1 Packages

library(prcr)
library(tidyverse)
library(car)
library(rstatix)
library(effsize)
library(effectsize)
library(openxlsx)

2 Data

dados <- read.xlsx('C:/Users/user/Desktop/Vida acadêmica/Submissões/Netwine/Nova pasta/dadosEnraizamento.xlsx')

3 By Size

# Por Porte
dados %>% group_by(Porte) %>% summarise(mean = mean(Fator_inovação))
## # A tibble: 3 x 2
##   Porte            mean
##   <chr>           <dbl>
## 1 Porte_grande   0.332 
## 2 Porte_médio   -0.0529
## 3 Porte_pequena -0.190
dados %>% group_by(Porte) %>% summarise(mean = mean(autoridade1))
## # A tibble: 3 x 2
##   Porte          mean
##   <chr>         <dbl>
## 1 Porte_grande  0.472
## 2 Porte_médio   0.261
## 3 Porte_pequena 0.243
dados %>% group_by(Porte) %>% summarise(mean = mean(hub1))
## # A tibble: 3 x 2
##   Porte          mean
##   <chr>         <dbl>
## 1 Porte_grande  0.349
## 2 Porte_médio   0.281
## 3 Porte_pequena 0.350

4 Table Size X Position

table(dados$Porte, dados$blok1)
##                
##                 Centro Periferia
##   Porte_grande       8         4
##   Porte_médio       10         8
##   Porte_pequena      8         8

5 By Position

dados %>% group_by(blok1) %>% summarise(mean = mean(Fator_inovação))
## # A tibble: 2 x 2
##   blok1       mean
##   <chr>      <dbl>
## 1 Centro     0.140
## 2 Periferia -0.183
t.test(Fator_inovação ~ blok1, data = dados) # p-value = 0.2144
## 
##  Welch Two Sample t-test
## 
## data:  Fator_inovação by blok1
## t = 1.2602, df = 43.133, p-value = 0.2144
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1938356  0.8397988
## sample estimates:
##    mean in group Centro mean in group Periferia 
##               0.1404268              -0.1825548
dados %>% group_by(blok1) %>% summarise(mean = mean(autoridade1))
## # A tibble: 2 x 2
##   blok1      mean
##   <chr>     <dbl>
## 1 Centro    0.436
## 2 Periferia 0.145
t.test(autoridade1 ~ blok1, data = dados) # 3.064e-06
## 
##  Welch Two Sample t-test
## 
## data:  autoridade1 by blok1
## t = 5.1321, df = 38.983, p-value = 8.257e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1766425 0.4064613
## sample estimates:
##    mean in group Centro mean in group Periferia 
##               0.4364584               0.1449065
dados %>% group_by(blok1) %>% summarise(mean = mean(hub1))
## # A tibble: 2 x 2
##   blok1      mean
##   <chr>     <dbl>
## 1 Centro    0.479
## 2 Periferia 0.120
t.test(hub1 ~ blok1, data = dados) # 9.068e-07
## 
##  Welch Two Sample t-test
## 
## data:  hub1 by blok1
## t = 6.2384, df = 36.179, p-value = 3.274e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.2419636 0.4750104
## sample estimates:
##    mean in group Centro mean in group Periferia 
##               0.4789219               0.1204349

6 Embeddeness X Innovation

dadosCluster <- dados[,c(59:68)]

dados$Embedded_Sum <- rowSums(dadosCluster)
dados$Embedded_Sum
##  [1]  3  2  5  6  4  7  4  5  4  3  4  6  5  2  2  4  2  4 10  2  2  4  4  5  1
## [26]  8  0  0  3  4  3  1  4  5  1  4  0  4  3  9  2  9  3  2  3  2
# Quanto maior o score, menos enraízado nas redes locais

7 2 Steps Cluster

m3 <- create_profiles_cluster(dadosCluster, C13_Fornecedores, 
                              C13_Clientes, C13_Concorrentes, C13_Consultores,
                              C13_Lab_Inst_Pesq, C13_Universidades, 
                              C13_Grupo_Empr_Sind, C13_Imprensa_Esp,
                              C13_Reg_NorTec, C13_Leg_NormCodTrab,
                              n_profiles = 2)

plot_profiles(m3, to_center = TRUE)

m3$cluster
##  [1] 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 1 2 2 1 2 1 1
## [39] 1 2 1 2 1 1 1 1
dados$TSCA <- m3$cluster

8 Summary

dados %>% group_by(TSCA) %>% summarise(mean = mean(Embedded_Sum))
## # A tibble: 2 x 2
##    TSCA  mean
##   <int> <dbl>
## 1     1  2.46
## 2     2  5.3
# Grupo 1 = Mais Enraizado
# Grupo 2 = Menos enraízado

dados$TSCA <- factor(dados$TSCA,
                     labels = c("More Embedded", "Less Embedded"))

9 Lets see if the group Less Embedded have a superior Innovation Activity

dados %>% group_by(TSCA) %>% summarise(mean = mean(Fator_inovação)) # Means for groups
## # A tibble: 2 x 2
##   TSCA            mean
##   <fct>          <dbl>
## 1 More Embedded -0.229
## 2 Less Embedded  0.297
dados %>% group_by(TSCA) %>% shapiro_test(Fator_inovação) # Normality test for both groups
## # A tibble: 2 x 4
##   TSCA          variable       statistic     p
##   <fct>         <chr>              <dbl> <dbl>
## 1 More Embedded Fator_inovação     0.959 0.371
## 2 Less Embedded Fator_inovação     0.948 0.341
leveneTest(Fator_inovação ~ TSCA, dados, center = mean) # Levene Test for homogeneity
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  1  0.6078 0.4398
##       44
t.test(Fator_inovação ~ TSCA, data = dados, var.equal = T) # p-value = 0.04344, yep 
## 
##  Two Sample t-test
## 
## data:  Fator_inovação by TSCA
## t = -2.0794, df = 44, p-value = 0.04344
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.03604919 -0.01620644
## sample estimates:
## mean in group More Embedded mean in group Less Embedded 
##                  -0.2287512                   0.2973766
cohens_d(Fator_inovação ~ TSCA, data = dados) # -0.62 
## Cohen's d |         95% CI
## --------------------------
## -0.62     | [-1.21, -0.02]
## 
## - Estimated using pooled SD.
d_to_common_language(-0.62)
## $`Cohen's U3`
## [1] 0.2676289
## 
## $Overlap
## [1] 0.756561
## 
## $`Probability of superiority`
## [1] 0.3305459
interpret_d(-0.62, rules = "cohen1988") # Medium effect, sounds good
## [1] "medium"
## (Rules: cohen1988)
interpret_d(-0.62, rules = "sawilowsky2009")
## [1] "medium"
## (Rules: sawilowsky2009)

10 Table

table(dados$Porte, dados$TSCA)
##                
##                 More Embedded Less Embedded
##   Porte_grande              5             7
##   Porte_médio              10             8
##   Porte_pequena            11             5
table(dados$blok1, dados$TSCA)
##            
##             More Embedded Less Embedded
##   Centro               13            13
##   Periferia            13             7
# Conclusion: 
# It's seems that wineries that share more links outside the cluster indeed have a better innovation activity as Morrison 2009 argued