1. Read Data

# Read Data directly
t = "F:\\NGHIEN CUU SINH\\NCS - PHUONG ANH\\Part 1-Mode choice\\SO LIEU R\\Mode choice in DN.csv"
MC = read.csv(t, header = T)
head(MC)
##   Travel.Mode Bus.Stop.Condition Central.Area Purpose Frequency Departure.Time
## 1           6                  1            0       3         3              1
## 2           3                  1            0       1         4              1
## 3           3                  1            0       1         4              3
## 4           3                  1            0       1         4              1
## 5           3                  1            0       1         4              3
## 6           4                  1            0       1         4              1
##   Distance Travel.Period Sidewalk.Clearance Lane.Separate Temporary.Stop.Number
## 1        2            10                  1             1                     0
## 2        8            15                  1             1                     1
## 3        5            15                  1             1                     1
## 4        5            10                  1             1                     1
## 5        8            15                  1             1                     0
## 6       20            30                  1             1                     0
##   Mode.Choice.Reason Weather Weekend Non.Bus.Reason Cost Bus.Stop.Present
## 1                  4       1       0              1   12                1
## 2                  2       3       0              1    8                2
## 3                  4       1       0              2    5                1
## 4                  2       1       0              4    5                1
## 5                  2       3       0              2    8                2
## 6                  5       3       0              2   40                2
##   Gender Age Occupation Income Number.of.Children Motor.Certificate
## 1      0   5          4      2                  2                 0
## 2      0   3          6      3                  1                 1
## 3      1   3          2      4                  0                 1
## 4      1   3          2      3                  0                 1
## 5      0   4          6      3                  1                 1
## 6      1   4          3      4                  2                 1
##   Car.Certificate Bicycle.Owning Motor.Owning Car.Owning Number.of.Bicycles
## 1               0              0            0          0                  1
## 2               0              1            1          0                  1
## 3               0              0            1          0                  0
## 4               0              1            1          0                  1
## 5               0              0            1          0                  0
## 6               1              1            1          1                  1
##   Number.of.Motors Number.of.Car
## 1                2             1
## 2                3             0
## 3                3             0
## 4                3             0
## 5                2             0
## 6                2             1
names(MC)
##  [1] "Travel.Mode"           "Bus.Stop.Condition"    "Central.Area"         
##  [4] "Purpose"               "Frequency"             "Departure.Time"       
##  [7] "Distance"              "Travel.Period"         "Sidewalk.Clearance"   
## [10] "Lane.Separate"         "Temporary.Stop.Number" "Mode.Choice.Reason"   
## [13] "Weather"               "Weekend"               "Non.Bus.Reason"       
## [16] "Cost"                  "Bus.Stop.Present"      "Gender"               
## [19] "Age"                   "Occupation"            "Income"               
## [22] "Number.of.Children"    "Motor.Certificate"     "Car.Certificate"      
## [25] "Bicycle.Owning"        "Motor.Owning"          "Car.Owning"           
## [28] "Number.of.Bicycles"    "Number.of.Motors"      "Number.of.Car"
dim(MC)
## [1] 847  30

2. Desscriptive statistic

# Data coding
str(MC)
## 'data.frame':    847 obs. of  30 variables:
##  $ Travel.Mode          : int  6 3 3 3 3 4 4 3 3 3 ...
##  $ Bus.Stop.Condition   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Central.Area         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Purpose              : int  3 1 1 1 1 1 1 1 1 1 ...
##  $ Frequency            : int  3 4 4 4 4 4 4 4 4 4 ...
##  $ Departure.Time       : int  1 1 3 1 3 1 1 1 2 1 ...
##  $ Distance             : num  2 8 5 5 8 20 15 10 12 10 ...
##  $ Travel.Period        : num  10 15 15 10 15 30 20 25 30 25 ...
##  $ Sidewalk.Clearance   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Lane.Separate        : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Temporary.Stop.Number: int  0 1 1 1 0 0 0 0 1 1 ...
##  $ Mode.Choice.Reason   : int  4 2 4 2 2 5 5 2 2 2 ...
##  $ Weather              : int  1 3 1 1 3 3 3 3 1 3 ...
##  $ Weekend              : int  0 0 0 0 0 0 0 1 0 0 ...
##  $ Non.Bus.Reason       : int  1 1 2 4 2 2 4 2 1 4 ...
##  $ Cost                 : int  12 8 5 5 8 40 30 10 12 10 ...
##  $ Bus.Stop.Present     : int  1 2 1 1 2 2 2 1 1 1 ...
##  $ Gender               : int  0 0 1 1 0 1 1 0 0 1 ...
##  $ Age                  : int  5 3 3 3 4 4 5 4 3 4 ...
##  $ Occupation           : int  4 6 2 2 6 3 3 7 7 3 ...
##  $ Income               : int  2 3 4 3 3 4 4 2 3 3 ...
##  $ Number.of.Children   : int  2 1 0 0 1 2 2 0 1 0 ...
##  $ Motor.Certificate    : int  0 1 1 1 1 1 1 1 1 1 ...
##  $ Car.Certificate      : int  0 0 0 0 0 1 1 0 0 0 ...
##  $ Bicycle.Owning       : int  0 1 0 1 0 1 0 0 1 0 ...
##  $ Motor.Owning         : int  0 1 1 1 1 1 1 1 1 1 ...
##  $ Car.Owning           : int  0 0 0 0 0 1 1 0 0 0 ...
##  $ Number.of.Bicycles   : int  1 1 0 1 0 1 0 0 1 0 ...
##  $ Number.of.Motors     : int  2 3 3 3 2 2 2 2 3 3 ...
##  $ Number.of.Car        : int  1 0 0 0 0 1 1 0 0 0 ...
attach(MC)
MC = within(MC, {
  Travel.Mode = factor(Travel.Mode, labels = c("Walk", "Bicycle", "Motorbike", "Car", "Hichhiking", "App-based Motor/Car", "Bus"))
  Bus.Stop.Condition = factor(Bus.Stop.Condition,labels = c("No", "Yes"))
  Central.Area = factor(Central.Area, labels = c("No", "Yes"))
  Purpose = factor(Purpose, labels = c("Work/Study", "Picking Children", "Entertainment", "Others"))
  Frequency = factor(Frequency, labels = c("Once", "2 times", "3 times", "> 3 times"))
  Departure.Time = factor(Departure.Time, labels = c("Morning", "Afternoon", "Evening", "Others"))
  Sidewalk.Clearance = factor(Sidewalk.Clearance, labels = c("No", "Yes"))
  Lane.Separate = factor(Lane.Separate, labels = c("No", "Yes"))
  Temporary.Stop.Number = factor(Temporary.Stop.Number, labels = c("None", "1 stops", "2 stops", ">=3 stops"))
  Mode.Choice.Reason = factor(Mode.Choice.Reason, labels = c("Safety", "Comfortable", "Low price", "Accessibility", "Reliability", "others"))
  Weather = factor(Weather, labels = c("Sunny", "Rainny", "Cool"))
  Weekend = factor(Weekend, labels = c("No", "Yes"))
  Non.Bus.Reason = factor(Non.Bus.Reason, labels = c("No Route", "Uncomfortable", "Unsafety", "Long waiting time", "Unreliability", "others"))
  Bus.Stop.Present = factor(Bus.Stop.Present, labels = c("No", "Yes", "Don't know"))
  Gender = factor(Gender, labels = c("Female", "Male"))
  Age = factor(Age, labels = c("<= 15", "16-18", "19-24", "25-45", "46-60", ">60"))
  Occupation = factor(Occupation, labels = c("Pupils", "Students", "Officers", "Housewife", "Unemployed", "Workers", "Free labor", "Others"))
  Number.of.Children = factor(Number.of.Children, labels = c("None", "1 child", "2 children", ">= 3 children"))
  Motor.Certificate = factor(Motor.Certificate, labels = c("No", "Yes"))
  Car.Certificate = factor(Car.Certificate, labels = c("No", "Yes"))
  Bicycle.Owning = factor(Bicycle.Owning, labels = c("No", "Yes"))
  Motor.Owning = factor(Motor.Owning, labels = c("No", "Yes"))
  Car.Owning = factor(Car.Owning, labels = c("No", "Yes"))
  Number.of.Bicycles = factor(Number.of.Bicycles, labels = c("None", "1", "2", ">=3"))
  Number.of.Motors = factor(Number.of.Motors, labels = c("None", "1", "2", "3", ">3"))
  Number.of.Car = factor(Number.of.Car, labels = c("None", "1", ">=2"))
  Income = factor(Income, labels = c("<8 millions", "(8-15) millions", "(15-25) millions",  ">25 millions"))
  Distance = as.numeric(Distance)
  Travel.Period = as.numeric(Travel.Period)
  Cost = as.numeric(Cost)
    } )
str(MC)
## 'data.frame':    847 obs. of  30 variables:
##  $ Travel.Mode          : Factor w/ 7 levels "Walk","Bicycle",..: 6 3 3 3 3 4 4 3 3 3 ...
##  $ Bus.Stop.Condition   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Central.Area         : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Purpose              : Factor w/ 4 levels "Work/Study","Picking Children",..: 3 1 1 1 1 1 1 1 1 1 ...
##  $ Frequency            : Factor w/ 4 levels "Once","2 times",..: 3 4 4 4 4 4 4 4 4 4 ...
##  $ Departure.Time       : Factor w/ 4 levels "Morning","Afternoon",..: 1 1 3 1 3 1 1 1 2 1 ...
##  $ Distance             : num  2 8 5 5 8 20 15 10 12 10 ...
##  $ Travel.Period        : num  10 15 15 10 15 30 20 25 30 25 ...
##  $ Sidewalk.Clearance   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Lane.Separate        : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Temporary.Stop.Number: Factor w/ 4 levels "None","1 stops",..: 1 2 2 2 1 1 1 1 2 2 ...
##  $ Mode.Choice.Reason   : Factor w/ 6 levels "Safety","Comfortable",..: 4 2 4 2 2 5 5 2 2 2 ...
##  $ Weather              : Factor w/ 3 levels "Sunny","Rainny",..: 1 3 1 1 3 3 3 3 1 3 ...
##  $ Weekend              : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 2 1 1 ...
##  $ Non.Bus.Reason       : Factor w/ 6 levels "No Route","Uncomfortable",..: 1 1 2 4 2 2 4 2 1 4 ...
##  $ Cost                 : num  12 8 5 5 8 40 30 10 12 10 ...
##  $ Bus.Stop.Present     : Factor w/ 3 levels "No","Yes","Don't know": 2 3 2 2 3 3 3 2 2 2 ...
##  $ Gender               : Factor w/ 2 levels "Female","Male": 1 1 2 2 1 2 2 1 1 2 ...
##  $ Age                  : Factor w/ 6 levels "<= 15","16-18",..: 5 3 3 3 4 4 5 4 3 4 ...
##  $ Occupation           : Factor w/ 8 levels "Pupils","Students",..: 4 6 2 2 6 3 3 7 7 3 ...
##  $ Income               : Factor w/ 4 levels "<8 millions",..: 2 3 4 3 3 4 4 2 3 3 ...
##  $ Number.of.Children   : Factor w/ 4 levels "None","1 child",..: 3 2 1 1 2 3 3 1 2 1 ...
##  $ Motor.Certificate    : Factor w/ 2 levels "No","Yes": 1 2 2 2 2 2 2 2 2 2 ...
##  $ Car.Certificate      : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 2 1 1 1 ...
##  $ Bicycle.Owning       : Factor w/ 2 levels "No","Yes": 1 2 1 2 1 2 1 1 2 1 ...
##  $ Motor.Owning         : Factor w/ 2 levels "No","Yes": 1 2 2 2 2 2 2 2 2 2 ...
##  $ Car.Owning           : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 2 1 1 1 ...
##  $ Number.of.Bicycles   : Factor w/ 4 levels "None","1","2",..: 2 2 1 2 1 2 1 1 2 1 ...
##  $ Number.of.Motors     : Factor w/ 5 levels "None","1","2",..: 3 4 4 4 3 3 3 3 4 4 ...
##  $ Number.of.Car        : Factor w/ 3 levels "None","1",">=2": 2 1 1 1 1 2 2 1 1 1 ...
dim(MC)
## [1] 847  30
# Descritive Table
library(tableone)
require(tableone)
library(magrittr)
MCfactor = c("Travel.Mode", "Bus.Stop.Condition", "Central.Area", "Purpose", "Frequency", "Departure.Time", "Sidewalk.Clearance", "Lane.Separate", "Temporary.Stop.Number", "Mode.Choice.Reason", "Weather", "Weekend", "Non.Bus.Reason", "Bus.Stop.Present","Gender", "Age", "Occupation", "Income", "Number.of.Children", "Motor.Certificate", "Car.Certificate", "Bicycle.Owning", "Motor.Owning", "Car.Owning", "Number.of.Bicycles", "Number.of.Motors", "Number.of.Car")
MCfactor1 = c("Bus.Stop.Condition", "Central.Area", "Purpose", "Frequency")
MCfactor2 = c("Departure.Time", "Sidewalk.Clearance", "Lane.Separate", "Temporary.Stop.Number", "Mode.Choice.Reason", "Weather", "Weekend", "Non.Bus.Reason", "Bus.Stop.Present", "Gender", "Age", "Occupation", "Income", "Number.of.Children", "Motor.Certificate", "Car.Certificate", "Bicycle.Owning", "Motor.Owning", "Car.Owning", "Number.of.Bicycles", "Number.of.Motors", "Number.of.Car")
MCnumber = c("Distance", "Travel.Period", "Cost")
summary(MC)
##               Travel.Mode  Bus.Stop.Condition Central.Area
##  Walk               : 35   No :416            No :443     
##  Bicycle            : 44   Yes:431            Yes:404     
##  Motorbike          :518                                  
##  Car                : 82                                  
##  Hichhiking         : 35                                  
##  App-based Motor/Car: 23                                  
##  Bus                :110                                  
##              Purpose        Frequency     Departure.Time    Distance     
##  Work/Study      :571   Once     : 58   Morning  :514    Min.   : 0.015  
##  Picking Children: 94   2 times  : 68   Afternoon: 71    1st Qu.: 3.000  
##  Entertainment   :159   3 times  : 73   Evening  :143    Median : 5.000  
##  Others          : 23   > 3 times:648   Others   :119    Mean   : 6.492  
##                                                          3rd Qu.:10.000  
##                                                          Max.   :35.000  
##                                                                          
##  Travel.Period    Sidewalk.Clearance Lane.Separate Temporary.Stop.Number
##  Min.   :  0.00   No :113            No :178       None     :447        
##  1st Qu.: 10.00   Yes:734            Yes:669       1 stops  :281        
##  Median : 15.00                                    2 stops  : 60        
##  Mean   : 17.42                                    >=3 stops: 59        
##  3rd Qu.: 20.00                                                         
##  Max.   :180.00                                                         
##                                                                         
##      Mode.Choice.Reason   Weather    Weekend             Non.Bus.Reason
##  Safety       :123      Sunny :564   No :640   No Route         :164   
##  Comfortable  :380      Rainny: 19   Yes:207   Uncomfortable    :226   
##  Low price    : 76      Cool  :264             Unsafety         : 19   
##  Accessibility:180                             Long waiting time:213   
##  Reliability  : 61                             Unreliability    : 69   
##  others       : 27                             others           : 46   
##                                                NA's             :110   
##       Cost           Bus.Stop.Present    Gender       Age           Occupation 
##  Min.   :  0.000   No        : 84     Female:353   <= 15: 38   Students  :228  
##  1st Qu.:  3.000   Yes       :676     Male  :494   16-18: 77   Free labor:184  
##  Median :  5.000   Don't know: 87                  19-24:279   Officers  :136  
##  Mean   :  8.685                                   25-45:317   Pupils    : 93  
##  3rd Qu.: 10.000                                   46-60: 98   Workers   : 83  
##  Max.   :285.000                                   >60  : 38   Others    : 69  
##                                                                (Other)   : 54  
##               Income        Number.of.Children Motor.Certificate
##  <8 millions     :213   None         :373      No :131          
##  (8-15) millions :336   1 child      :323      Yes:716          
##  (15-25) millions:209   2 children   :126                       
##  >25 millions    : 89   >= 3 children: 25                       
##                                                                 
##                                                                 
##                                                                 
##  Car.Certificate Bicycle.Owning Motor.Owning Car.Owning Number.of.Bicycles
##  No :692         No :499        No :182      No :728    None:368          
##  Yes:155         Yes:348        Yes:665      Yes:119    1   :369          
##                                                         2   : 99          
##                                                         >=3 : 11          
##                                                                           
##                                                                           
##                                                                           
##  Number.of.Motors Number.of.Car
##  None: 37         None:658     
##  1   :133         1   :170     
##  2   :423         >=2 : 19     
##  3   :201                      
##  >3  : 53                      
##                                
## 

3. Describe Data by graph

library(magrittr)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2     v purrr   0.3.4
## v tibble  3.0.4     v dplyr   1.0.2
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x tidyr::extract()   masks magrittr::extract()
## x dplyr::filter()    masks stats::filter()
## x dplyr::lag()       masks stats::lag()
## x purrr::set_names() masks magrittr::set_names()
library(ggplot2)
library(car)
## Warning: package 'car' was built under R version 4.0.4
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
## Travel Mode ~ Bus Stop Condition
MC %>%
  group_by(Travel.Mode, Bus.Stop.Condition) %>%
  count() %>% 
  ggplot(aes(Bus.Stop.Condition, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Bus Stop Condition") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Bus Stop Condition")

MC %>%
  group_by(Bus.Stop.Condition, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Bus.Stop.Condition)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Bus Stop Condition") +
  ggtitle("Proportion of Travel Mode Choice ~ Bus Stop Condition")

## Travel Mode ~ Central AreaMC %>%
MC %>%
  group_by(Travel.Mode, Central.Area) %>%
  count() %>% 
  ggplot(aes(Central.Area, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Central Area") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Central Area")

MC %>%
  group_by(Central.Area, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Central.Area)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Central Area") +
  ggtitle("Proportion of Travel Mode Choice ~ Central Area")

## Travel Mode Choice ~ Purpose of Travelling
MC %>%
  group_by(Travel.Mode, Purpose) %>%
  count() %>% 
  ggplot(aes(Purpose, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Purpose of travelling") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Purpose of Travelling")

MC %>%
  group_by(Purpose, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Purpose)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Purpose of travelling") +
  ggtitle("Proportion of Travel Mode Choice ~ Purpose of Travelling")

MC %>%
  group_by(Weekend, Purpose) %>%
  count() %>% 
  ggplot(aes(Purpose, n, fill = Weekend)) +
  geom_col(position = "fill") +
  xlab("Purpose of travelling") +
  ylab("Weekend") +
  ggtitle("Proportion of Weekend ~ Purpose of Travelling")

## Travel Mode Choice ~ Frequency of Travelling
MC %>%
  group_by(Travel.Mode, Frequency) %>%
  count() %>% 
  ggplot(aes(Frequency, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Frequency of Travelling") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Frequency of Travelling")

MC %>%
  group_by(Frequency, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Frequency)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Frequency of Travelling") +
  ggtitle("Proportion of Travel Mode Choice ~ Frequency of Travelling")

## Travel Mode Choice ~ Departure Time of Travel
MC %>%
  group_by(Travel.Mode, Departure.Time) %>%
  count() %>% 
  ggplot(aes(Departure.Time, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Departure time of travel") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Departure Time of Travel")

MC %>%
  group_by(Departure.Time, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Departure.Time)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Departure time of travel") +
  ggtitle("Proportion of Travel Mode Choice ~ Departure Time of Travel")

## Travel Mode Choice ~ Sidewalk Clearance of Roads
MC %>%
  group_by(Travel.Mode, Sidewalk.Clearance) %>%
  count() %>% 
  ggplot(aes(Sidewalk.Clearance, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Sidewalk Clearance of Roads") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Sidewalk Clearance of Roads")

MC %>%
  group_by(Sidewalk.Clearance, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Sidewalk.Clearance)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Sidewalk Clearance of Roads") +
  ggtitle("Proportion of Travel Mode Choice ~ Sidewalk Clearance of Roads")

## Travel Mode Choice ~ Lane Separate of Roads
MC %>%
  group_by(Travel.Mode, Lane.Separate) %>%
  count() %>% 
  ggplot(aes(Lane.Separate, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Lane Separate") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Lane Separate of Roads")

MC %>%
  group_by(Lane.Separate, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Lane.Separate)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Lane Separate") +
  ggtitle("Proportion of Travel Mode Choice ~ Lane Separate of Roads")

## Travel Mode Choice ~ The number of temporary stops
MC %>%
  group_by(Travel.Mode, Temporary.Stop.Number) %>%
  count() %>% 
  ggplot(aes(Temporary.Stop.Number, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("The number of temporary stops") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ The number of temporary stops") 

MC %>%
  group_by(Temporary.Stop.Number, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Temporary.Stop.Number)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("The number of temporary stops") +
  ggtitle("Proportion of Travel Mode Choice ~ The number of temporary stops")

## Reason of mode choice ~ Travel Mode Choice
MC %>%
  group_by(Travel.Mode, Mode.Choice.Reason) %>%
  count() %>% 
  ggplot(aes(Mode.Choice.Reason, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("The reason of mode choice") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Mode Choice Reason")

MC %>%
  group_by(Mode.Choice.Reason, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Mode.Choice.Reason)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("The reason of mode choice") +
  ggtitle("Proportion of Reason of mode choice ~ Travel Mode Choice")

## Travel Mode Choice ~ Weather condition
MC %>%
  group_by(Travel.Mode, Weather) %>%
  count() %>% 
  ggplot(aes(Weather, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Weather condition") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Weather condition")

MC %>%
  group_by(Weather, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Weather)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Weather condition") +
  ggtitle("Proportion of Travel Mode Choice ~ Weather condition")

## Travel Mode Choice ~ Weekend
MC %>%
  group_by(Travel.Mode, Weekend) %>%
  count() %>% 
  ggplot(aes(Weekend, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Weekend") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Weekend")

MC %>%
  group_by(Weekend, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Weekend)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Weekend") +
  ggtitle("Proportion of Travel Mode Choice ~ Weekend")

## Travel Mode Choice ~ The presence of bus stop
MC %>%
  group_by(Travel.Mode, Bus.Stop.Present) %>%
  count() %>% 
  ggplot(aes(Bus.Stop.Present, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("The presence of bus stop") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ The presence of bus stop")

MC %>%
  group_by(Bus.Stop.Present, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Bus.Stop.Present)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("The presence of bus stop") +
  ggtitle("Proportion of Travel Mode Choice ~ The presence of bus stop")

## Travel Mode Choice ~ Gender
MC %>%
  group_by(Travel.Mode, Gender) %>%
  count() %>% 
  ggplot(aes(Gender, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Gender") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Gender") 

MC %>%
  group_by(Gender, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Gender)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Gender") +
  ggtitle("Proportion of Travel Mode Choice ~ Gender")

## Travel Mode Choice ~ Age
MC %>%
  group_by(Travel.Mode, Age) %>%
  count() %>% 
  ggplot(aes(Age, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Age") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Age")

MC %>%
  group_by(Age, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Age)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Age") +
  ggtitle("Proportion of Travel Mode Choice ~ Age")

## Travel Mode Choice ~ Occupation
MC %>%
  group_by(Travel.Mode, Occupation) %>%
  count() %>% 
  ggplot(aes(Occupation, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Occupation") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Occupation")

MC %>%
  group_by(Occupation, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Occupation)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Occupation") +
  ggtitle("Proportion of Travel Mode Choice ~ Occupation")

## Travel Mode Choice ~ Income
MC %>%
  group_by(Travel.Mode, Income) %>%
  count() %>% 
  ggplot(aes(Income, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Income") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Income")

MC %>%
  group_by(Income, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Income)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Income") +
  ggtitle("Proportion of Travel Mode Choice ~ Income")

## Travel Mode Choice ~ Number of Children in family
MC %>%
  group_by(Travel.Mode, Number.of.Children) %>%
  count() %>% 
  ggplot(aes(Number.of.Children, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Number of Children") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Number of Children in family")

MC %>%
  group_by(Number.of.Children, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Number.of.Children)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Number of Children") +
  ggtitle("Proportion of Travel Mode Choice ~ Number of Children in family")

## Travel Mode Choice ~ Motor certificate
MC %>%
  group_by(Travel.Mode, Motor.Certificate) %>%
  count() %>% 
  ggplot(aes(Motor.Certificate, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Motor Certificate") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Motor certificate")

MC %>%
  group_by(Motor.Certificate, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Motor.Certificate)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Motor Certificate") +
  ggtitle("Proportion of Travel Mode Choice ~ Motor certificate")

## Travel Mode Choice ~ Car certificate
MC %>%
  group_by(Travel.Mode, Car.Certificate) %>%
  count() %>% 
  ggplot(aes(Car.Certificate, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Car Certificate") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Car certificate")

MC %>%
  group_by(Car.Certificate, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Car.Certificate)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Car Certificate") +
  ggtitle("Proportion of Travel Mode Choice ~ Car certificate")

## Travel Mode Choice ~ Bicycle Owning
MC %>%
  group_by(Travel.Mode, Bicycle.Owning) %>%
  count() %>% 
  ggplot(aes(Bicycle.Owning, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Bicycle Owning") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Bicycle Owning")

MC %>%
  group_by(Bicycle.Owning, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Bicycle.Owning)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Bicycle Owning") +
  ggtitle("Proportion of Travel Mode Choice ~ Bicycle Owning")

## Travel Mode Choice ~ Motor Owning
MC %>%
  group_by(Travel.Mode, Motor.Owning) %>%
  count() %>% 
  ggplot(aes(Motor.Owning, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Motor Owning") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Motor Owning")

MC %>%
  group_by(Motor.Owning, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Motor.Owning)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Motor Owning") +
  ggtitle("Proportion of Travel Mode Choice ~ Motor Owning")

## Travel Mode Choice ~ Car Owning
MC %>%
  group_by(Travel.Mode, Car.Owning) %>%
  count() %>% 
  ggplot(aes(Car.Owning, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Car Owning") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Car Owning")

MC %>%
  group_by(Car.Owning, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Car.Owning)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Car Owning") +
  ggtitle("Proportion of Travel Mode Choice ~ Car Owning")

## Travel Mode Choice ~ Number of Bicycle
MC %>%
  group_by(Travel.Mode, Number.of.Bicycles) %>%
  count() %>% 
  ggplot(aes(Number.of.Bicycles, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Number of Bicycle") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Number of Bicycle")

MC %>%
  group_by(Number.of.Bicycles, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Number.of.Bicycles)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Number of Bicycle") +
  ggtitle("Proportion of Travel Mode Choice ~ Number of Bicycle")

## Travel Mode Choice ~ Number of Motors
MC %>%
  group_by(Travel.Mode, Number.of.Motors) %>%
  count() %>% 
  ggplot(aes(Number.of.Motors, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Number of Motors") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Number of Motors")

MC %>%
  group_by(Number.of.Motors, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Number.of.Motors)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Number of Motors") +
  ggtitle("Proportion of Travel Mode Choice ~ Number of Motors")

## Travel Mode Choice ~ Number of Cars
MC %>%
  group_by(Travel.Mode, Number.of.Car) %>%
  count() %>% 
  ggplot(aes(Number.of.Car, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Number of Cars") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Number of Cars")

MC %>%
  group_by(Number.of.Car, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Number.of.Car)) +
  geom_col(position = "fill") +
  xlab("Travel Mode Choice") +
  ylab("Number of Cars") +
  ggtitle("Proportion of Travel Mode Choice ~ Number of Cars")

## Travel Mode Choice ~ Countinuous Variables (Distance, Travel Period and Cost)
### Travel Mode Choice ~ Distance
ggplot(MC, aes(x=Distance, fill = Travel.Mode, color = Travel.Mode)) +
  geom_histogram (position = "dodge") +
  xlab("Distance") +
  ylab("Count") +
  ggtitle("Histogram of Distance")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

MC %>%
  group_by(Travel.Mode, Distance) %>%
  count() %>% 
  ggplot(aes(Distance, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Distance") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Distance")

### Travel Mode Choice ~ Travel Period
ggplot(MC, aes(x=Travel.Period, fill = Travel.Mode, color = Travel.Mode)) +
  geom_histogram (position = "dodge") +
  xlab("Travel Period") +
  ylab("Count") +
  ggtitle("Histogram of Travel Period")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

MC %>%
  group_by(Travel.Mode, Travel.Period) %>%
  count() %>% 
  ggplot(aes(Travel.Period, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Travel Period") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Travel Period")

### Travel Mode Choice ~ Cost
ggplot(MC, aes(x=Cost, fill = Travel.Mode, color = Travel.Mode)) +
  geom_histogram (position = "dodge") +
  xlab("Cost") +
  ylab("Count") +
  ggtitle("Histogram of Cost")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

MC %>%
  group_by(Travel.Mode, Cost) %>%
  count() %>% 
  ggplot(aes(Cost, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Cost") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice ~ Cost")

## Correlation in continuous variables
library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:car':
## 
##     logit
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
CV = data.frame(MC$Travel.Mode, MC$Distance, MC$Travel.Period, MC$Cost)
pairs.panels(CV)

## Statistic Analysis by boxplot (continuous variales)
str(MC)
## 'data.frame':    847 obs. of  30 variables:
##  $ Travel.Mode          : Factor w/ 7 levels "Walk","Bicycle",..: 6 3 3 3 3 4 4 3 3 3 ...
##  $ Bus.Stop.Condition   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Central.Area         : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Purpose              : Factor w/ 4 levels "Work/Study","Picking Children",..: 3 1 1 1 1 1 1 1 1 1 ...
##  $ Frequency            : Factor w/ 4 levels "Once","2 times",..: 3 4 4 4 4 4 4 4 4 4 ...
##  $ Departure.Time       : Factor w/ 4 levels "Morning","Afternoon",..: 1 1 3 1 3 1 1 1 2 1 ...
##  $ Distance             : num  2 8 5 5 8 20 15 10 12 10 ...
##  $ Travel.Period        : num  10 15 15 10 15 30 20 25 30 25 ...
##  $ Sidewalk.Clearance   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Lane.Separate        : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Temporary.Stop.Number: Factor w/ 4 levels "None","1 stops",..: 1 2 2 2 1 1 1 1 2 2 ...
##  $ Mode.Choice.Reason   : Factor w/ 6 levels "Safety","Comfortable",..: 4 2 4 2 2 5 5 2 2 2 ...
##  $ Weather              : Factor w/ 3 levels "Sunny","Rainny",..: 1 3 1 1 3 3 3 3 1 3 ...
##  $ Weekend              : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 2 1 1 ...
##  $ Non.Bus.Reason       : Factor w/ 6 levels "No Route","Uncomfortable",..: 1 1 2 4 2 2 4 2 1 4 ...
##  $ Cost                 : num  12 8 5 5 8 40 30 10 12 10 ...
##  $ Bus.Stop.Present     : Factor w/ 3 levels "No","Yes","Don't know": 2 3 2 2 3 3 3 2 2 2 ...
##  $ Gender               : Factor w/ 2 levels "Female","Male": 1 1 2 2 1 2 2 1 1 2 ...
##  $ Age                  : Factor w/ 6 levels "<= 15","16-18",..: 5 3 3 3 4 4 5 4 3 4 ...
##  $ Occupation           : Factor w/ 8 levels "Pupils","Students",..: 4 6 2 2 6 3 3 7 7 3 ...
##  $ Income               : Factor w/ 4 levels "<8 millions",..: 2 3 4 3 3 4 4 2 3 3 ...
##  $ Number.of.Children   : Factor w/ 4 levels "None","1 child",..: 3 2 1 1 2 3 3 1 2 1 ...
##  $ Motor.Certificate    : Factor w/ 2 levels "No","Yes": 1 2 2 2 2 2 2 2 2 2 ...
##  $ Car.Certificate      : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 2 1 1 1 ...
##  $ Bicycle.Owning       : Factor w/ 2 levels "No","Yes": 1 2 1 2 1 2 1 1 2 1 ...
##  $ Motor.Owning         : Factor w/ 2 levels "No","Yes": 1 2 2 2 2 2 2 2 2 2 ...
##  $ Car.Owning           : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 2 1 1 1 ...
##  $ Number.of.Bicycles   : Factor w/ 4 levels "None","1","2",..: 2 2 1 2 1 2 1 1 2 1 ...
##  $ Number.of.Motors     : Factor w/ 5 levels "None","1","2",..: 3 4 4 4 3 3 3 3 4 4 ...
##  $ Number.of.Car        : Factor w/ 3 levels "None","1",">=2": 2 1 1 1 1 2 2 1 1 1 ...
### Boxplot of Distance, Travel Period and Cost ~ Travel Mode Choice
MC %>%
  group_by(Distance, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(x = Travel.Mode, y = Distance, fill = Travel.Mode)) +
  geom_boxplot() +
  xlab("Travel Mode Choice") +
  ylab("Distance") +
  ggtitle("Boxplot of Travel Mode Choice ~ Distance")

MC %>%
  group_by(Cost, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(x = Travel.Mode, y = Cost, fill = Travel.Mode)) +
  geom_boxplot() +
  xlab("Travel Mode Choice") +
  ylab("Cost") +
  ggtitle("Boxplot of Travel Mode Choice ~ Cost")

MC %>%
  group_by(Travel.Period, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(x = Travel.Mode, y = Travel.Period, fill = Travel.Mode)) +
  geom_boxplot() +
  xlab("Travel Mode Choice") +
  ylab("Travel Period") +
  ggtitle("Boxplot of Travel Mode Choice ~ Travel Period")

### Boxplot of Distance, Travel Period and Cost ~ Gender
MC %>%
  group_by(Distance, Gender) %>%
  count() %>% 
  ggplot(aes(x = Gender, y = Distance, fill = Gender)) +
  geom_boxplot() +
  xlab("Gender") +
  ylab("Distance") +
  ggtitle("Boxplot of Distance ~ Gender")

MC %>%
  group_by(Cost, Gender) %>%
  count() %>% 
  ggplot(aes(x = Gender, y = Cost, fill = Gender)) +
  geom_boxplot() +
  xlab("Gender") +
  ylab("Cost") +
  ggtitle("Boxplot of Cost ~ Gender")

MC %>%
  group_by(Travel.Period, Gender) %>%
  count() %>% 
  ggplot(aes(x = Gender, y = Travel.Period, fill = Gender)) +
  geom_boxplot() +
  xlab("Gender") +
  ylab("Travel Period") +
  ggtitle("Boxplot of Travel Period ~ Gender")

### Boxplot of Distance, Travel Period and Cost ~ Occupation
MC %>%
  group_by(Distance, Occupation) %>%
  count() %>% 
  ggplot(aes(x = Occupation, y = Distance, fill = Occupation)) +
  geom_boxplot() +
  xlab("Occupation") +
  ylab("Distance") +
  ggtitle("Boxplot of Distance ~ Occupation")

MC %>%
  group_by(Cost, Occupation) %>%
  count() %>% 
  ggplot(aes(x = Occupation, y = Cost, fill = Occupation)) +
  geom_boxplot() +
  xlab("Occupation") +
  ylab("Cost") +
  ggtitle("Boxplot of Cost ~ Occupation")

MC %>%
  group_by(Travel.Period, Occupation) %>%
  count() %>% 
  ggplot(aes(x = Occupation, y = Travel.Period, fill = Occupation)) +
  geom_boxplot() +
  xlab("Occupation") +
  ylab("Travel Period") +
  ggtitle("Boxplot of Travel Period ~ Occupation")

## Work with a part of Data MC - Non bus user (NBU)
MC$Travel.Mode = as.numeric(MC$Travel.Mode)
str(MC)
## 'data.frame':    847 obs. of  30 variables:
##  $ Travel.Mode          : num  6 3 3 3 3 4 4 3 3 3 ...
##  $ Bus.Stop.Condition   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Central.Area         : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Purpose              : Factor w/ 4 levels "Work/Study","Picking Children",..: 3 1 1 1 1 1 1 1 1 1 ...
##  $ Frequency            : Factor w/ 4 levels "Once","2 times",..: 3 4 4 4 4 4 4 4 4 4 ...
##  $ Departure.Time       : Factor w/ 4 levels "Morning","Afternoon",..: 1 1 3 1 3 1 1 1 2 1 ...
##  $ Distance             : num  2 8 5 5 8 20 15 10 12 10 ...
##  $ Travel.Period        : num  10 15 15 10 15 30 20 25 30 25 ...
##  $ Sidewalk.Clearance   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Lane.Separate        : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Temporary.Stop.Number: Factor w/ 4 levels "None","1 stops",..: 1 2 2 2 1 1 1 1 2 2 ...
##  $ Mode.Choice.Reason   : Factor w/ 6 levels "Safety","Comfortable",..: 4 2 4 2 2 5 5 2 2 2 ...
##  $ Weather              : Factor w/ 3 levels "Sunny","Rainny",..: 1 3 1 1 3 3 3 3 1 3 ...
##  $ Weekend              : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 2 1 1 ...
##  $ Non.Bus.Reason       : Factor w/ 6 levels "No Route","Uncomfortable",..: 1 1 2 4 2 2 4 2 1 4 ...
##  $ Cost                 : num  12 8 5 5 8 40 30 10 12 10 ...
##  $ Bus.Stop.Present     : Factor w/ 3 levels "No","Yes","Don't know": 2 3 2 2 3 3 3 2 2 2 ...
##  $ Gender               : Factor w/ 2 levels "Female","Male": 1 1 2 2 1 2 2 1 1 2 ...
##  $ Age                  : Factor w/ 6 levels "<= 15","16-18",..: 5 3 3 3 4 4 5 4 3 4 ...
##  $ Occupation           : Factor w/ 8 levels "Pupils","Students",..: 4 6 2 2 6 3 3 7 7 3 ...
##  $ Income               : Factor w/ 4 levels "<8 millions",..: 2 3 4 3 3 4 4 2 3 3 ...
##  $ Number.of.Children   : Factor w/ 4 levels "None","1 child",..: 3 2 1 1 2 3 3 1 2 1 ...
##  $ Motor.Certificate    : Factor w/ 2 levels "No","Yes": 1 2 2 2 2 2 2 2 2 2 ...
##  $ Car.Certificate      : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 2 1 1 1 ...
##  $ Bicycle.Owning       : Factor w/ 2 levels "No","Yes": 1 2 1 2 1 2 1 1 2 1 ...
##  $ Motor.Owning         : Factor w/ 2 levels "No","Yes": 1 2 2 2 2 2 2 2 2 2 ...
##  $ Car.Owning           : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 2 1 1 1 ...
##  $ Number.of.Bicycles   : Factor w/ 4 levels "None","1","2",..: 2 2 1 2 1 2 1 1 2 1 ...
##  $ Number.of.Motors     : Factor w/ 5 levels "None","1","2",..: 3 4 4 4 3 3 3 3 4 4 ...
##  $ Number.of.Car        : Factor w/ 3 levels "None","1",">=2": 2 1 1 1 1 2 2 1 1 1 ...
NBU = subset(MC, Travel.Mode <= 6)
NBU$Travel.Mode = as.factor(NBU$Travel.Mode)
str(NBU)
## 'data.frame':    737 obs. of  30 variables:
##  $ Travel.Mode          : Factor w/ 6 levels "1","2","3","4",..: 6 3 3 3 3 4 4 3 3 3 ...
##  $ Bus.Stop.Condition   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Central.Area         : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Purpose              : Factor w/ 4 levels "Work/Study","Picking Children",..: 3 1 1 1 1 1 1 1 1 1 ...
##  $ Frequency            : Factor w/ 4 levels "Once","2 times",..: 3 4 4 4 4 4 4 4 4 4 ...
##  $ Departure.Time       : Factor w/ 4 levels "Morning","Afternoon",..: 1 1 3 1 3 1 1 1 2 1 ...
##  $ Distance             : num  2 8 5 5 8 20 15 10 12 10 ...
##  $ Travel.Period        : num  10 15 15 10 15 30 20 25 30 25 ...
##  $ Sidewalk.Clearance   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Lane.Separate        : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Temporary.Stop.Number: Factor w/ 4 levels "None","1 stops",..: 1 2 2 2 1 1 1 1 2 2 ...
##  $ Mode.Choice.Reason   : Factor w/ 6 levels "Safety","Comfortable",..: 4 2 4 2 2 5 5 2 2 2 ...
##  $ Weather              : Factor w/ 3 levels "Sunny","Rainny",..: 1 3 1 1 3 3 3 3 1 3 ...
##  $ Weekend              : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 2 1 1 ...
##  $ Non.Bus.Reason       : Factor w/ 6 levels "No Route","Uncomfortable",..: 1 1 2 4 2 2 4 2 1 4 ...
##  $ Cost                 : num  12 8 5 5 8 40 30 10 12 10 ...
##  $ Bus.Stop.Present     : Factor w/ 3 levels "No","Yes","Don't know": 2 3 2 2 3 3 3 2 2 2 ...
##  $ Gender               : Factor w/ 2 levels "Female","Male": 1 1 2 2 1 2 2 1 1 2 ...
##  $ Age                  : Factor w/ 6 levels "<= 15","16-18",..: 5 3 3 3 4 4 5 4 3 4 ...
##  $ Occupation           : Factor w/ 8 levels "Pupils","Students",..: 4 6 2 2 6 3 3 7 7 3 ...
##  $ Income               : Factor w/ 4 levels "<8 millions",..: 2 3 4 3 3 4 4 2 3 3 ...
##  $ Number.of.Children   : Factor w/ 4 levels "None","1 child",..: 3 2 1 1 2 3 3 1 2 1 ...
##  $ Motor.Certificate    : Factor w/ 2 levels "No","Yes": 1 2 2 2 2 2 2 2 2 2 ...
##  $ Car.Certificate      : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 2 1 1 1 ...
##  $ Bicycle.Owning       : Factor w/ 2 levels "No","Yes": 1 2 1 2 1 2 1 1 2 1 ...
##  $ Motor.Owning         : Factor w/ 2 levels "No","Yes": 1 2 2 2 2 2 2 2 2 2 ...
##  $ Car.Owning           : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 2 1 1 1 ...
##  $ Number.of.Bicycles   : Factor w/ 4 levels "None","1","2",..: 2 2 1 2 1 2 1 1 2 1 ...
##  $ Number.of.Motors     : Factor w/ 5 levels "None","1","2",..: 3 4 4 4 3 3 3 3 4 4 ...
##  $ Number.of.Car        : Factor w/ 3 levels "None","1",">=2": 2 1 1 1 1 2 2 1 1 1 ...
attach(NBU)
## The following objects are masked from MC:
## 
##     Age, Bicycle.Owning, Bus.Stop.Condition, Bus.Stop.Present,
##     Car.Certificate, Car.Owning, Central.Area, Cost, Departure.Time,
##     Distance, Frequency, Gender, Income, Lane.Separate,
##     Mode.Choice.Reason, Motor.Certificate, Motor.Owning,
##     Non.Bus.Reason, Number.of.Bicycles, Number.of.Car,
##     Number.of.Children, Number.of.Motors, Occupation, Purpose,
##     Sidewalk.Clearance, Temporary.Stop.Number, Travel.Mode,
##     Travel.Period, Weather, Weekend
NBU %>%
  group_by(Travel.Mode, Non.Bus.Reason) %>%
  count() %>% 
  ggplot(aes(Non.Bus.Reason, n, fill = Travel.Mode)) +
  geom_col(position = "fill") +
  xlab("Non Bus Reason") +
  ylab("Travel Mode Choice") +
  ggtitle("Proportion of Travel Mode Choice of Non bus user ~ Reasons not choosing bus for travelling") 

NBU %>%
  group_by(Non.Bus.Reason, Travel.Mode) %>%
  count() %>% 
  ggplot(aes(Travel.Mode, n, fill = Non.Bus.Reason)) +
  geom_col(position = "fill") +
  xlab("Travel mode of non bus users") +
  ylab("Reasons not choosing bus for travelling") +
  ggtitle("Proportion of non bus reasons ~ Travel mode") 

4. Descriptive statistical analysis

summary(MC)
##   Travel.Mode    Bus.Stop.Condition Central.Area             Purpose   
##  Min.   :1.000   No :416            No :443      Work/Study      :571  
##  1st Qu.:3.000   Yes:431            Yes:404      Picking Children: 94  
##  Median :3.000                                   Entertainment   :159  
##  Mean   :3.646                                   Others          : 23  
##  3rd Qu.:4.000                                                         
##  Max.   :7.000                                                         
##                                                                        
##      Frequency     Departure.Time    Distance      Travel.Period   
##  Once     : 58   Morning  :514    Min.   : 0.015   Min.   :  0.00  
##  2 times  : 68   Afternoon: 71    1st Qu.: 3.000   1st Qu.: 10.00  
##  3 times  : 73   Evening  :143    Median : 5.000   Median : 15.00  
##  > 3 times:648   Others   :119    Mean   : 6.492   Mean   : 17.42  
##                                   3rd Qu.:10.000   3rd Qu.: 20.00  
##                                   Max.   :35.000   Max.   :180.00  
##                                                                    
##  Sidewalk.Clearance Lane.Separate Temporary.Stop.Number     Mode.Choice.Reason
##  No :113            No :178       None     :447         Safety       :123     
##  Yes:734            Yes:669       1 stops  :281         Comfortable  :380     
##                                   2 stops  : 60         Low price    : 76     
##                                   >=3 stops: 59         Accessibility:180     
##                                                         Reliability  : 61     
##                                                         others       : 27     
##                                                                               
##    Weather    Weekend             Non.Bus.Reason      Cost        
##  Sunny :564   No :640   No Route         :164    Min.   :  0.000  
##  Rainny: 19   Yes:207   Uncomfortable    :226    1st Qu.:  3.000  
##  Cool  :264             Unsafety         : 19    Median :  5.000  
##                         Long waiting time:213    Mean   :  8.685  
##                         Unreliability    : 69    3rd Qu.: 10.000  
##                         others           : 46    Max.   :285.000  
##                         NA's             :110                     
##    Bus.Stop.Present    Gender       Age           Occupation 
##  No        : 84     Female:353   <= 15: 38   Students  :228  
##  Yes       :676     Male  :494   16-18: 77   Free labor:184  
##  Don't know: 87                  19-24:279   Officers  :136  
##                                  25-45:317   Pupils    : 93  
##                                  46-60: 98   Workers   : 83  
##                                  >60  : 38   Others    : 69  
##                                              (Other)   : 54  
##               Income        Number.of.Children Motor.Certificate
##  <8 millions     :213   None         :373      No :131          
##  (8-15) millions :336   1 child      :323      Yes:716          
##  (15-25) millions:209   2 children   :126                       
##  >25 millions    : 89   >= 3 children: 25                       
##                                                                 
##                                                                 
##                                                                 
##  Car.Certificate Bicycle.Owning Motor.Owning Car.Owning Number.of.Bicycles
##  No :692         No :499        No :182      No :728    None:368          
##  Yes:155         Yes:348        Yes:665      Yes:119    1   :369          
##                                                         2   : 99          
##                                                         >=3 : 11          
##                                                                           
##                                                                           
##                                                                           
##  Number.of.Motors Number.of.Car
##  None: 37         None:658     
##  1   :133         1   :170     
##  2   :423         >=2 : 19     
##  3   :201                      
##  >3  : 53                      
##                                
## 
library(pastecs)
## Warning: package 'pastecs' was built under R version 4.0.4
## 
## Attaching package: 'pastecs'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## The following object is masked from 'package:tidyr':
## 
##     extract
## The following object is masked from 'package:magrittr':
## 
##     extract
# With continuous variables
stat.desc(MC) 
##               Travel.Mode Bus.Stop.Condition Central.Area Purpose Frequency
## nbr.val      8.470000e+02                 NA           NA      NA        NA
## nbr.null     0.000000e+00                 NA           NA      NA        NA
## nbr.na       0.000000e+00                 NA           NA      NA        NA
## min          1.000000e+00                 NA           NA      NA        NA
## max          7.000000e+00                 NA           NA      NA        NA
## range        6.000000e+00                 NA           NA      NA        NA
## sum          3.088000e+03                 NA           NA      NA        NA
## median       3.000000e+00                 NA           NA      NA        NA
## mean         3.645809e+00                 NA           NA      NA        NA
## SE.mean      5.309103e-02                 NA           NA      NA        NA
## CI.mean.0.95 1.042056e-01                 NA           NA      NA        NA
## var          2.387403e+00                 NA           NA      NA        NA
## std.dev      1.545122e+00                 NA           NA      NA        NA
## coef.var     4.238078e-01                 NA           NA      NA        NA
##              Departure.Time     Distance Travel.Period Sidewalk.Clearance
## nbr.val                  NA  847.0000000  8.470000e+02                 NA
## nbr.null                 NA    0.0000000  2.000000e+00                 NA
## nbr.na                   NA    0.0000000  0.000000e+00                 NA
## min                      NA    0.0150000  0.000000e+00                 NA
## max                      NA   35.0000000  1.800000e+02                 NA
## range                    NA   34.9850000  1.800000e+02                 NA
## sum                      NA 5498.7550000  1.475400e+04                 NA
## median                   NA    5.0000000  1.500000e+01                 NA
## mean                     NA    6.4920366  1.741913e+01                 NA
## SE.mean                  NA    0.1871930  5.225879e-01                 NA
## CI.mean.0.95             NA    0.3674173  1.025721e+00                 NA
## var                      NA   29.6799259  2.313141e+02                 NA
## std.dev                  NA    5.4479286  1.520901e+01                 NA
## coef.var                 NA    0.8391710  8.731215e-01                 NA
##              Lane.Separate Temporary.Stop.Number Mode.Choice.Reason Weather
## nbr.val                 NA                    NA                 NA      NA
## nbr.null                NA                    NA                 NA      NA
## nbr.na                  NA                    NA                 NA      NA
## min                     NA                    NA                 NA      NA
## max                     NA                    NA                 NA      NA
## range                   NA                    NA                 NA      NA
## sum                     NA                    NA                 NA      NA
## median                  NA                    NA                 NA      NA
## mean                    NA                    NA                 NA      NA
## SE.mean                 NA                    NA                 NA      NA
## CI.mean.0.95            NA                    NA                 NA      NA
## var                     NA                    NA                 NA      NA
## std.dev                 NA                    NA                 NA      NA
## coef.var                NA                    NA                 NA      NA
##              Weekend Non.Bus.Reason        Cost Bus.Stop.Present Gender Age
## nbr.val           NA             NA  847.000000               NA     NA  NA
## nbr.null          NA             NA   83.000000               NA     NA  NA
## nbr.na            NA             NA    0.000000               NA     NA  NA
## min               NA             NA    0.000000               NA     NA  NA
## max               NA             NA  285.000000               NA     NA  NA
## range             NA             NA  285.000000               NA     NA  NA
## sum               NA             NA 7356.000000               NA     NA  NA
## median            NA             NA    5.000000               NA     NA  NA
## mean              NA             NA    8.684770               NA     NA  NA
## SE.mean           NA             NA    0.559535               NA     NA  NA
## CI.mean.0.95      NA             NA    1.098240               NA     NA  NA
## var               NA             NA  265.178290               NA     NA  NA
## std.dev           NA             NA   16.284296               NA     NA  NA
## coef.var          NA             NA    1.875041               NA     NA  NA
##              Occupation Income Number.of.Children Motor.Certificate
## nbr.val              NA     NA                 NA                NA
## nbr.null             NA     NA                 NA                NA
## nbr.na               NA     NA                 NA                NA
## min                  NA     NA                 NA                NA
## max                  NA     NA                 NA                NA
## range                NA     NA                 NA                NA
## sum                  NA     NA                 NA                NA
## median               NA     NA                 NA                NA
## mean                 NA     NA                 NA                NA
## SE.mean              NA     NA                 NA                NA
## CI.mean.0.95         NA     NA                 NA                NA
## var                  NA     NA                 NA                NA
## std.dev              NA     NA                 NA                NA
## coef.var             NA     NA                 NA                NA
##              Car.Certificate Bicycle.Owning Motor.Owning Car.Owning
## nbr.val                   NA             NA           NA         NA
## nbr.null                  NA             NA           NA         NA
## nbr.na                    NA             NA           NA         NA
## min                       NA             NA           NA         NA
## max                       NA             NA           NA         NA
## range                     NA             NA           NA         NA
## sum                       NA             NA           NA         NA
## median                    NA             NA           NA         NA
## mean                      NA             NA           NA         NA
## SE.mean                   NA             NA           NA         NA
## CI.mean.0.95              NA             NA           NA         NA
## var                       NA             NA           NA         NA
## std.dev                   NA             NA           NA         NA
## coef.var                  NA             NA           NA         NA
##              Number.of.Bicycles Number.of.Motors Number.of.Car
## nbr.val                      NA               NA            NA
## nbr.null                     NA               NA            NA
## nbr.na                       NA               NA            NA
## min                          NA               NA            NA
## max                          NA               NA            NA
## range                        NA               NA            NA
## sum                          NA               NA            NA
## median                       NA               NA            NA
## mean                         NA               NA            NA
## SE.mean                      NA               NA            NA
## CI.mean.0.95                 NA               NA            NA
## var                          NA               NA            NA
## std.dev                      NA               NA            NA
## coef.var                     NA               NA            NA
# Caculate SD (do lech chuan) and SE (sai so chuan)
desc <- function (Cost)
  {
    av <- mean(Cost)
    sd <- sd(Cost)
    se <- sd/sqrt(length(Cost))
    c(mean = av, SD = sd, SE = se)
  }
table(Travel.Mode) 
## Travel.Mode
##   1   2   3   4   5   6 
##  35  44 518  82  35  23
# Descriptive Statistics of categorical variables
with(MC, table(Bus.Stop.Condition, Travel.Mode))
##                   Travel.Mode
## Bus.Stop.Condition   1   2   3   4   5   6   7
##                No   15  19 253  39  16  11  63
##                Yes  20  25 265  43  19  12  47
with(MC, table(Central.Area, Travel.Mode))
##             Travel.Mode
## Central.Area   1   2   3   4   5   6   7
##          No   18  29 284  45  16   7  44
##          Yes  17  15 234  37  19  16  66
with(MC, table(Purpose, Travel.Mode))
##                   Travel.Mode
## Purpose              1   2   3   4   5   6   7
##   Work/Study        23  32 351  54  17  14  80
##   Picking Children   3   1  69  10   0   2   9
##   Entertainment      7   8  89  17  18   6  14
##   Others             2   3   9   1   0   1   7
with(MC, table(Frequency, Travel.Mode))
##            Travel.Mode
## Frequency     1   2   3   4   5   6   7
##   Once        2   2  23   9   3   6  13
##   2 times     1   6  18  11   7   6  19
##   3 times     3   2  33   7   4   4  20
##   > 3 times  29  34 444  55  21   7  58
with(MC, table(Departure.Time, Travel.Mode))
##               Travel.Mode
## Departure.Time   1   2   3   4   5   6   7
##      Morning    19  25 328  44  15  12  71
##      Afternoon   4   7  34   7   5   2  12
##      Evening    10   6  85  13   7   2  20
##      Others      2   6  71  18   8   7   7
with(MC, table(Sidewalk.Clearance, Travel.Mode))
##                   Travel.Mode
## Sidewalk.Clearance   1   2   3   4   5   6   7
##                No    3   6  79   4   3   3  15
##                Yes  32  38 439  78  32  20  95
with(MC, table(Lane.Separate, Travel.Mode))
##              Travel.Mode
## Lane.Separate   1   2   3   4   5   6   7
##           No   14  12 111  13   6   2  20
##           Yes  21  32 407  69  29  21  90
with(MC, table(Temporary.Stop.Number, Travel.Mode))
##                      Travel.Mode
## Temporary.Stop.Number   1   2   3   4   5   6   7
##             None       22  20 247  46  17  14  81
##             1 stops     9  22 197  25  12   6  10
##             2 stops     1   1  35   7   4   1  11
##             >=3 stops   3   1  39   4   2   2   8
with(MC, table(Mode.Choice.Reason, Travel.Mode))
##                   Travel.Mode
## Mode.Choice.Reason   1   2   3   4   5   6   7
##      Safety          7  10  27  37   7   3  32
##      Comfortable    15  14 256  35  14   5  41
##      Low price       7  10  24   0   0   1  34
##      Accessibility   1   3 161   2   4   8   1
##      Reliability     0   4  42   6   6   3   0
##      others          5   3   8   2   4   3   2
with(MC, table(Weather, Travel.Mode))
##         Travel.Mode
## Weather    1   2   3   4   5   6   7
##   Sunny   21  25 357  54  18  14  75
##   Rainny   0   0   2   4   2   2   9
##   Cool    14  19 159  24  15   7  26
with(MC, table(Weekend, Travel.Mode))
##        Travel.Mode
## Weekend   1   2   3   4   5   6   7
##     No   29  33 403  53  22  13  87
##     Yes   6  11 115  29  13  10  23
with(MC, table(Bus.Stop.Present, Travel.Mode))
##                 Travel.Mode
## Bus.Stop.Present   1   2   3   4   5   6   7
##       No           3   4  48   5   5   0  19
##       Yes         31  37 415  58  28  21  86
##       Don't know   1   3  55  19   2   2   5
with(MC, table(Gender, Travel.Mode))
##         Travel.Mode
## Gender     1   2   3   4   5   6   7
##   Female  15  14 223  20  24  13  44
##   Male    20  30 295  62  11  10  66
with(MC, table(Age, Travel.Mode))
##        Travel.Mode
## Age       1   2   3   4   5   6   7
##   <= 15   5  17   3   1   6   2   4
##   16-18   7  12  32   1  11   0  14
##   19-24  12  10 180   8  12  11  46
##   25-45   5   3 232  59   2   3  13
##   46-60   4   0  62  13   2   4  13
##   >60     2   2   9   0   2   3  20
with(MC, table(Occupation, Travel.Mode))
##             Travel.Mode
## Occupation     1   2   3   4   5   6   7
##   Pupils      13  26  21   1  18   2  12
##   Students    11  12 144   6   7   6  42
##   Officers     2   1  81  36   2   2  12
##   Housewife    1   0  27   2   2   5  11
##   Unemployed   0   1   4   0   0   0   1
##   Workers      1   2  72   5   0   1   2
##   Free labor   4   0 139  20   3   6  12
##   Others       3   2  30  12   3   1  18
with(MC, table(Income, Travel.Mode))
##                   Travel.Mode
## Income               1   2   3   4   5   6   7
##   <8 millions       18  11 114   3   7   8  52
##   (8-15) millions    7  20 236  22  14   8  29
##   (15-25) millions   6   8 129  25  10   5  26
##   >25 millions       4   5  39  32   4   2   3
with(MC, table(Number.of.Children, Travel.Mode))
##                   Travel.Mode
## Number.of.Children   1   2   3   4   5   6   7
##      None           18  21 224  20  21   5  64
##      1 child        10  18 226  26  10   8  25
##      2 children      3   4  57  33   4   6  19
##      >= 3 children   4   1  11   3   0   4   2
with(MC, table(Motor.Certificate, Travel.Mode))
##                  Travel.Mode
## Motor.Certificate   1   2   3   4   5   6   7
##               No   14  27  25   2  19   5  39
##               Yes  21  17 493  80  16  18  71
with(MC, table(Car.Certificate, Travel.Mode))
##                Travel.Mode
## Car.Certificate   1   2   3   4   5   6   7
##             No   32  44 447  11  35  19 104
##             Yes   3   0  71  71   0   4   6
with(MC, table(Bicycle.Owning, Travel.Mode))
##               Travel.Mode
## Bicycle.Owning   1   2   3   4   5   6   7
##            No   19   2 336  51  17  12  62
##            Yes  16  42 182  31  18  11  48
with(MC, table(Motor.Owning, Travel.Mode))
##             Travel.Mode
## Motor.Owning   1   2   3   4   5   6   7
##          No   20  33  42   6  25   5  51
##          Yes  15  11 476  76  10  18  59
with(MC, table(Car.Owning, Travel.Mode))
##           Travel.Mode
## Car.Owning   1   2   3   4   5   6   7
##        No   32  44 477  15  35  19 106
##        Yes   3   0  41  67   0   4   4
with(MC, table(Number.of.Bicycles, Travel.Mode))
##                   Travel.Mode
## Number.of.Bicycles   1   2   3   4   5   6   7
##               None  15   0 254  41  13   7  38
##               1     14  30 198  36  19  12  60
##               2      4  14  59   4   3   4  11
##               >=3    2   0   7   1   0   0   1
with(MC, table(Number.of.Motors, Travel.Mode))
##                 Travel.Mode
## Number.of.Motors   1   2   3   4   5   6   7
##             None   6   6   5   2   4   1  13
##             1      6   6  68  17   7   2  27
##             2     15  23 262  49  15   9  50
##             3      4   6 147   9   9   9  17
##             >3     4   3  36   5   0   2   3
with(MC, table(Number.of.Car, Travel.Mode))
##              Travel.Mode
## Number.of.Car   1   2   3   4   5   6   7
##          None  27  38 436  10  30  16 101
##          1      7   5  75  66   5   4   8
##          >=2    1   1   7   6   0   3   1
# Descriptive Statistics of categorical variables
with(MC, do.call(rbind, tapply(Distance, Travel.Mode, function(x) c(M = mean(x), SD = sd(x)))))
##            M        SD
## 1  0.6481429 0.6188225
## 2  1.9879545 1.4531963
## 3  6.3102317 5.0049213
## 4 10.2926829 7.6650365
## 5  4.9142857 4.3139407
## 6  7.1043478 4.1292172
## 7  8.5500000 4.7283791
with(MC, do.call(rbind, tapply(Travel.Period, Travel.Mode, function(x) c(M = mean(x), SD = sd(x)))))
##          M       SD
## 1 10.65714 11.85437
## 2 15.93182 14.43896
## 3 15.79923 12.75120
## 4 25.86585 27.07272
## 5 15.94286 12.08534
## 6 19.47826 16.35923
## 7 21.53636 12.38575
with(MC, do.call(rbind, tapply(Cost, Travel.Mode, function(x) c(M = mean(x), SD = sd(x)))))
##           M        SD
## 1  0.000000  0.000000
## 2  0.000000  0.000000
## 3  6.332046  4.984868
## 4 20.585366 15.330073
## 5  6.800000  8.259754
## 6 68.478261 62.489904
## 7  5.227273  1.046261

5. Estimate Multinominal Logit Regression Model

# Multinominal Logit Model
   ## Way 1 - Use mlogit (in mlogit package)
   ## Way 2 - Use multinom (in nnet package)
library(nnet)
attach(MC)
## The following objects are masked from NBU:
## 
##     Age, Bicycle.Owning, Bus.Stop.Condition, Bus.Stop.Present,
##     Car.Certificate, Car.Owning, Central.Area, Cost, Departure.Time,
##     Distance, Frequency, Gender, Income, Lane.Separate,
##     Mode.Choice.Reason, Motor.Certificate, Motor.Owning,
##     Non.Bus.Reason, Number.of.Bicycles, Number.of.Car,
##     Number.of.Children, Number.of.Motors, Occupation, Purpose,
##     Sidewalk.Clearance, Temporary.Stop.Number, Travel.Mode,
##     Travel.Period, Weather, Weekend
## The following objects are masked from MC (pos = 20):
## 
##     Age, Bicycle.Owning, Bus.Stop.Condition, Bus.Stop.Present,
##     Car.Certificate, Car.Owning, Central.Area, Cost, Departure.Time,
##     Distance, Frequency, Gender, Income, Lane.Separate,
##     Mode.Choice.Reason, Motor.Certificate, Motor.Owning,
##     Non.Bus.Reason, Number.of.Bicycles, Number.of.Car,
##     Number.of.Children, Number.of.Motors, Occupation, Purpose,
##     Sidewalk.Clearance, Temporary.Stop.Number, Travel.Mode,
##     Travel.Period, Weather, Weekend
#MC$Travel.Mode <- relevel (MC$Travel.Mode, ref = "Motorbike")
mlm <- multinom(Travel.Mode ~ Bus.Stop.Condition + Central.Area + Purpose + Frequency + Departure.Time + Sidewalk.Clearance + Lane.Separate + Temporary.Stop.Number + Mode.Choice.Reason + Weather + Weekend + Bus.Stop.Present + Gender + Age + Occupation + Income + Number.of.Children + Motor.Certificate + Car.Certificate + Bicycle.Owning + Motor.Owning + Car.Owning + Number.of.Bicycles + Number.of.Motors + Number.of.Car + Distance + Travel.Period + Cost, data = MC)
## # weights:  448 (378 variable)
## initial  value 1648.185896 
## iter  10 value 837.316762
## iter  20 value 515.614078
## iter  30 value 318.969973
## iter  40 value 220.338239
## iter  50 value 138.434422
## iter  60 value 87.547025
## iter  70 value 67.982714
## iter  80 value 58.842117
## iter  90 value 51.464154
## iter 100 value 47.921917
## final  value 47.921917 
## stopped after 100 iterations
summary(mlm)
## Warning in sqrt(diag(vc)): NaNs produced
## Call:
## multinom(formula = Travel.Mode ~ Bus.Stop.Condition + Central.Area + 
##     Purpose + Frequency + Departure.Time + Sidewalk.Clearance + 
##     Lane.Separate + Temporary.Stop.Number + Mode.Choice.Reason + 
##     Weather + Weekend + Bus.Stop.Present + Gender + Age + Occupation + 
##     Income + Number.of.Children + Motor.Certificate + Car.Certificate + 
##     Bicycle.Owning + Motor.Owning + Car.Owning + Number.of.Bicycles + 
##     Number.of.Motors + Number.of.Car + Distance + Travel.Period + 
##     Cost, data = MC)
## 
## Coefficients:
##   (Intercept) Bus.Stop.ConditionYes Central.AreaYes PurposePicking Children
## 2   -65.88309             8.5050215     -15.6747067              -10.928156
## 3   -31.94959            -3.7987439       5.3127500                5.587730
## 4  -114.47512             6.5603347      11.3154862                2.835531
## 5   -48.28852            -0.6748395       0.6297604              -31.456326
## 6   -44.23307             9.8094331       0.9310058               -8.899826
## 7   -20.00151            -2.9692153       1.2990007               -2.105245
##   PurposeEntertainment PurposeOthers Frequency2 times Frequency3 times
## 2            -3.544378      33.62123         9.640538        0.4212961
## 3             1.016287       5.55503       -16.960394      -17.3869516
## 4           -17.926037      30.54329        -6.434457      -19.9447904
## 5             9.148288     -32.55171        14.238415        7.0487005
## 6           -12.713104     -31.38836       -20.017056      -13.2641194
## 7           -23.397109      13.38565        24.032834       -6.9497566
##   Frequency> 3 times Departure.TimeAfternoon Departure.TimeEvening
## 2          -2.224911               16.052091            -22.708855
## 3         -18.688299                4.069003            -12.161995
## 4         -25.762874                5.847510             -7.696991
## 5         -14.902881              -12.376268             -4.550587
## 6         -36.583856              -17.820829            -12.168660
## 7         -14.950601               -5.842983             -2.503386
##   Departure.TimeOthers Sidewalk.ClearanceYes Lane.SeparateYes
## 2          -11.3817448             21.647411        -8.618778
## 3            0.3103967              3.175385        -3.715576
## 4            8.6188563             10.852905       -18.756181
## 5           -1.9513499             32.717271         3.064914
## 6           -3.4973866             -2.626050        -1.082702
## 7            0.3679199              6.132839         1.026910
##   Temporary.Stop.Number1 stops Temporary.Stop.Number2 stops
## 2                    3.1713327                    5.8788669
## 3                   -0.9782363                   14.5478088
## 4                    1.8845265                    0.5172116
## 5                    5.9001998                   17.5915053
## 6                   -9.1305072                   11.7022206
## 7                   -9.5643889                   17.4381549
##   Temporary.Stop.Number>=3 stops Mode.Choice.ReasonComfortable
## 2                    -21.2218043                    -16.987098
## 3                      5.2750069                     18.208647
## 4                    -13.8169940                      0.553613
## 5                     15.1926416                      4.342323
## 6                      0.6472311                     29.193941
## 7                    -11.4080209                      7.240924
##   Mode.Choice.ReasonLow price Mode.Choice.ReasonAccessibility
## 2                  1.82971227                      -0.4813187
## 3                 -2.21977403                      34.0881582
## 4                -44.82466069                     -14.0394393
## 5                -65.99930654                      11.3950467
## 6                 24.27642217                      62.7348134
## 7                 -0.01377295                      -2.5862467
##   Mode.Choice.ReasonReliability Mode.Choice.Reasonothers WeatherRainny
## 2                      25.61237               -32.170189    -31.716264
## 3                      51.88824                 3.599263     -6.035592
## 4                      29.09767                -5.422621     30.400870
## 5                      55.86081               -17.239671     22.526836
## 6                      45.30641                 7.104049     30.672508
## 7                     -70.95640               -73.352631      4.231033
##   WeatherCool WeekendYes Bus.Stop.PresentYes Bus.Stop.PresentDon't know
## 2   11.614129  33.192640            9.673060                  12.375397
## 3   -5.015971   5.816160            5.506442                  24.247159
## 4   12.127513  10.351254          -10.582221                   8.669239
## 5   -7.124760   5.373836            3.807179                   6.673898
## 6   11.339220  -7.229816           -8.997566                  14.798245
## 7   -2.588744   4.356638          -13.059774                   6.781345
##   GenderMale   Age16-18   Age19-24   Age25-45   Age46-60      Age>60
## 2  14.556269 -30.621305 -33.035497 -18.526833 -37.136120  -0.3770594
## 3   4.842833  -8.834645 -28.807808 -27.972520 -20.163157 -36.5320478
## 4   4.427165 -15.061870 -18.620761   5.212277   3.423268 -68.1424256
## 5  -4.784744   6.127076  24.845222 -22.803082   3.819504 -11.7336534
## 6  -3.920150 -27.199070   5.347109 -11.868310  -9.383458  -4.4667963
## 7   4.272923  -2.005498 -13.925199  -5.634598   4.911796  17.5236200
##   OccupationStudents OccupationOfficers OccupationHousewife
## 2           34.71662          -7.512362           -33.17564
## 3           23.36027          23.171679            43.66380
## 4           25.39870           3.697737            18.57300
## 5          -13.78764           7.903832            29.62351
## 6          -27.43480         -11.091747            31.32912
## 7           36.30393          33.813194            33.09436
##   OccupationUnemployed OccupationWorkers OccupationFree labor OccupationOthers
## 2           36.3319071        26.4028664            18.226109         9.521910
## 3            7.1152758        19.4165214            32.183391        11.500174
## 4            0.8762254         0.9296973             8.321882       -31.250752
## 5          -30.3032091       -22.8548871            22.516461        30.802064
## 6            9.5651744       -18.5458682            -4.528603        -4.507908
## 7           26.3794067       -28.9111082            31.250915        27.417192
##   Income(8-15) millions Income(15-25) millions Income>25 millions
## 2              17.81753              27.352420          13.298759
## 3              17.92829              12.524375          15.778952
## 4              24.91385               7.075959          14.280702
## 5              27.89878              51.392576          33.996373
## 6              17.60108              10.750648           3.646807
## 7               6.30491               5.636736          -7.321030
##   Number.of.Children1 child Number.of.Children2 children
## 2                 18.376210                     9.487571
## 3                 14.776101                    11.546773
## 4                 11.334344                    28.173885
## 5                  3.421037                    27.710355
## 6                 12.176367                    15.420497
## 7                 13.169499                     3.652937
##   Number.of.Children>= 3 children Motor.CertificateYes Car.CertificateYes
## 2                        -7.33467           -5.6392209          13.691566
## 3                       -18.95306            0.6552896           1.710987
## 4                       -46.28468           10.0332017          10.579014
## 5                       -87.34465          -24.3200742         -12.693989
## 6                       -54.62553           -5.4515155          -5.777335
## 7                       -24.82050          -15.4352514          -6.176104
##   Bicycle.OwningYes Motor.OwningYes Car.OwningYes Number.of.Bicycles1
## 2        13.2138518      -22.846153    -17.845881           21.618004
## 3         1.0656901        7.180406      3.984878           -8.143055
## 4         7.9710301       13.692934     29.664021            7.708493
## 5        -0.6828263       -9.124028     -1.147317            1.138528
## 6         3.2999676        3.012221     16.936406            3.081916
## 7         5.0871164       -6.664886     10.346634          -11.186013
##   Number.of.Bicycles2 Number.of.Bicycles>=3 Number.of.Motors1 Number.of.Motors2
## 2           30.266971            -34.837993        -19.002691         -5.114798
## 3           -5.084783              7.942406         -5.674482          7.777190
## 4           -6.225399             11.590058         14.319384         19.438750
## 5          -14.022375            -24.819800        -18.394167         -8.183637
## 6           -4.907710              4.848789         -9.800646          8.319197
## 7          -19.276988            -31.740016          9.537736         22.656786
##   Number.of.Motors3 Number.of.Motors>3 Number.of.Car1 Number.of.Car>=2
## 2        -13.120710          -6.500748       3.292208        16.950101
## 3          2.937216          -6.594606      -8.712119       -19.326856
## 4          8.659924          23.866019       1.802742       -22.930814
## 5        -24.962545         -58.414429     -25.697651       -14.110599
## 6         10.176784           3.024154       1.173069        -2.411943
## 7         11.816824           7.375892     -25.109911       -10.202022
##      Distance Travel.Period       Cost
## 2   4.9017500    0.18936772  0.1437458
## 3   0.1652592   -0.11044200 11.4393980
## 4 -10.4118911    0.16455717 21.2721360
## 5  -9.9858088    0.01570071 18.9511235
## 6 -13.5316780    0.20933864 21.7440584
## 7   5.5803532   -0.28718800  5.9982307
## 
## Std. Errors:
##   (Intercept) Bus.Stop.ConditionYes Central.AreaYes PurposePicking Children
## 2    20.29336              17.37617       14.655121               25.282880
## 3    22.03849              13.17371        9.179734               16.753564
## 4    11.79982              17.46420       24.940349                8.115991
## 5    30.25081              14.56282       10.679512                2.104509
## 6    12.00263              13.47516        1.180054                7.188219
## 7    22.16710              13.00126        9.260512               16.352543
##   PurposeEntertainment PurposeOthers Frequency2 times Frequency3 times
## 2            22.033554   23.82017294        21.601037        31.818088
## 3            12.594042   18.29806484        16.205713        15.807078
## 4             5.922091    0.04261744         4.263298         8.047264
## 5            13.416169   43.86380572        15.952738        17.209124
## 6            13.006217    0.04366229         3.864937        13.304819
## 7            14.170597   18.19783491        17.342419        15.705317
##   Frequency> 3 times Departure.TimeAfternoon Departure.TimeEvening
## 2           20.91433               26.238874             20.713054
## 3           12.30076               12.264698             15.422456
## 4           14.33475                6.566297             11.535940
## 5           13.50220               14.709455             16.510372
## 6           11.41922                3.995918              9.677194
## 7           12.35492               12.917008             14.856463
##   Departure.TimeOthers Sidewalk.ClearanceYes Lane.SeparateYes
## 2           26.7616458             25.267606         14.72445
## 3           18.9812714             15.471749         13.74630
## 4            0.7367377              9.366865         25.69159
## 5           18.7980023             21.130370         15.55975
## 6            0.7534031             11.340327         11.50480
## 7           19.0421903             15.605120         13.75238
##   Temporary.Stop.Number1 stops Temporary.Stop.Number2 stops
## 2                    16.204835                    28.266972
## 3                    11.389309                    13.829101
## 4                    25.326816                    11.434405
## 5                    12.656817                    18.959527
## 6                     8.049242                     9.577741
## 7                    11.773772                    13.840515
##   Temporary.Stop.Number>=3 stops Mode.Choice.ReasonComfortable
## 2                   3.373588e+01                      18.52794
## 3                   2.469182e+01                      14.53093
## 4                   1.056424e-02                      23.19962
## 5                   2.871289e+01                      15.42538
## 6                   1.995455e-04                      14.48898
## 7                   2.615565e+01                      13.58816
##   Mode.Choice.ReasonLow price Mode.Choice.ReasonAccessibility
## 2                2.132557e+01                     29.65431666
## 3                2.010788e+01                     14.87571974
## 4                1.597884e-12                      0.04361645
## 5                6.420828e+01                     17.15912280
## 6                1.250917e+00                     13.77209115
## 7                2.006744e+01                     16.86151652
##   Mode.Choice.ReasonReliability Mode.Choice.Reasonothers WeatherRainny
## 2                  1.791744e+01               21.9476738  9.666821e-09
## 3                  1.272922e+01               15.7208939  2.648567e+00
## 4                  2.623777e+01                6.7205628  4.263717e+00
## 5                  1.291856e+01               19.1092091  1.055209e-02
## 6                  1.630065e+01                6.7233532  4.260593e+00
## 7                  3.429618e-25                0.9737488  2.648517e+00
##   WeatherCool WeekendYes Bus.Stop.PresentYes Bus.Stop.PresentDon't know
## 2   17.465762   16.03649           22.182147                  33.245715
## 3   11.499973   14.05133           14.740253                  15.920203
## 4    4.712808   25.83584            9.615579                   8.120043
## 5   14.106593   15.52646           17.161846                  20.481558
## 6    7.771390   21.55537           19.156013                   7.732225
## 7   11.635133   14.09497           14.687178                  15.029555
##   GenderMale  Age16-18 Age19-24 Age25-45  Age46-60       Age>60
## 2   17.51950 21.470996 22.38564 21.45037 27.621945 3.382908e+01
## 3   12.37504 12.977128 16.80777 14.12205 19.864961 2.254060e+01
## 4   18.40252  6.562133 12.32213 19.04402  6.655124 1.365172e-09
## 5   14.61407 15.963229 26.55727 19.17632 26.838238 3.345748e+01
## 6   12.38995  4.063099 13.95182 18.14476 15.459355 6.197404e+00
## 7   12.47847 13.713903 17.42705 14.90973 22.050522 2.761891e+01
##   OccupationStudents OccupationOfficers OccupationHousewife
## 2           21.84364           37.15857        1.104176e-10
## 3           16.72176           17.52789        2.482050e+01
## 4           11.91335           17.34669        1.818930e-04
## 5           22.81467           25.12426        2.695013e+01
## 6           13.39194           16.30094        1.221307e+01
## 7           17.70150           17.87876        2.418951e+01
##   OccupationUnemployed OccupationWorkers OccupationFree labor OccupationOthers
## 2         2.724435e+01        30.2334001            33.958599       23.5183047
## 3         1.788479e+01        21.8005572            14.160145       16.9261074
## 4                  NaN         8.0959200            16.470101        0.2696104
## 5         1.017261e-12        35.5140132            20.361814       31.9812775
## 6         4.012988e-11         0.6957329             7.021386       10.2518708
## 7         2.012132e+01        28.2096217            14.762331       17.0630769
##   Income(8-15) millions Income(15-25) millions Income>25 millions
## 2              18.36123              21.330921          25.763086
## 3              12.41022              12.125418          13.553864
## 4              15.89782              10.644056          12.327606
## 5              12.20178              17.309336          29.618526
## 6              24.90504               7.437589           4.093651
## 7              12.17699              12.484369          15.526578
##   Number.of.Children1 child Number.of.Children2 children
## 2                  19.45649                     24.21193
## 3                  10.15147                     17.81406
## 4                  22.71941                     12.71257
## 5                  16.92511                     32.83700
## 6                  14.91813                     13.36824
## 7                  10.12130                     18.19826
##   Number.of.Children>= 3 children Motor.CertificateYes Car.CertificateYes
## 2                    3.553993e+01             16.43805          33.084540
## 3                    1.503777e+01             12.56269          30.339570
## 4                    3.585120e-08             11.79921          11.019520
## 5                    5.212488e-17             20.12292          57.542865
## 6                    2.141673e-04             12.59996           8.894594
## 7                    1.628098e+01             12.64654          30.569417
##   Bicycle.OwningYes Motor.OwningYes Car.OwningYes Number.of.Bicycles1
## 2         16.410961       22.030949     29.236685            17.74670
## 3         15.787687       12.110133     26.447941            11.66336
## 4         13.867284       14.405233     11.023593            12.07309
## 5         15.974220       13.598001     53.590076            12.93687
## 6          9.981325        6.930657      8.889264            12.99069
## 7         15.778778       13.164790     26.560783            11.75292
##   Number.of.Bicycles2 Number.of.Bicycles>=3 Number.of.Motors1 Number.of.Motors2
## 2           26.069542                   NaN          22.90090          15.10541
## 3           16.590297          9.409492e+00          14.68317          12.21702
## 4            6.693222          1.395329e-06          26.96749          25.75150
## 5           19.863239          4.177149e+00          21.46507          16.11014
## 6            6.697362          1.250898e+00          10.07368          15.84779
## 7           16.327584          1.024671e+01          15.17003          14.09406
##   Number.of.Motors3 Number.of.Motors>3 Number.of.Car1 Number.of.Car>=2
## 2         18.693519       2.354881e+01      20.885856      0.000926459
## 3         19.148662       1.482611e+01      13.976937     19.454778375
## 4          6.144533       3.057191e-02       8.918476      6.772808630
## 5         23.261402       7.157342e-04      22.781101      0.004097429
## 6          7.541138       7.985084e-03      12.268160      6.695992664
## 7         19.787966       1.501720e+01      14.529932     21.627861883
##    Distance Travel.Period      Cost
## 2  7.831015     0.8939013  7.861235
## 3  8.569957     0.6299910  7.703074
## 4 29.299647     6.1185902 14.678352
## 5  9.812395     0.7314050  9.700458
## 6 24.880453     1.3234314 14.635195
## 7  8.392133     0.6475349  6.951994
## 
## Residual Deviance: 95.84383 
## AIC: 851.8438
# Calculate OR and CI
exp(coef(mlm))
##    (Intercept) Bus.Stop.ConditionYes Central.AreaYes PurposePicking Children
## 2 2.439697e-29          4.939511e+03    1.557978e-07            1.794578e-05
## 3 1.331889e-14          2.239889e-02    2.029075e+02            2.671287e+02
## 4 1.923476e-50          7.065081e+02    8.208300e+04            1.703944e+01
## 5 1.067983e-21          5.092381e-01    1.877161e+00            2.181179e-14
## 6 6.163448e-20          1.820466e+04    2.537060e+00            1.364126e-04
## 7 2.058050e-09          5.134359e-02    3.665632e+00            1.218158e-01
##   PurposeEntertainment PurposeOthers Frequency2 times Frequency3 times
## 2         2.888657e-02  3.994967e+14     1.537561e+04     1.523935e+00
## 3         2.762918e+00  2.585347e+02     4.307195e-08     2.811531e-08
## 4         1.639915e-08  1.839844e+13     1.605280e-03     2.178149e-09
## 5         9.398334e+03  7.294076e-15     1.526389e+06     1.151362e+03
## 6         3.011404e-06  2.334577e-14     2.026296e-09     1.735666e-06
## 7         6.898658e-11  6.505974e+05     2.737330e+10     9.588685e-04
##   Frequency> 3 times Departure.TimeAfternoon Departure.TimeEvening
## 2       1.080771e-01            9.361261e+06          1.372997e-10
## 3       7.651998e-09            5.849858e+01          5.225319e-06
## 4       6.476288e-12            3.463708e+02          4.541918e-04
## 5       3.371018e-07            4.217501e-06          1.056100e-02
## 6       1.293699e-16            1.821850e-08          5.190604e-06
## 7       3.213930e-07            2.900178e-03          8.180749e-02
##   Departure.TimeOthers Sidewalk.ClearanceYes Lane.SeparateYes
## 2         1.140174e-05          2.519712e+09     1.806810e-04
## 3         1.363966e+00          2.393604e+01     2.434141e-02
## 4         5.535052e+03          5.168408e+04     7.149805e-09
## 5         1.420821e-01          1.617821e+14     2.143261e+01
## 6         3.027640e-02          7.236376e-02     3.386792e-01
## 7         1.444726e+00          4.607422e+02     2.792423e+00
##   Temporary.Stop.Number1 stops Temporary.Stop.Number2 stops
## 2                 2.383923e+01                 3.574041e+02
## 3                 3.759736e-01                 2.079855e+06
## 4                 6.583236e+00                 1.677344e+00
## 5                 3.651104e+02                 4.364090e+07
## 6                 1.083106e-04                 1.208398e+05
## 7                 7.018409e-05                 3.743643e+07
##   Temporary.Stop.Number>=3 stops Mode.Choice.ReasonComfortable
## 2                   6.074177e-10                  4.193696e-08
## 3                   1.953918e+02                  8.089376e+07
## 4                   9.985176e-07                  1.739527e+00
## 5                   3.963514e+06                  7.688592e+01
## 6                   1.910244e+00                  4.772734e+12
## 7                   1.110605e-05                  1.395382e+03
##   Mode.Choice.ReasonLow price Mode.Choice.ReasonAccessibility
## 2                6.232093e+00                    6.179680e-01
## 3                1.086337e-01                    6.372341e+14
## 4                3.411122e-20                    7.993721e-07
## 5                2.172028e-29                    8.888038e+04
## 6                3.492337e+10                    1.759476e+27
## 7                9.863215e-01                    7.530214e-02
##   Mode.Choice.ReasonReliability Mode.Choice.Reasonothers WeatherRainny
## 2                  1.328350e+11             1.068229e-14  1.681905e-14
## 3                  3.425897e+22             3.657128e+01  2.392080e-03
## 4                  4.334698e+12             4.415558e-03  1.595622e+13
## 5                  1.819867e+24             3.257661e-08  6.071284e+09
## 6                  4.745964e+19             1.216884e+03  2.093635e+13
## 7                  1.527666e-31             1.391097e-32  6.878823e+01
##    WeatherCool   WeekendYes Bus.Stop.PresentYes Bus.Stop.PresentDon't know
## 2 1.106502e+05 2.602437e+14        1.588388e+04               2.369008e+05
## 3 6.631192e-03 3.356805e+02        2.462734e+02               3.391620e+10
## 4 1.848894e+05 3.129628e+04        2.536296e-05               5.821069e+03
## 5 8.049258e-04 2.156886e+02        4.502327e+01               7.914746e+02
## 6 8.405440e+04 7.246540e-04        1.237106e-04               2.671751e+06
## 7 7.511435e-02 7.799449e+01        2.129178e-06               8.812534e+02
##     GenderMale     Age16-18     Age19-24     Age25-45     Age46-60       Age>60
## 2 2.097526e+06 5.027317e-14 4.496409e-15 8.992875e-09 7.447111e-17 6.858753e-01
## 3 1.268282e+02 1.456003e-04 3.082677e-13 7.107043e-13 1.750863e-09 1.362490e-16
## 4 8.369378e+01 2.875497e-07 8.186647e-09 1.835114e+02 3.066947e+01 2.547537e-30
## 5 8.356260e-03 4.580948e+02 6.167980e+10 1.249532e-10 4.558161e+01 8.019348e-06
## 6 1.983811e-02 1.540260e-12 2.100003e+02 7.009038e-06 8.410383e-05 1.148405e-02
## 7 7.173097e+01 1.345932e-01 8.961134e-07 3.572111e-03 1.358832e+02 4.077664e+07
##   OccupationStudents OccupationOfficers OccupationHousewife
## 2       1.194636e+15       5.462891e-04        3.908445e-15
## 3       1.397124e+10       1.156998e+10        9.182175e+18
## 4       1.072787e+11       4.035587e+01        1.164534e+08
## 5       1.028260e-06       2.707638e+03        7.333755e+12
## 6       1.216799e-12       1.523756e-05        4.037051e+13
## 7       5.842451e+15       4.840426e+14        2.358843e+14
##   OccupationUnemployed OccupationWorkers OccupationFree labor OccupationOthers
## 2         6.008233e+15      2.928324e+11         8.231867e+07     1.365567e+04
## 3         1.230623e+03      2.706999e+08         9.485694e+13     9.873291e+04
## 4         2.401817e+00      2.533742e+00         4.112894e+03     2.678989e-14
## 5         6.910087e-14      1.186448e-10         6.008621e+09     2.383232e+13
## 6         1.425944e+04      8.823315e-09         1.079574e-02     1.102149e-02
## 7         2.860426e+11      2.780131e-13         3.733361e+13     8.074864e+11
##   Income(8-15) millions Income(15-25) millions Income>25 millions
## 2          5.470875e+07           7.568421e+11       5.964548e+05
## 3          6.111628e+07           2.749584e+05       7.123799e+06
## 4          6.606121e+10           1.183178e+03       1.592319e+06
## 5          1.307033e+12           2.086950e+22       5.813494e+14
## 6          4.406089e+07           4.666024e+04       3.835202e+01
## 7          5.472524e+02           2.805454e+02       6.614802e-04
##   Number.of.Children1 child Number.of.Children2 children
## 2              9.565032e+07                 1.319470e+04
## 3              2.613239e+06                 1.034426e+05
## 4              8.364559e+04                 1.720929e+12
## 5              3.060114e+01                 1.082566e+12
## 6              1.941463e+05                 4.977791e+06
## 7              5.241321e+05                 3.858784e+01
##   Number.of.Children>= 3 children Motor.CertificateYes Car.CertificateYes
## 2                    6.525193e-04         3.555637e-03       8.834287e+05
## 3                    5.872074e-09         1.925700e+00       5.534421e+00
## 4                    7.921747e-21         2.277006e+04       3.930133e+04
## 5                    1.166000e-38         2.741107e-11       3.069522e-06
## 6                    1.889873e-24         4.289799e-03       3.096958e-03
## 7                    1.661854e-11         1.979500e-07       2.078510e-03
##   Bicycle.OwningYes Motor.OwningYes Car.OwningYes Number.of.Bicycles1
## 2      5.479021e+05    1.196855e-10  1.776775e-08        2.446696e+09
## 3      2.902842e+00    1.313442e+03  5.377871e+01        2.907477e-04
## 4      2.895839e+03    8.846379e+05  7.636962e+12        2.227182e+03
## 5      5.051872e-01    1.090147e-04  3.174876e-01        3.122170e+00
## 6      2.711176e+01    2.033252e+01  2.266667e+07        2.180014e+01
## 7      1.619223e+02    1.274902e-03  3.115202e+04        1.386680e-05
##   Number.of.Bicycles2 Number.of.Bicycles>=3 Number.of.Motors1 Number.of.Motors2
## 2        1.395656e+13          7.413988e-16      5.587742e-09      6.007192e-03
## 3        6.190233e-03          2.814122e+03      3.432447e-03      2.385561e+03
## 4        1.978534e-03          1.080185e+05      1.655121e+06      2.767845e+08
## 5        8.131297e-07          1.663021e-11      1.026868e-08      2.791848e-04
## 6        7.389389e-03          1.275858e+02      5.541580e-05      4.101864e+03
## 7        4.247274e-09          1.642427e-14      1.387351e+04      6.913808e+09
##   Number.of.Motors3 Number.of.Motors>3 Number.of.Car1 Number.of.Car>=2
## 2      2.003309e-06       1.502315e-03   2.690219e+01     2.297922e+07
## 3      1.886325e+01       1.367725e-03   1.645792e-04     4.040668e-09
## 4      5.767098e+03       2.316755e+10   6.066261e+00     1.099699e-10
## 5      1.441798e-11       4.274998e-26   6.912771e-12     7.444654e-07
## 6      2.628579e+04       2.057659e+01   3.231897e+00     8.964094e-02
## 7      1.355131e+05       1.597016e+03   1.244240e-11     3.709525e-05
##       Distance Travel.Period         Cost
## 2 1.345250e+02     1.2084852 1.154591e+00
## 3 1.179699e+00     0.8954383 9.291106e+04
## 4 3.007275e-05     1.1788710 1.731296e+09
## 5 4.604880e-05     1.0158246 1.699685e+08
## 6 1.328210e-06     1.2328624 2.775394e+09
## 7 2.651653e+02     0.7503706 4.027156e+02
exp(confint(mlm))
## Warning in sqrt(diag(vcov(object))): NaNs produced
## , , 2
## 
##                                        2.5 %       97.5 %
## (Intercept)                     1.298951e-46 4.582252e-12
## Bus.Stop.ConditionYes           7.999474e-12 3.050046e+18
## Central.AreaYes                 5.225157e-20 4.645403e+05
## PurposePicking Children         5.409235e-27 5.953725e+16
## PurposeEntertainment            5.078098e-21 1.643202e+17
## PurposeOthers                   2.117119e-06 7.538434e+34
## Frequency2 times                6.309515e-15 3.746869e+22
## Frequency3 times                1.257075e-27 1.847446e+27
## Frequency> 3 times              1.703829e-19 6.855533e+16
## Departure.TimeAfternoon         4.332758e-16 2.022573e+29
## Departure.TimeEvening           3.211337e-28 5.870205e+07
## Departure.TimeOthers            1.894161e-28 6.863177e+17
## Sidewalk.ClearanceYes           7.825744e-13 8.112903e+30
## Lane.SeparateYes                5.289788e-17 6.171441e+08
## Temporary.Stop.Number1 stops    3.834524e-13 1.482085e+15
## Temporary.Stop.Number2 stops    3.106484e-22 4.111968e+26
## Temporary.Stop.Number>=3 stops  1.168022e-38 3.158812e+19
## Mode.Choice.ReasonComfortable   7.105354e-24 2.475188e+08
## Mode.Choice.ReasonLow price     4.388106e-18 8.850968e+18
## Mode.Choice.ReasonAccessibility 3.541326e-26 1.078366e+25
## Mode.Choice.ReasonReliability   7.446567e-05 2.369568e+26
## Mode.Choice.Reasonothers        2.222135e-33 5.135208e+04
## WeatherRainny                   1.681905e-14 1.681905e-14
## WeatherCool                     1.503379e-10 8.143969e+19
## WeekendYes                      5.822284e+00 1.163234e+28
## Bus.Stop.PresentYes             2.086790e-15 1.209023e+23
## Bus.Stop.PresentDon't know      1.190591e-23 4.713791e+33
## GenderMale                      2.564964e-09 1.715274e+21
## Age16-18                        2.661897e-32 9.494701e+04
## Age19-24                        3.964402e-34 5.099809e+04
## Age25-45                        4.958063e-27 1.631117e+10
## Age46-60                        2.291634e-40 2.420084e+07
## Age>60                          1.098703e-29 4.281639e+28
## OccupationStudents              3.047149e-04 4.683579e+33
## OccupationOfficers              1.282298e-35 2.327320e+28
## OccupationHousewife             3.908445e-15 3.908445e-15
## OccupationUnemployed            3.875377e-08 9.314928e+38
## OccupationWorkers               5.393894e-15 1.589776e+37
## OccupationFree labor            1.023026e-21 6.623844e+36
## OccupationOthers                1.307663e-16 1.426035e+24
## Income(8-15) millions           1.285148e-08 2.328952e+23
## Income(15-25) millions          5.273425e-07 1.086220e+30
## Income>25 millions              7.014541e-17 5.071727e+27
## Number.of.Children1 child       2.625990e-09 3.484013e+24
## Number.of.Children2 children    3.244660e-17 5.365743e+24
## Number.of.Children>= 3 children 3.655562e-34 1.164750e+27
## Motor.CertificateYes            3.620934e-17 3.491519e+11
## Car.CertificateYes              6.089194e-23 1.281691e+34
## Bicycle.OwningYes               5.883936e-09 5.101971e+19
## Motor.OwningYes                 2.114774e-29 6.773595e+08
## Car.OwningYes                   2.308451e-33 1.367553e+17
## Number.of.Bicycles1             1.916740e-06 3.123178e+24
## Number.of.Bicycles2             9.002097e-10 2.163781e+35
## Number.of.Bicycles>=3                    NaN          NaN
## Number.of.Motors1               1.794559e-28 1.739863e+11
## Number.of.Motors2               8.335403e-16 4.329288e+10
## Number.of.Motors3               2.453555e-22 1.635687e+10
## Number.of.Motors>3              1.355107e-23 1.665514e+17
## Number.of.Car1                  4.484511e-17 1.613839e+19
## Number.of.Car>=2                2.293753e+07 2.302099e+07
## Distance                        2.904230e-05 6.231248e+08
## Travel.Period                   2.095807e-01 6.968375e+00
## Cost                            2.349271e-07 5.674440e+06
## 
## , , 3
## 
##                                        2.5 %       97.5 %
## (Intercept)                     2.318859e-33 7.650000e+04
## Bus.Stop.ConditionYes           1.370083e-13 3.661897e+09
## Central.AreaYes                 3.115263e-06 1.321604e+10
## PurposePicking Children         1.465753e-12 4.868333e+16
## PurposeEntertainment            5.263803e-11 1.450228e+11
## PurposeOthers                   6.873497e-14 9.724332e+17
## Frequency2 times                6.916188e-22 2.682393e+06
## Frequency3 times                9.861288e-22 8.015897e+05
## Frequency> 3 times              2.590286e-19 2.260487e+02
## Departure.TimeAfternoon         2.125277e-09 1.610183e+12
## Departure.TimeEvening           3.894886e-19 7.010209e+07
## Departure.TimeOthers            9.504212e-17 1.957452e+16
## Sidewalk.ClearanceYes           1.619852e-12 3.536953e+14
## Lane.SeparateYes                4.846993e-14 1.222416e+10
## Temporary.Stop.Number1 stops    7.595570e-11 1.861034e+09
## Temporary.Stop.Number2 stops    3.521119e-06 1.228529e+18
## Temporary.Stop.Number>=3 stops  1.875823e-19 2.035265e+23
## Mode.Choice.ReasonComfortable   3.460722e-05 1.890877e+20
## Mode.Choice.ReasonLow price     8.319712e-19 1.418471e+16
## Mode.Choice.ReasonAccessibility 1.386958e+02 2.927754e+27
## Mode.Choice.ReasonReliability   5.007798e+11 2.343699e+33
## Mode.Choice.Reasonothers        1.518767e-12 8.806217e+14
## WeatherRainny                   1.331410e-05 4.297736e-01
## WeatherCool                     1.078442e-12 4.077428e+07
## WeekendYes                      3.676332e-10 3.065049e+14
## Bus.Stop.PresentYes             6.990234e-11 8.676478e+14
## Bus.Stop.PresentDon't know      9.530291e-04 1.207003e+24
## GenderMale                      3.711608e-09 4.333807e+12
## Age16-18                        1.309215e-15 1.619249e+07
## Age19-24                        1.521009e-27 6.247759e+01
## Age25-45                        6.776085e-25 7.454165e-01
## Age46-60                        2.158575e-26 1.420160e+08
## Age>60                          8.866301e-36 2.093746e+03
## OccupationStudents              8.159114e-05 2.392361e+24
## OccupationOfficers              1.391774e-05 9.618256e+24
## OccupationHousewife             6.850084e-03 1.230822e+40
## OccupationUnemployed            7.354671e-13 2.059144e+18
## OccupationWorkers               7.513118e-11 9.753400e+26
## OccupationFree labor            8.393278e+01 1.072029e+26
## OccupationOthers                3.863075e-10 2.523427e+19
## Income(8-15) millions           1.669394e-03 2.237458e+18
## Income(15-25) millions          1.312478e-05 5.760255e+15
## Income>25 millions              2.068433e-05 2.453476e+18
## Number.of.Children1 child       5.973565e-03 1.143206e+15
## Number.of.Children2 children    7.101401e-11 1.506799e+20
## Number.of.Children>= 3 children 9.302965e-22 3.706480e+04
## Motor.CertificateYes            3.901259e-11 9.505446e+10
## Car.CertificateYes              8.279113e-26 3.699650e+26
## Bicycle.OwningYes               1.057596e-13 7.967588e+13
## Motor.OwningYes                 6.460217e-08 2.670390e+13
## Car.OwningYes                   1.652274e-21 1.750405e+24
## Number.of.Bicycles1             3.432762e-14 2.462572e+06
## Number.of.Bicycles2             4.677571e-17 8.192070e+11
## Number.of.Bicycles>=3           2.754032e-05 2.875523e+11
## Number.of.Motors1               1.089594e-15 1.081292e+10
## Number.of.Motors2               9.515778e-08 5.980492e+13
## Number.of.Motors3               9.467723e-16 3.758266e+17
## Number.of.Motors>3              3.280913e-16 5.701684e+09
## Number.of.Car1                  2.085378e-16 1.298868e+08
## Number.of.Car>=2                1.113053e-25 1.466866e+08
## Distance                        5.984259e-08 2.325584e+07
## Travel.Period                   2.604872e-01 3.078116e+00
## Cost                            2.577503e-02 3.349158e+11
## 
## , , 4
## 
##                                        2.5 %       97.5 %
## (Intercept)                     1.738055e-60 2.128680e-40
## Bus.Stop.ConditionYes           9.628673e-13 5.184034e+17
## Central.AreaYes                 4.841608e-17 1.391608e+26
## PurposePicking Children         2.104316e-06 1.379748e+08
## PurposeEntertainment            1.492548e-13 1.801831e-03
## PurposeOthers                   1.692407e+13 2.000124e+13
## Frequency2 times                3.772462e-07 6.830878e+00
## Frequency3 times                3.077825e-16 1.541457e-02
## Frequency> 3 times              4.069758e-24 1.030585e+01
## Departure.TimeAfternoon         8.918648e-04 1.345190e+08
## Departure.TimeEvening           6.883812e-14 2.996743e+06
## Departure.TimeOthers            1.306200e+03 2.345492e+04
## Sidewalk.ClearanceYes           5.498785e-04 4.857881e+12
## Lane.SeparateYes                9.673292e-31 5.284624e+13
## Temporary.Stop.Number1 stops    1.820599e-21 2.380480e+22
## Temporary.Stop.Number2 stops    3.101978e-10 9.069964e+09
## Temporary.Stop.Number>=3 stops  9.780554e-07 1.019408e-06
## Mode.Choice.ReasonComfortable   3.110867e-20 9.727039e+19
## Mode.Choice.ReasonLow price     3.411122e-20 3.411122e-20
## Mode.Choice.ReasonAccessibility 7.338758e-07 8.707137e-07
## Mode.Choice.ReasonReliability   2.010600e-10 9.345276e+34
## Mode.Choice.Reasonothers        8.402958e-09 2.320273e+03
## WeatherRainny                   3.746687e+09 6.795366e+16
## WeatherCool                     1.800372e+01 1.898724e+09
## WeekendYes                      3.191454e-18 3.069000e+26
## Bus.Stop.PresentYes             1.657311e-13 3.881466e+03
## Bus.Stop.PresentDon't know      7.131970e-04 4.751120e+10
## GenderMale                      1.813169e-14 3.863209e+17
## Age16-18                        7.464757e-13 1.107670e-01
## Age19-24                        2.657581e-19 2.521887e+02
## Age25-45                        1.130742e-14 2.978259e+18
## Age46-60                        6.635208e-05 1.417614e+07
## Age>60                          2.547537e-30 2.547538e-30
## OccupationStudents              7.759892e+00 1.483104e+21
## OccupationOfficers              6.924265e-14 2.352014e+16
## OccupationHousewife             1.164119e+08 1.164949e+08
## OccupationUnemployed                     NaN          NaN
## OccupationWorkers               3.254639e-07 1.972523e+07
## OccupationFree labor            3.933434e-11 4.300543e+17
## OccupationOthers                1.579349e-14 4.544266e-14
## Income(8-15) millions           1.939517e-03 2.250088e+24
## Income(15-25) millions          1.029943e-06 1.359211e+12
## Income>25 millions              5.113911e-05 4.958005e+16
## Number.of.Children1 child       3.833958e-15 1.824899e+24
## Number.of.Children2 children    2.598983e+01 1.139522e+23
## Number.of.Children>= 3 children 7.921747e-21 7.921748e-21
## Motor.CertificateYes            2.059972e-06 2.516906e+14
## Car.CertificateYes              1.638984e-05 9.424099e+13
## Bicycle.OwningYes               4.549050e-09 1.843436e+15
## Motor.OwningYes                 4.841821e-07 1.616301e+18
## Car.OwningYes                   3.159521e+03 1.845950e+22
## Number.of.Bicycles1             1.177942e-07 4.211023e+13
## Number.of.Bicycles2             3.972491e-09 9.854263e+02
## Number.of.Bicycles>=3           1.080182e+05 1.080188e+05
## Number.of.Motors1               1.836804e-17 1.491408e+29
## Number.of.Motors2               3.329875e-14 2.300677e+30
## Number.of.Motors3               3.394077e-02 9.799253e+08
## Number.of.Motors>3              2.182013e+10 2.459818e+10
## Number.of.Car1                  1.554178e-07 2.367780e+08
## Number.of.Car>=2                1.889073e-16 6.401754e-05
## Distance                        3.453573e-30 2.618652e+20
## Travel.Period                   7.299831e-06 1.903793e+05
## Cost                            5.547981e-04 5.402659e+21
## 
## , , 5
## 
##                                        2.5 %       97.5 %
## (Intercept)                     1.901190e-47 5.999334e+04
## Bus.Stop.ConditionYes           2.046565e-13 1.267116e+12
## Central.AreaYes                 1.524348e-09 2.311632e+09
## PurposePicking Children         3.526385e-16 1.349127e-12
## PurposeEntertainment            3.574269e-08 2.471238e+15
## PurposeOthers                   3.357617e-52 1.584563e+23
## Frequency2 times                4.024110e-08 5.789761e+19
## Frequency3 times                2.586896e-12 5.124417e+17
## Frequency> 3 times              1.083103e-18 1.049186e+05
## Departure.TimeAfternoon         1.271582e-18 1.398834e+07
## Departure.TimeEvening           9.333637e-17 1.194976e+12
## Departure.TimeOthers            1.417917e-17 1.423732e+15
## Sidewalk.ClearanceYes           1.670040e-04 1.567234e+32
## Lane.SeparateYes                1.220660e-12 3.763184e+14
## Temporary.Stop.Number1 stops    6.150659e-09 2.167339e+13
## Temporary.Stop.Number2 stops    3.173326e-09 6.001678e+23
## Temporary.Stop.Number>=3 stops  1.437551e-18 1.092792e+31
## Mode.Choice.ReasonComfortable   5.698277e-12 1.037409e+15
## Mode.Choice.ReasonLow price     4.815877e-84 9.796149e+25
## Mode.Choice.ReasonAccessibility 2.202592e-10 3.586557e+19
## Mode.Choice.ReasonReliability   1.835463e+13 1.804403e+35
## Mode.Choice.Reasonothers        1.766516e-24 6.007504e+08
## WeatherRainny                   5.947009e+09 6.198156e+09
## WeatherCool                     7.910469e-16 8.190482e+08
## WeekendYes                      1.311241e-11 3.547904e+15
## Bus.Stop.PresentYes             1.109806e-13 1.826530e+16
## Bus.Stop.PresentDon't know      2.914092e-15 2.149665e+20
## GenderMale                      3.037362e-15 2.298939e+10
## Age16-18                        1.183123e-11 1.773703e+16
## Age19-24                        1.529525e-12 2.487306e+33
## Age25-45                        5.940632e-27 2.628224e+06
## Age46-60                        6.516884e-22 3.188154e+24
## Age>60                          2.661200e-34 2.416577e+23
## OccupationStudents              3.910393e-26 2.703870e+13
## OccupationOfficers              1.113725e-18 6.582689e+24
## OccupationHousewife             8.420445e-11 6.387306e+35
## OccupationUnemployed            6.910087e-14 6.910087e-14
## OccupationWorkers               6.993036e-41 2.012943e+20
## OccupationFree labor            2.797480e-08 1.290573e+27
## OccupationOthers                1.427754e-14 3.978131e+40
## Income(8-15) millions           5.371755e+01 3.180218e+22
## Income(15-25) millions          3.852816e+07 1.130436e+37
## Income>25 millions              3.573572e-11 9.457403e+39
## Number.of.Children1 child       1.199653e-13 7.805837e+15
## Number.of.Children2 children    1.212126e-16 9.668546e+39
## Number.of.Children>= 3 children 1.166000e-38 1.166000e-38
## Motor.CertificateYes            2.038297e-28 3.686247e+06
## Car.CertificateYes              3.209926e-55 2.935258e+43
## Bicycle.OwningYes               1.276944e-14 1.998632e+13
## Motor.OwningYes                 2.902992e-16 4.093779e+07
## Car.OwningYes                   7.687261e-47 1.311239e+45
## Number.of.Bicycles1             3.037917e-11 3.208759e+11
## Number.of.Bicycles2             1.005865e-23 6.573246e+10
## Number.of.Bicycles>=3           4.627028e-15 5.977139e-08
## Number.of.Motors1               5.500680e-27 1.916961e+10
## Number.of.Motors2               5.406531e-18 1.441666e+10
## Number.of.Motors3               2.284353e-31 9.100088e+08
## Number.of.Motors>3              4.269005e-26 4.280999e-26
## Number.of.Car1                  2.807656e-31 1.702004e+08
## Number.of.Car>=2                7.385107e-07 7.504682e-07
## Distance                        2.045940e-13 1.036439e+04
## Travel.Period                   2.422399e-01 4.259825e+00
## Cost                            9.404229e-01 3.071945e+16
## 
## , , 6
## 
##                                        2.5 %       97.5 %
## (Intercept)                     3.742558e-30 1.015030e-09
## Bus.Stop.ConditionYes           6.167443e-08 5.373537e+15
## Central.AreaYes                 2.511116e-01 2.563272e+01
## PurposePicking Children         1.038082e-10 1.792577e+02
## PurposeEntertainment            2.557744e-17 3.545528e+05
## PurposeOthers                   2.143102e-14 2.543159e-14
## Frequency2 times                1.039592e-12 3.949506e-06
## Frequency3 times                8.210764e-18 3.669009e+05
## Frequency> 3 times              2.464784e-26 6.790280e-07
## Departure.TimeAfternoon         7.230712e-12 4.590330e-05
## Departure.TimeEvening           3.005904e-14 8.963153e+02
## Departure.TimeOthers            6.915226e-03 1.325569e-01
## Sidewalk.ClearanceYes           1.609228e-11 3.254053e+08
## Lane.SeparateYes                5.456136e-11 2.102286e+09
## Temporary.Stop.Number1 stops    1.524557e-11 7.694821e+02
## Temporary.Stop.Number2 stops    8.503979e-04 1.717107e+13
## Temporary.Stop.Number>=3 stops  1.909497e+00 1.910991e+00
## Mode.Choice.ReasonComfortable   2.216780e+00 1.027571e+25
## Mode.Choice.ReasonLow price     3.008386e+09 4.054141e+11
## Mode.Choice.ReasonAccessibility 3.330873e+15 9.294125e+38
## Mode.Choice.ReasonReliability   6.326865e+05 3.560084e+33
## Mode.Choice.Reasonothers        2.303141e-03 6.429509e+08
## WeatherRainny                   4.946269e+09 8.861848e+16
## WeatherCool                     2.039584e-02 3.464012e+11
## WeekendYes                      3.252138e-22 1.614702e+15
## Bus.Stop.PresentYes             6.120394e-21 2.500543e+12
## Bus.Stop.PresentDon't know      7.000266e-01 1.019712e+13
## GenderMale                      5.638407e-13 6.979820e+08
## Age16-18                        5.358930e-16 4.427007e-09
## Age19-24                        2.795158e-10 1.577733e+14
## Age25-45                        2.516569e-21 1.952127e+10
## Age46-60                        5.831615e-18 1.212950e+09
## Age>60                          6.093340e-08 2.164385e+03
## OccupationStudents              4.852673e-24 3.051102e-01
## OccupationOfficers              2.030172e-19 1.143663e+09
## OccupationHousewife             1.622842e+03 1.004274e+24
## OccupationUnemployed            1.425944e+04 1.425944e+04
## OccupationWorkers               2.256435e-09 3.450172e-08
## OccupationFree labor            1.139299e-08 1.022981e+04
## OccupationOthers                2.069341e-11 5.870143e+06
## Income(8-15) millions           2.785141e-14 6.970426e+28
## Income(15-25) millions          2.178011e-02 9.996175e+10
## Income>25 millions              1.256801e-02 1.170334e+05
## Number.of.Children1 child       3.888587e-08 9.693184e+17
## Number.of.Children2 children    2.079538e-05 1.191534e+18
## Number.of.Children>= 3 children 1.889080e-24 1.890666e-24
## Motor.CertificateYes            8.078543e-14 2.277932e+08
## Car.CertificateYes              8.314638e-11 1.153526e+05
## Bicycle.OwningYes               8.650441e-08 8.497227e+09
## Motor.OwningYes                 2.563336e-05 1.612786e+07
## Car.OwningYes                   6.149399e-01 8.354933e+14
## Number.of.Bicycles1             1.908827e-10 2.489728e+12
## Number.of.Bicycles2             1.471648e-08 3.710335e+03
## Number.of.Bicycles>=3           1.099097e+01 1.481046e+03
## Number.of.Motors1               1.475378e-13 2.081440e+04
## Number.of.Motors2               1.328369e-10 1.266613e+17
## Number.of.Motors3               1.001595e-02 6.898419e+10
## Number.of.Motors>3              2.025706e+01 2.090116e+01
## Number.of.Car1                  1.166220e-10 8.956422e+10
## Number.of.Car>=2                1.790058e-07 4.488959e+04
## Distance                        8.810221e-28 2.002382e+15
## Travel.Period                   9.213141e-02 1.649763e+01
## Cost                            9.678848e-04 7.958395e+21
## 
## , , 7
## 
##                                        2.5 %       97.5 %
## (Intercept)                     2.784726e-28 1.521001e+10
## Bus.Stop.ConditionYes           4.403494e-13 5.986527e+09
## Central.AreaYes                 4.803817e-08 2.797121e+08
## PurposePicking Children         1.466877e-15 1.011611e+13
## PurposeEntertainment            5.980400e-23 7.957911e+01
## PurposeOthers                   2.105170e-10 2.010655e+21
## Frequency2 times                4.736234e-05 1.582053e+25
## Frequency3 times                4.105527e-17 2.239491e+10
## Frequency> 3 times              9.783909e-18 1.055749e+04
## Departure.TimeAfternoon         2.933914e-14 2.866831e+08
## Departure.TimeEvening           1.849052e-14 3.619403e+11
## Departure.TimeOthers            8.933955e-17 2.336293e+16
## Sidewalk.ClearanceYes           2.400801e-11 8.842191e+15
## Lane.SeparateYes                5.494563e-12 1.419154e+12
## Temporary.Stop.Number1 stops    6.673997e-15 7.380594e+05
## Temporary.Stop.Number2 stops    6.197646e-05 2.261320e+19
## Temporary.Stop.Number>=3 stops  6.051069e-28 2.038388e+17
## Mode.Choice.ReasonComfortable   3.788169e-09 5.139929e+14
## Mode.Choice.ReasonLow price     8.176727e-18 1.189755e+17
## Mode.Choice.ReasonAccessibility 3.343940e-16 1.695728e+13
## Mode.Choice.ReasonReliability   1.527666e-31 1.527666e-31
## Mode.Choice.Reasonothers        2.063008e-33 9.380237e-32
## WeatherRainny                   3.829064e-01 1.235764e+04
## WeatherCool                     9.373024e-12 6.019579e+08
## WeekendYes                      7.841615e-11 7.757510e+13
## Bus.Stop.PresentYes             6.706000e-19 6.760216e+06
## Bus.Stop.PresentDon't know      1.418798e-10 5.473701e+15
## GenderMale                      1.714013e-09 3.001921e+12
## Age16-18                        2.855801e-13 6.343349e+10
## Age19-24                        1.313506e-21 6.113556e+08
## Age25-45                        7.273446e-16 1.754324e+10
## Age46-60                        2.310613e-17 7.991062e+20
## Age>60                          1.262274e-16 1.317254e+31
## OccupationStudents              5.000970e+00 6.825523e+30
## OccupationOfficers              2.927211e-01 8.004112e+29
## OccupationHousewife             6.061058e-07 9.180148e+34
## OccupationUnemployed            2.133678e-06 3.834711e+28
## OccupationWorkers               2.703907e-37 2.858504e+11
## OccupationFree labor            1.014801e+01 1.373469e+26
## OccupationOthers                2.415560e-03 2.699309e+26
## Income(8-15) millions           2.361098e-08 1.268415e+13
## Income(15-25) millions          6.626579e-09 1.187728e+13
## Income>25 millions              4.020408e-17 1.088338e+10
## Number.of.Children1 child       1.271082e-03 2.161265e+14
## Number.of.Children2 children    1.247573e-14 1.193535e+17
## Number.of.Children>= 3 children 2.302507e-25 1.199457e+03
## Motor.CertificateYes            3.402538e-18 1.151617e+04
## Car.CertificateYes              1.981603e-29 2.180155e+23
## Bicycle.OwningYes               6.003245e-12 4.367441e+15
## Motor.OwningYes                 7.935737e-15 2.048173e+08
## Car.OwningYes                   7.671973e-19 1.264926e+27
## Number.of.Bicycles1             1.373635e-15 1.399850e+05
## Number.of.Bicycles2             5.370877e-23 3.358732e+05
## Number.of.Bicycles>=3           3.115118e-23 8.659602e-06
## Number.of.Motors1               1.696023e-09 1.134857e+17
## Number.of.Motors2               6.963579e-03 6.864393e+21
## Number.of.Motors3               1.942826e-12 9.452113e+21
## Number.of.Motors>3              2.634191e-10 9.682137e+15
## Number.of.Car1                  5.333391e-24 2.902720e+01
## Number.of.Car>=2                1.444271e-23 9.527691e+13
## Distance                        1.905989e-05 3.689036e+09
## Travel.Period                   2.109080e-01 2.669676e+00
## Cost                            4.869120e-04 3.330784e+08
z <- summary(mlm)$coefficients/summary(mlm)$standard.errors
## Warning in sqrt(diag(vc)): NaNs produced

## Warning in sqrt(diag(vc)): NaNs produced
z
##   (Intercept) Bus.Stop.ConditionYes Central.AreaYes PurposePicking Children
## 2  -3.2465338            0.48946469     -1.06957194              -0.4322354
## 3  -1.4497181           -0.28835801      0.57874774               0.3335249
## 4  -9.7014309            0.37564481      0.45370200               0.3493758
## 5  -1.5962716           -0.04633989      0.05896902             -14.9471068
## 6  -3.6852818            0.72796409      0.78895178              -1.2381128
## 7  -0.9023058           -0.22837912      0.14027309              -0.1287411
##   PurposeEntertainment PurposeOthers Frequency2 times Frequency3 times
## 2          -0.16086277     1.4114602        0.4462997       0.01324077
## 3           0.08069588     0.3035856       -1.0465688      -1.09994722
## 4          -3.02697761   716.6852262       -1.5092675      -2.47845603
## 5           0.68188525    -0.7421087        0.8925374       0.40959090
## 6          -0.97746364  -718.8894906       -5.1791423      -0.99694098
## 7          -1.65110251     0.7355626        1.3857832      -0.44250979
##   Frequency> 3 times Departure.TimeAfternoon Departure.TimeEvening
## 2         -0.1063821               0.6117675            -1.0963547
## 3         -1.5192799               0.3317654            -0.7885900
## 4         -1.7972327               0.8905339            -0.6672183
## 5         -1.1037374              -0.8413818            -0.2756199
## 6         -3.2037099              -4.4597585            -1.2574575
## 7         -1.2100932              -0.4523480            -0.1685049
##   Departure.TimeOthers Sidewalk.ClearanceYes Lane.SeparateYes
## 2          -0.42530063             0.8567258      -0.58533785
## 3           0.01635279             0.2052376      -0.27029643
## 4          11.69867770             1.1586486      -0.73005142
## 5          -0.10380624             1.5483530       0.19697709
## 6          -4.64211853            -0.2315674      -0.09410873
## 7           0.01932130             0.3930017       0.07467142
##   Temporary.Stop.Number1 stops Temporary.Stop.Number2 stops
## 2                   0.19570287                   0.20797654
## 3                  -0.08589075                   1.05197066
## 4                   0.07440834                   0.04523292
## 5                   0.46616772                   0.92784513
## 6                  -1.13433128                   1.22181431
## 7                  -0.81234707                   1.25993541
##   Temporary.Stop.Number>=3 stops Mode.Choice.ReasonComfortable
## 2                     -0.6290573                   -0.91683685
## 3                      0.2136338                    1.25309597
## 4                  -1307.9021121                    0.02386302
## 5                      0.5291227                    0.28150516
## 6                   3243.5264704                    2.01490613
## 7                     -0.4361590                    0.53288473
##   Mode.Choice.ReasonLow price Mode.Choice.ReasonAccessibility
## 2                8.579899e-02                     -0.01623098
## 3               -1.103933e-01                      2.29153001
## 4               -2.805251e+13                   -321.88402644
## 5               -1.027894e+00                      0.66408096
## 6                1.940690e+01                      4.55521334
## 7               -6.863332e-04                     -0.15338162
##   Mode.Choice.ReasonReliability Mode.Choice.Reasonothers WeatherRainny
## 2                  1.429466e+00               -1.4657676 -3.280940e+09
## 3                  4.076311e+00                0.2289478 -2.278814e+00
## 4                  1.108999e+00               -0.8068701  7.130133e+00
## 5                  4.324075e+00               -0.9021656  2.134822e+03
## 6                  2.779424e+00                1.0566229  7.199117e+00
## 7                 -2.068930e+26              -75.3301360  1.597510e+00
##   WeatherCool WeekendYes Bus.Stop.PresentYes Bus.Stop.PresentDon't know
## 2   0.6649655  2.0698192           0.4360741                  0.3722404
## 3  -0.4361724  0.4139225           0.3735650                  1.5230433
## 4   2.5733092  0.4006549          -1.1005287                  1.0676346
## 5  -0.5050660  0.3461083           0.2218397                  0.3258491
## 6   1.4590980 -0.3354068          -0.4696993                  1.9138405
## 7  -0.2224937  0.3090917          -0.8891956                  0.4512007
##   GenderMale   Age16-18   Age19-24   Age25-45   Age46-60        Age>60
## 2  0.8308610 -1.4261707 -1.4757453 -0.8637070 -1.3444426 -1.114602e-02
## 3  0.3913388 -0.6807859 -1.7139582 -1.9807692 -1.0150112 -1.620722e+00
## 4  0.2405738 -2.2952706 -1.5111637  0.2736962  0.5143808 -4.991491e+10
## 5 -0.3274068  0.3838244  0.9355339 -1.1891270  0.1423158 -3.507034e-01
## 6 -0.3163976 -6.6941688  0.3832552 -0.6540901 -0.6069761 -7.207528e-01
## 7  0.3424236 -0.1462383 -0.7990566 -0.3779142  0.2227519  6.344791e-01
##   OccupationStudents OccupationOfficers OccupationHousewife
## 2          1.5893237         -0.2021704       -3.004561e+11
## 3          1.3969977          1.3219894        1.759183e+00
## 4          2.1319533          0.2131667        1.021095e+05
## 5         -0.6043323          0.3145896        1.099197e+00
## 6         -2.0486055         -0.6804362        2.565212e+00
## 7          2.0508960          1.8912492        1.368129e+00
##   OccupationUnemployed OccupationWorkers OccupationFree labor OccupationOthers
## 2         1.333557e+00         0.8733013            0.5367156        0.4048723
## 3         3.978395e-01         0.8906434            2.2728150        0.6794340
## 4                  NaN         0.1148353            0.5052721     -115.9107833
## 5        -2.978903e+13        -0.6435456            1.1058180        0.9631280
## 6         2.383554e+11       -26.6565908           -0.6449728       -0.4397157
## 7         1.311017e+00        -1.0248669            2.1169363        1.6068141
##   Income(8-15) millions Income(15-25) millions Income>25 millions
## 2             0.9703891              1.2822897          0.5161943
## 3             1.4446391              1.0329025          1.1641663
## 4             1.5671230              0.6647804          1.1584327
## 5             2.2864525              2.9690668          1.1478077
## 6             0.7067278              1.4454480          0.8908448
## 7             0.5177724              0.4515035         -0.4715160
##   Number.of.Children1 child Number.of.Children2 children
## 2                 0.9444772                    0.3918552
## 3                 1.4555629                    0.6481831
## 4                 0.4988838                    2.2162226
## 5                 0.2021279                    0.8438759
## 6                 0.8162126                    1.1535170
## 7                 1.3011666                    0.2007301
##   Number.of.Children>= 3 children Motor.CertificateYes Car.CertificateYes
## 2                   -2.063783e-01          -0.34305891         0.41383576
## 3                   -1.260364e+00           0.05216156         0.05639457
## 4                   -1.291022e+09           0.85032851         0.96002490
## 5                   -1.675681e+18          -1.20857595        -0.22060057
## 6                   -2.550601e+05          -0.43266139        -0.64953330
## 7                   -1.524509e+00          -1.22051202        -0.20203539
##   Bicycle.OwningYes Motor.OwningYes Car.OwningYes Number.of.Bicycles1
## 2        0.80518454      -1.0370027   -0.61039344           1.2181423
## 3        0.06750134       0.5929255    0.15066873          -0.6981738
## 4        0.57480830       0.9505527    2.69095755           0.6384855
## 5       -0.04274552      -0.6709830   -0.02140912           0.0880065
## 6        0.33061417       0.4346228    1.90526533           0.2372404
## 7        0.32240242      -0.5062660    0.38954554          -0.9517644
##   Number.of.Bicycles2 Number.of.Bicycles>=3 Number.of.Motors1 Number.of.Motors2
## 2           1.1610089                   NaN        -0.8297793        -0.3386071
## 3          -0.3064913          8.440844e-01        -0.3864616         0.6365865
## 4          -0.9301050          8.306328e+06         0.5309870         0.7548590
## 5          -0.7059460         -5.941804e+00        -0.8569350        -0.5079806
## 6          -0.7327826          3.876247e+00        -0.9728965         0.5249437
## 7          -1.1806393         -3.097582e+00         0.6287222         1.6075416
##   Number.of.Motors3 Number.of.Motors>3 Number.of.Car1 Number.of.Car>=2
## 2        -0.7018855      -2.760542e-01      0.1576286    18295.5759350
## 3         0.1533901      -4.447969e-01     -0.6233210       -0.9934246
## 4         1.4093707       7.806519e+02      0.2021357       -3.3857172
## 5        -1.0731316      -8.161470e+04     -1.1280250    -3443.7693409
## 6         1.3495023       3.787254e+02      0.0956190       -0.3602070
## 7         0.5971722       4.911630e-01     -1.7281506       -0.4717074
##      Distance Travel.Period      Cost
## 2  0.62594058    0.21184411 0.0182854
## 3  0.01928356   -0.17530727 1.4850433
## 4 -0.35535893    0.02689462 1.4492182
## 5 -1.01767296    0.02146650 1.9536318
## 6 -0.54386783    0.15817868 1.4857375
## 7  0.66495056   -0.44350967 0.8628072
pvalue <- (1-pnorm(abs(z), 0, 1))*2
pvalue
##    (Intercept) Bus.Stop.ConditionYes Central.AreaYes PurposePicking Children
## 2 0.0011681957             0.6245127       0.2848120               0.6655703
## 3 0.1471371345             0.7730727       0.5627594               0.7387381
## 4 0.0000000000             0.7071810       0.6500433               0.7268072
## 5 0.1104281569             0.9630393       0.9529768               0.0000000
## 6 0.0002284497             0.4666356       0.4301402               0.2156742
## 7 0.3668944476             0.8193515       0.8884442               0.8975625
##   PurposeEntertainment PurposeOthers Frequency2 times Frequency3 times
## 2          0.872201485     0.1581090     6.553807e-01       0.98943570
## 3          0.935683816     0.7614436     2.952985e-01       0.27135512
## 4          0.002470123     0.0000000     1.312304e-01       0.01319524
## 5          0.495311512     0.4580215     3.721050e-01       0.68210608
## 6          0.328339671     0.0000000     2.229084e-07       0.31879316
## 7          0.098717644     0.4619969     1.658131e-01       0.65812035
##   Frequency> 3 times Departure.TimeAfternoon Departure.TimeEvening
## 2        0.915279174            5.406916e-01             0.2729236
## 3        0.128692067            7.400664e-01             0.4303517
## 4        0.072298685            3.731793e-01             0.5046327
## 5        0.269707055            4.001341e-01             0.7828400
## 6        0.001356691            8.205206e-06             0.2085880
## 7        0.226243118            6.510183e-01             0.8661861
##   Departure.TimeOthers Sidewalk.ClearanceYes Lane.SeparateYes
## 2         6.706175e-01             0.3915964        0.5583206
## 3         9.869529e-01             0.8373865        0.7869322
## 4         0.000000e+00             0.2465995        0.4653588
## 5         9.173231e-01             0.1215373        0.8438455
## 6         3.448549e-06             0.8168741        0.9250228
## 7         9.845848e-01             0.6943182        0.9404761
##   Temporary.Stop.Number1 stops Temporary.Stop.Number2 stops
## 2                    0.8448427                    0.8352473
## 3                    0.9315533                    0.2928130
## 4                    0.9406855                    0.9639217
## 5                    0.6410955                    0.3534879
## 6                    0.2566556                    0.2217779
## 7                    0.4165925                    0.2076927
##   Temporary.Stop.Number>=3 stops Mode.Choice.ReasonComfortable
## 2                      0.5293115                    0.35922814
## 3                      0.8308326                    0.21017078
## 4                      0.0000000                    0.98096187
## 5                      0.5967204                    0.77832297
## 6                      0.0000000                    0.04391449
## 7                      0.6627214                    0.59411337
##   Mode.Choice.ReasonLow price Mode.Choice.ReasonAccessibility
## 2                   0.9316262                    9.870501e-01
## 3                   0.9120975                    2.193278e-02
## 4                   0.0000000                    0.000000e+00
## 5                   0.3039997                    5.066385e-01
## 6                   0.0000000                    5.233244e-06
## 7                   0.9994524                    8.780973e-01
##   Mode.Choice.ReasonReliability Mode.Choice.Reasonothers WeatherRainny
## 2                  1.528704e-01                0.1427116  0.000000e+00
## 3                  4.575588e-05                0.8189095  2.267810e-02
## 4                  2.674305e-01                0.4197413  1.002753e-12
## 5                  1.531729e-05                0.3669689  0.000000e+00
## 6                  5.445538e-03                0.2906837  6.059597e-13
## 7                  0.000000e+00                0.0000000  1.101520e-01
##   WeatherCool WeekendYes Bus.Stop.PresentYes Bus.Stop.PresentDon't know
## 2  0.50607256 0.03846928           0.6627830                 0.70971390
## 3  0.66271166 0.67893090           0.7087280                 0.12774786
## 4  0.01007312 0.68867422           0.2711018                 0.28568536
## 5  0.61351248 0.72926134           0.8244386                 0.74453851
## 6  0.14453813 0.73731825           0.6385699                 0.05564054
## 7  0.82392958 0.75725174           0.3738980                 0.65184493
##   GenderMale     Age16-18   Age19-24   Age25-45  Age46-60    Age>60
## 2  0.4060522 1.538191e-01 0.14001228 0.38774887 0.1788053 0.9911070
## 3  0.6955468 4.960070e-01 0.08653641 0.04761716 0.3101005 0.1050772
## 4  0.8098855 2.171762e-02 0.13074675 0.78431807 0.6069858 0.0000000
## 5  0.7433602 7.011086e-01 0.34951324 0.23438971 0.8868306 0.7258109
## 6  0.7517007 2.169021e-11 0.70153055 0.51305373 0.5438668 0.4710616
## 7  0.7320321 8.837333e-01 0.42425758 0.70549434 0.8237286 0.5257682
##   OccupationStudents OccupationOfficers OccupationHousewife
## 2         0.11198733         0.83978354          0.00000000
## 3         0.16241427         0.18617169          0.07854650
## 4         0.03301068         0.83119697          0.00000000
## 5         0.54562274         0.75307328          0.27168202
## 6         0.04050070         0.49622832          0.01031129
## 7         0.04027708         0.05859108          0.17127185
##   OccupationUnemployed OccupationWorkers OccupationFree labor OccupationOthers
## 2            0.1823489         0.3824989           0.59146410        0.6855714
## 3            0.6907485         0.3731205           0.02303733        0.4968629
## 4                  NaN         0.9085757           0.61336775        0.0000000
## 5            0.0000000         0.5198701           0.26880530        0.3354833
## 6            0.0000000         0.0000000           0.51894481        0.6601431
## 7            0.1898519         0.3054260           0.03426525        0.1080952
##   Income(8-15) millions Income(15-25) millions Income>25 millions
## 2             0.3318526            0.199741027          0.6057187
## 3             0.1485593            0.301649524          0.2443566
## 4             0.1170859            0.506190985          0.2466875
## 5             0.0222278            0.002987057          0.2510479
## 6             0.4797356            0.148332084          0.3730124
## 7             0.6046171            0.651626730          0.6372723
##   Number.of.Children1 child Number.of.Children2 children
## 2                 0.3449259                   0.69516518
## 3                 0.1455135                   0.51686654
## 4                 0.6178613                   0.02667626
## 5                 0.8398167                   0.39873875
## 6                 0.4143786                   0.24869824
## 7                 0.1932014                   0.84090965
##   Number.of.Children>= 3 children Motor.CertificateYes Car.CertificateYes
## 2                       0.8364954            0.7315541          0.6789944
## 3                       0.2075381            0.9584000          0.9550275
## 4                       0.0000000            0.3951425          0.3370427
## 5                       0.0000000            0.2268258          0.8254035
## 6                       0.0000000            0.6652608          0.5159937
## 7                       0.1273815            0.2222708          0.8398891
##   Bicycle.OwningYes Motor.OwningYes Car.OwningYes Number.of.Bicycles1
## 2         0.4207132       0.2997346   0.541601215           0.2231699
## 3         0.9461826       0.5532310   0.880237042           0.4850685
## 4         0.5654210       0.3418315   0.007124726           0.5231577
## 5         0.9659044       0.5022313   0.982919296           0.9298715
## 6         0.7409359       0.6638362   0.056745590           0.8124703
## 7         0.7471479       0.6126699   0.696872633           0.3412165
##   Number.of.Bicycles2 Number.of.Bicycles>=3 Number.of.Motors1 Number.of.Motors2
## 2           0.2456383                   NaN         0.4066636         0.7349057
## 3           0.7592306          3.986222e-01         0.6991549         0.5243942
## 4           0.3523167          0.000000e+00         0.5954278         0.4503336
## 5           0.4802217          2.819024e-09         0.3914808         0.6114669
## 6           0.4636910          1.060800e-04         0.3306048         0.5996223
## 7           0.2377460          1.951061e-03         0.5295309         0.1079356
##   Number.of.Motors3 Number.of.Motors>3 Number.of.Car1 Number.of.Car>=2
## 2         0.4827506          0.7825065     0.87474948     0.0000000000
## 3         0.8780906          0.6564665     0.53307358     0.3205030700
## 4         0.1587256          0.0000000     0.83981063     0.0007099251
## 5         0.2832121          0.0000000     0.25930938     0.0000000000
## 6         0.1771757          0.0000000     0.92382317     0.7186923687
## 7         0.5503924          0.6233112     0.08396123     0.6371356793
##    Distance Travel.Period       Cost
## 2 0.5313539     0.8322287 0.98541117
## 3 0.9846149     0.8608382 0.13753235
## 4 0.7223207     0.9785438 0.14727665
## 5 0.3088334     0.9828735 0.05074478
## 6 0.5865324     0.8743160 0.13734857
## 7 0.5060821     0.6573971 0.38824346