###Reading in data, excluding people who are already very likely or very unlikely to get vaccine, computing pre/post change in likelihood for each condition.
setwd("~/Google Drive/Research/Lisa/Vaccine Bot Mar2021")
bot<-read.csv ("Bot Conditions Mar2021.csv", header=T, sep=",")
static<-read.csv ("Static condition.csv", header=T, sep=",")
bot<-subset(bot, t1!=1 & t1!=7)
static<-subset(static, t1!=1 & t1!=7)
anecdote_bot<-subset(bot, condition==1)
stat_bot<-subset(bot, condition==2)
t.test(static$t1, static$t2) ###Static condition
##
## Welch Two Sample t-test
##
## data: static$t1 and static$t2
## t = -1.458, df = 383.79, p-value = 0.1457
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.51107531 0.07584215
## sample estimates:
## mean of x mean of y
## 4.424870 4.642487
t.test(bot$t1, bot$t2) ###Overall bot (both anecdotes+stats conditions)
##
## Welch Two Sample t-test
##
## data: bot$t1 and bot$t2
## t = -1.8223, df = 786.14, p-value = 0.06879
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.41439144 0.01540154
## sample estimates:
## mean of x mean of y
## 4.303030 4.502525
t.test(anecdote_bot$t1, anecdote_bot$t2) ###Anecdote bot condition only
##
## Welch Two Sample t-test
##
## data: anecdote_bot$t1 and anecdote_bot$t2
## t = -1.4484, df = 358.43, p-value = 0.1484
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.56013777 0.08499965
## sample estimates:
## mean of x mean of y
## 4.265193 4.502762
t.test(stat_bot$t1, stat_bot$t2) ###Stat bot condition only
##
## Welch Two Sample t-test
##
## data: stat_bot$t1 and stat_bot$t2
## t = -1.1371, df = 425.67, p-value = 0.2561
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4568728 0.1219890
## sample estimates:
## mean of x mean of y
## 4.334884 4.502326
###Looking at effectiveness in each condition, broken down by T1 likelihood (pre-intervention). Starting with static condition.
two<-subset(static, t1==2) #this is people who answered 2 at T2, etc.
three<-subset(static, t1==3)
four<-subset(static, t1==4)
five<-subset(static, t1==5)
six<-subset(static, t1==6)
t.test(two$t1, two$t2)
##
## Welch Two Sample t-test
##
## data: two$t1 and two$t2
## t = -2.6536, df = 28, p-value = 0.01298
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7943140 -0.1022378
## sample estimates:
## mean of x mean of y
## 2.000000 2.448276
t.test(three$t1, three$t2)
##
## Welch Two Sample t-test
##
## data: three$t1 and three$t2
## t = -1.8, df = 27, p-value = 0.08304
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.68782688 0.04496974
## sample estimates:
## mean of x mean of y
## 3.000000 3.321429
t.test(four$t1, four$t2)
##
## Welch Two Sample t-test
##
## data: four$t1 and four$t2
## t = -1.7236, df = 30, p-value = 0.09508
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6343302 0.0536850
## sample estimates:
## mean of x mean of y
## 4.000000 4.290323
t.test(five$t1, five$t2)
##
## Welch Two Sample t-test
##
## data: five$t1 and five$t2
## t = -3.3224, df = 41, p-value = 0.001885
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5359509 -0.1307157
## sample estimates:
## mean of x mean of y
## 5.000000 5.333333
t.test(six$t1, six$t2)
##
## Welch Two Sample t-test
##
## data: six$t1 and six$t2
## t = 0.90321, df = 62, p-value = 0.3699
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05777068 0.15300877
## sample estimates:
## mean of x mean of y
## 6.000000 5.952381
#Static info was at least marginally persuasive at all T1 levels except 6. Most effective at 5.
###Same breakdown for the anecdote bot.
two<-subset(anecdote_bot, t1==2)
three<-subset(anecdote_bot, t1==3)
four<-subset(anecdote_bot, t1==4)
five<-subset(anecdote_bot, t1==5)
six<-subset(anecdote_bot, t1==6)
t.test(two$t1, two$t2)
##
## Welch Two Sample t-test
##
## data: two$t1 and two$t2
## t = -3.0774, df = 35, p-value = 0.004041
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.0603485 -0.2174293
## sample estimates:
## mean of x mean of y
## 2.000000 2.638889
t.test(three$t1, three$t2)
##
## Welch Two Sample t-test
##
## data: three$t1 and three$t2
## t = -1.1554, df = 22, p-value = 0.2603
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6075952 0.1728126
## sample estimates:
## mean of x mean of y
## 3.000000 3.217391
t.test(four$t1, four$t2)
##
## Welch Two Sample t-test
##
## data: four$t1 and four$t2
## t = -0.4878, df = 34, p-value = 0.6288
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4428135 0.2713850
## sample estimates:
## mean of x mean of y
## 4.000000 4.085714
t.test(five$t1, five$t2)
##
## Welch Two Sample t-test
##
## data: five$t1 and five$t2
## t = -2.5156, df = 30, p-value = 0.01747
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5260212 -0.0546240
## sample estimates:
## mean of x mean of y
## 5.000000 5.290323
t.test(six$t1, six$t2)
##
## Welch Two Sample t-test
##
## data: six$t1 and six$t2
## t = -0.62211, df = 55, p-value = 0.5364
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2261446 0.1190018
## sample estimates:
## mean of x mean of y
## 6.000000 6.053571
#Anecdote was only effective at T1 = 2 or 5
###Same breakdown for the stat bot.
two<-subset(stat_bot, t1==2)
three<-subset(stat_bot, t1==3)
four<-subset(stat_bot, t1==4)
five<-subset(stat_bot, t1==5)
six<-subset(stat_bot, t1==6)
t.test(two$t1, two$t2)
##
## Welch Two Sample t-test
##
## data: two$t1 and two$t2
## t = -1.8426, df = 36, p-value = 0.07364
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.73807801 0.03537531
## sample estimates:
## mean of x mean of y
## 2.000000 2.351351
t.test(three$t1, three$t2)
##
## Welch Two Sample t-test
##
## data: three$t1 and three$t2
## t = -1.9873, df = 29, p-value = 0.05641
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.87930546 0.01263879
## sample estimates:
## mean of x mean of y
## 3.000000 3.433333
t.test(four$t1, four$t2)
##
## Welch Two Sample t-test
##
## data: four$t1 and four$t2
## t = -2.0185, df = 37, p-value = 0.05084
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3691272723 0.0007062196
## sample estimates:
## mean of x mean of y
## 4.000000 4.184211
t.test(five$t1, five$t2)
##
## Welch Two Sample t-test
##
## data: five$t1 and five$t2
## t = -0.53442, df = 43, p-value = 0.5958
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3254715 0.1891079
## sample estimates:
## mean of x mean of y
## 5.000000 5.068182
t.test(six$t1, six$t2)
##
## Welch Two Sample t-test
##
## data: six$t1 and six$t2
## t = 0, df = 65, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1724862 0.1724862
## sample estimates:
## mean of x mean of y
## 6 6
#Stat bot was effective at T1 = 2, 3, and 4
Were any of the pre/post differences different from each other? First looking at conditions overall without breaking down by T1.
static$delta<-static$t2 - static$t1
anecdote_bot$delta<-anecdote_bot$t2 - anecdote_bot$t1
stat_bot$delta<-stat_bot$t2 - stat_bot$t1
t.test(static$delta, anecdote_bot$delta)
##
## Welch Two Sample t-test
##
## data: static$delta and anecdote_bot$delta
## t = -0.22846, df = 348.09, p-value = 0.8194
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1917213 0.1518164
## sample estimates:
## mean of x mean of y
## 0.2176166 0.2375691
t.test(static$delta, stat_bot$delta)
##
## Welch Two Sample t-test
##
## data: static$delta and stat_bot$delta
## t = 0.61612, df = 404.54, p-value = 0.5382
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1099175 0.2102670
## sample estimates:
## mean of x mean of y
## 0.2176166 0.1674419
t.test(stat_bot$delta, anecdote_bot$delta)
##
## Welch Two Sample t-test
##
## data: stat_bot$delta and anecdote_bot$delta
## t = -0.76589, df = 377.99, p-value = 0.4442
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2501636 0.1099092
## sample estimates:
## mean of x mean of y
## 0.1674419 0.2375691
###No differences.
###Next letโs merge the bots and static conditions so we can do regressions.
static_small<-static[c(20,23,29,36,43,45,47)]
static_small$cond<-"aa_static"
a_bot_small<-anecdote_bot[c(43,47,49,8,16,18,23)]
a_bot_small$cond<-"anecdote"
s_bot_small<-stat_bot[c(43,47,49,8,16,18,23)]
s_bot_small$cond<-"stat"
all<-rbind(static_small, a_bot_small, s_bot_small)
all$delta<-all$t2-all$t1
###First comparing the two bot conditions to the static condition.
summary(lm(delta~cond, all))
##
## Call:
## lm(formula = delta ~ cond, data = all)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1674 -0.2376 -0.2176 -0.1674 4.8326
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.21762 0.06178 3.523 0.000461 ***
## condanecdote 0.01995 0.08880 0.225 0.822301
## condstat -0.05017 0.08510 -0.590 0.555691
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8582 on 586 degrees of freedom
## Multiple R-squared: 0.001217, Adjusted R-squared: -0.002192
## F-statistic: 0.357 on 2 and 586 DF, p-value: 0.6999
###Interaction with T1?
summary(lm(delta~cond*t1, all))
##
## Call:
## lm(formula = delta ~ cond * t1, data = all)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9942 -0.3063 -0.0424 0.0058 4.5896
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.709806 0.195866 3.624 0.000315 ***
## condanecdote 0.021774 0.272093 0.080 0.936245
## condstat -0.091354 0.265938 -0.344 0.731334
## t1 -0.111232 0.042077 -2.644 0.008425 **
## condanecdote:t1 -0.004591 0.059283 -0.077 0.938294
## condstat:t1 0.007190 0.057583 0.125 0.900670
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8449 on 583 degrees of freedom
## Multiple R-squared: 0.03703, Adjusted R-squared: 0.02878
## F-statistic: 4.484 on 5 and 583 DF, p-value: 0.0005106
###Interactions with demographics or timing?
summary(lm(delta~cond*time, all))
##
## Call:
## lm(formula = delta ~ cond * time, data = all)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1692 -0.2579 -0.1724 -0.0603 4.8275
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3038667 0.0826508 3.677 0.000258 ***
## condanecdote 0.1319609 0.1462224 0.902 0.367181
## condstat -0.1722053 0.1375342 -1.252 0.211039
## time -0.0011838 0.0007563 -1.565 0.118074
## condanecdote:time 0.0006139 0.0008117 0.756 0.449796
## condstat:time 0.0012894 0.0008047 1.602 0.109634
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8558 on 583 degrees of freedom
## Multiple R-squared: 0.01196, Adjusted R-squared: 0.003487
## F-statistic: 1.412 on 5 and 583 DF, p-value: 0.2182
summary(lm(delta~cond*age, all))
##
## Call:
## lm(formula = delta ~ cond * age, data = all)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0000 -0.2813 -0.1871 0.1274 4.8130
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.682825 0.198971 3.432 0.000642 ***
## condanecdote -0.189438 0.272775 -0.694 0.487657
## condstat -0.288030 0.268826 -1.071 0.284417
## age -0.014649 0.005959 -2.458 0.014250 *
## condanecdote:age 0.006796 0.008050 0.844 0.398935
## condstat:age 0.007724 0.007917 0.976 0.329710
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8539 on 582 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.01798, Adjusted R-squared: 0.009541
## F-statistic: 2.131 on 5 and 582 DF, p-value: 0.06025
summary(lm(delta~cond*Sex, all))
##
## Call:
## lm(formula = delta ~ cond * Sex, data = all)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1546 -0.2377 -0.1831 -0.1546 4.8454
##
## Coefficients: (3 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.846e-02 8.727e-01 0.033 0.974
## condanecdote -2.846e-02 1.227e+00 -0.023 0.982
## condstat -2.846e-02 1.347e-01 -0.211 0.833
## SexFemale 2.092e-01 8.762e-01 0.239 0.811
## SexMale 1.546e-01 8.667e-01 0.178 0.858
## SexYes -2.533e-13 1.219e+00 0.000 1.000
## condanecdote:SexFemale 5.289e-02 1.232e+00 0.043 0.966
## condstat:SexFemale -2.821e-02 1.750e-01 -0.161 0.872
## condanecdote:SexMale 5.315e-02 1.226e+00 0.043 0.965
## condstat:SexMale NA NA NA NA
## condanecdote:SexYes NA NA NA NA
## condstat:SexYes NA NA NA NA
##
## Residual standard error: 0.8622 on 580 degrees of freedom
## Multiple R-squared: 0.002175, Adjusted R-squared: -0.01159
## F-statistic: 0.158 on 8 and 580 DF, p-value: 0.9959
###Covariates
summary(lm(delta ~ cond + time + age + Sex, all))
##
## Call:
## lm(formula = delta ~ cond + time + age + Sex, data = all)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9228 -0.2881 -0.1962 0.1175 4.8385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3234911 0.6205185 0.521 0.6023
## condanecdote 0.0785308 0.1038757 0.756 0.4500
## condstat 0.0119508 0.1000003 0.120 0.9049
## time -0.0001734 0.0001996 -0.869 0.3853
## age -0.0090406 0.0032375 -2.792 0.0054 **
## SexFemale 0.2110407 0.6137943 0.344 0.7311
## SexMale 0.1643337 0.6146938 0.267 0.7893
## SexYes -0.0936341 1.0513304 -0.089 0.9291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8551 on 580 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.0186, Adjusted R-squared: 0.006751
## F-statistic: 1.57 on 7 and 580 DF, p-value: 0.1415