library(tidyverse)
setwd("~/Documents/Data\ 110/week7")
nations <- read.csv("nations.csv")

Create a new variable GDP by multiplying gdp_percap by population/1 trillion

nations <- nations %>% mutate("GDP ($ trillion)" = gdp_percap*population/1000000000000)
nations %>%
  filter(country %in% c("China", "Germany", "Japan", "United States")) %>%
  ggplot(mapping = aes(x = year, y = `GDP ($ trillion)`, color = country)) + 
  geom_point() +
  geom_line() + 
  labs(title = "China's Rise to Become the Largest Economy") +
  scale_color_brewer(palette = "Set1") +
  theme_bw() + 
  theme(panel.border = element_blank())

nations %>%
  group_by(region, year) %>%
  summarise(`GDP ($ trillion)`=sum(`GDP ($ trillion)`, na.rm = TRUE)) %>%
  ggplot(mapping = aes(x = year, y = `GDP ($ trillion)`, fill = region)) +
  geom_area(color = "white") +
  labs(title = "GDP by World Bank Region") +
  scale_fill_brewer(palette = "Set2") + 
  theme_bw() +
  theme(panel.border = element_blank())
`summarise()` has grouped output by 'region'. You can override using the `.groups` argument.

LS0tCnRpdGxlOiAiRGF0YSAxMTAgcGxvdCBob21ld29yayIKQXV0aG9yOiAiRGFuaWVsIExlZmV2cmUiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCgpgYGB7cn0Kc2V0d2QoIn4vRG9jdW1lbnRzL0RhdGFcIDExMC93ZWVrNyIpCm5hdGlvbnMgPC0gcmVhZC5jc3YoIm5hdGlvbnMuY3N2IikKYGBgCgpDcmVhdGUgYSBuZXcgdmFyaWFibGUgR0RQIGJ5IG11bHRpcGx5aW5nIGdkcF9wZXJjYXAgYnkgcG9wdWxhdGlvbi8xIHRyaWxsaW9uCgpgYGB7cn0KbmF0aW9ucyA8LSBuYXRpb25zICU+JSBtdXRhdGUoIkdEUCAoJCB0cmlsbGlvbikiID0gZ2RwX3BlcmNhcCpwb3B1bGF0aW9uLzEwMDAwMDAwMDAwMDApCmBgYAoKYGBge3J9Cm5hdGlvbnMgJT4lCiAgZmlsdGVyKGNvdW50cnkgJWluJSBjKCJDaGluYSIsICJHZXJtYW55IiwgIkphcGFuIiwgIlVuaXRlZCBTdGF0ZXMiKSkgJT4lCiAgZ2dwbG90KG1hcHBpbmcgPSBhZXMoeCA9IHllYXIsIHkgPSBgR0RQICgkIHRyaWxsaW9uKWAsIGNvbG9yID0gY291bnRyeSkpICsgCiAgZ2VvbV9wb2ludCgpICsKICBnZW9tX2xpbmUoKSArIAogIGxhYnModGl0bGUgPSAiQ2hpbmEncyBSaXNlIHRvIEJlY29tZSB0aGUgTGFyZ2VzdCBFY29ub215IikgKwogIHNjYWxlX2NvbG9yX2JyZXdlcihwYWxldHRlID0gIlNldDEiKSArCiAgdGhlbWVfYncoKSArIAogIHRoZW1lKHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSkKYGBgCgpgYGB7cn0KbmF0aW9ucyAlPiUKICBncm91cF9ieShyZWdpb24sIHllYXIpICU+JQogIHN1bW1hcmlzZShgR0RQICgkIHRyaWxsaW9uKWA9c3VtKGBHRFAgKCQgdHJpbGxpb24pYCwgbmEucm0gPSBUUlVFKSkgJT4lCiAgZ2dwbG90KG1hcHBpbmcgPSBhZXMoeCA9IHllYXIsIHkgPSBgR0RQICgkIHRyaWxsaW9uKWAsIGZpbGwgPSByZWdpb24pKSArCiAgZ2VvbV9hcmVhKGNvbG9yID0gIndoaXRlIikgKwogIGxhYnModGl0bGUgPSAiR0RQIGJ5IFdvcmxkIEJhbmsgUmVnaW9uIikgKwogIHNjYWxlX2ZpbGxfYnJld2VyKHBhbGV0dGUgPSAiU2V0MiIpICsgCiAgdGhlbWVfYncoKSArCiAgdGhlbWUocGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpKQoKYGBgCgo=