fisher Scoring iterations: 8
  1. Using the validation set approach, estimate the test error of this model. In order to do this, you must perform the following steps:
  1. Split the sample set into a training set and a validation set.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
  1. Fit a multiple logistic regression model using only the training observations.
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
summary(fit.glm)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = Default, subset = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5830  -0.1428  -0.0573  -0.0213   3.3395  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.194e+01  6.178e-01 -19.333  < 2e-16 ***
## income       3.262e-05  7.024e-06   4.644 3.41e-06 ***
## balance      5.689e-03  3.158e-04  18.014  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1523.8  on 4999  degrees of freedom
## Residual deviance:  803.3  on 4997  degrees of freedom
## AIC: 809.3
## 
## Number of Fisher Scoring iterations: 8
  1. Obtain a prediction of default status for each individual in the validation set by computing the posterior probability of default for that individual, and classifying the individual to the default category if the posterior probability is greater than 0.5.
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
  1. Compute the validation set error, which is the fraction of the observations in the validation set that are misclassified.
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0254
  1. Repeat the process in (b) three times, using three different splits of the observations into a training set and a validation set. Comment on the results obtained.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0274
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244

The three different splits each produce a different resulting error rate which shows that the rate varies by which observations are in the training/validation sets.

  1. Now consider a logistic regression model that predicts the probability of default using income, balance, and a dummy variable for student. Estimate the test error for this model using the validation set approach. Comment on whether or not including a dummy variable for student leads to a reduction in the test error rate.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance + student, data = Default, family = "binomial", subset = train)
pred.glm <- rep("No", length(probs))
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0278

Including the dummy variable for student leads did not seem to result in a reduction in the test error rate.

6

  1. Using the summary() and glm() functions, determine the estimated standard errors for the coefficients associated with income and balance in a multiple logistic regression model that uses both predictors.
set.seed(1)
attach(Default)
## The following objects are masked from Default (pos = 3):
## 
##     balance, default, income, student
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = Default)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4725  -0.1444  -0.0574  -0.0211   3.7245  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.154e+01  4.348e-01 -26.545  < 2e-16 ***
## income       2.081e-05  4.985e-06   4.174 2.99e-05 ***
## balance      5.647e-03  2.274e-04  24.836  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1579.0  on 9997  degrees of freedom
## AIC: 1585
## 
## Number of Fisher Scoring iterations: 8

The glm() estimates of the standard errors for the coefficients β0, β1 and β2 are respectively 0.4347564, 4.985167210^{-6} and 2.273731410^{-4}.

  1. Write a function, boot.fn(), that takes as input the Default data set as well as an index of the observations, and that outputs the coefficient estimates for income and balance in the multiple logistic regression model.
boot.fn <- function(data, index) {
    fit <- glm(default ~ income + balance, data = data, family = "binomial", subset = index)
    return (coef(fit))
}
  1. Use the boot() function together with your boot.fn() function to estimate the standard errors of the logistic regression coefficients for income and balance
library(boot)
boot(Default, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##          original        bias     std. error
## t1* -1.154047e+01 -3.945460e-02 4.344722e-01
## t2*  2.080898e-05  1.680317e-07 4.866284e-06
## t3*  5.647103e-03  1.855765e-05 2.298949e-04
  1. Comment on the estimated standard errors obtained using the glm() function and using your bootstrap function.

The estimated standard errors obtained by the two methods are similar.

9

  1. Based on this data set, provide an estimate for the population mean of medv. Call this estimate ˆμ.
library(MASS)
attach(Boston)
mu.hat <- mean(medv)
mu.hat
## [1] 22.53281
  1. Provide an estimate of the standard error of ˆμ. Interpret this result.
se.hat <- sd(medv) / sqrt(dim(Boston)[1])
se.hat
## [1] 0.4088611
  1. Now estimate the standard error of ˆμ using the bootstrap. How does this compare to your answer from (b)?
set.seed(1)
boot.fn <- function(data, index) {
    mu <- mean(data[index])
    return (mu)
}
boot(medv, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original      bias    std. error
## t1* 22.53281 0.007650791   0.4106622

The bootstrap estimated standard error of (mu-hat) of 0.411 is similar to the estimate found in (b) of 0.408.

  1. Based on your bootstrap estimate from (c), provide a 95 % confidence interval for the mean of medv. Compare it to the results obtained using t.test(Boston$medv).
t.test(medv)
## 
##  One Sample t-test
## 
## data:  medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  21.72953 23.33608
## sample estimates:
## mean of x 
##  22.53281
CI.mu.hat <- c(22.53 - 2 * 0.4119, 22.53 + 2 * 0.4119)
CI.mu.hat
## [1] 21.7062 23.3538

The bootstrap confidence interval is very close to the one provided by the t.test() function.

  1. Based on this data set, provide an estimate, ˆμmed, for the median value of medv in the population
medv.hat <- median(medv)
medv.hat
## [1] 21.2
  1. We now would like to estimate the standard error of ˆμmed. Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings
boot.fn <- function(data, index) {
    mu <- median(data[index])
    return (mu)
}
boot(medv, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original  bias    std. error
## t1*     21.2 -0.0386   0.3770241

estimated median value of 21.2 which is equal to the value obtained in e, with a standard error of 0.377 which is relatively small compared to median value

  1. Based on this data set, provide an estimate for the tenth percentile of medv in Boston suburbs. Call this quantity ˆμ0.1.
percent.hat <- quantile(medv, c(0.1))
percent.hat
##   10% 
## 12.75
  1. Use the bootstrap to estimate the standard error of ˆμ0.1. Comment on your findings.
boot.fn <- function(data, index) {
    mu <- quantile(data[index], c(0.1))
    return (mu)
}
boot(medv, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original  bias    std. error
## t1*    12.75  0.0186   0.4925766

estimated tenth percentile value of 12.75 which is again equal to the value obtained in (g), with a standard error of 0.4925 which is relatively small compared to percentile value.