library(plyr)
## Warning: package 'plyr' was built under R version 4.0.4
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.0.4
library(openintro)
library(ggplot2)
library(lattice)
## Warning: package 'lattice' was built under R version 4.0.4
#library(reshape)
#library(reshape2)
library(plyr)
library(tidyverse)
library(openintro)
library(ggplot2)
library(lattice)
#library(reshape)
#library(reshape2)

Exercise 6.5.2

  1. Using the classes [15,20, 20,25) and so on, construct a histogram of the data. Does the shape of the distribution support the criticism you made in part (a)? If so, explain.

Answers I am not sure how to group in “classes,” so I created a histogram in R as seen below. The shape of the histogram is a bit right skewed, so it would be non-normal and support the criticism in part a.

# Create the Cell data frame.
cell.data <- data.frame(
  cell_id = c (1:36),
  cell_count = c("38","42","25","35","35","33","48","53","17","24","26","26","47","28","24","35","38","26","38","29","49","26","41","26","35","38","44","25","45","28","31","46","32","39","59","53"))

cell.data
##    cell_id cell_count
## 1        1         38
## 2        2         42
## 3        3         25
## 4        4         35
## 5        5         35
## 6        6         33
## 7        7         48
## 8        8         53
## 9        9         17
## 10      10         24
## 11      11         26
## 12      12         26
## 13      13         47
## 14      14         28
## 15      15         24
## 16      16         35
## 17      17         38
## 18      18         26
## 19      19         38
## 20      20         29
## 21      21         49
## 22      22         26
## 23      23         41
## 24      24         26
## 25      25         35
## 26      26         38
## 27      27         44
## 28      28         25
## 29      29         45
## 30      30         28
## 31      31         31
## 32      32         46
## 33      33         32
## 34      34         39
## 35      35         59
## 36      36         53
# Create frequency table from data frame
set.seed(0)
#table(df$cell_count)
cell.data %>% count(cell_count)
##    cell_count n
## 1          17 1
## 2          24 2
## 3          25 2
## 4          26 5
## 5          28 2
## 6          29 1
## 7          31 1
## 8          32 1
## 9          33 1
## 10         35 4
## 11         38 4
## 12         39 1
## 13         41 1
## 14         42 1
## 15         44 1
## 16         45 1
## 17         46 1
## 18         47 1
## 19         48 1
## 20         49 1
## 21         53 2
## 22         59 1
samp <- c(38,42,25,35,35,33,48,53,17,24,26,26,47,28,24,35,38,26,38,29,49,26,41,26,35,38,44,25,45,28,31,46,32,39,59,53)
sample_mean <- mean(samp)
sample_mean
## [1] 35.66667
se <- sd(samp) / sqrt(36)
se
## [1] 1.664284
lower <- sample_mean - 2.042 * se
upper <- sample_mean + 2.042 * se
c(lower, upper)
## [1] 32.26820 39.06513
#create a histogram from a frequency table

hist(samp,
main ="Histogram - Number of Dendritic Branches",
bins <- seq(15,60,by=5),
border = "Green",
col = "Orange" ,
summary(samp))
## Warning in if (freq) x$counts else x$density: the condition has length > 1 and
## only the first element will be used
## Warning in if (!freq) "Density" else "Frequency": the condition has length > 1
## and only the first element will be used

samp
##  [1] 38 42 25 35 35 33 48 53 17 24 26 26 47 28 24 35 38 26 38 29 49 26 41 26 35
## [26] 38 44 25 45 28 31 46 32 39 59 53
LS0tDQp0aXRsZTogIldlZWsgNyBIb21ld29yayBBc3NpZ25tZW50XzEgUHJvYmxlbSB3aXRoIEFhcnluJ3MgV3JpdHRlbnMiDQphdXRob3I6ICJBYXJ5biBaaW1tZXJtYW4iDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCmBgYHtyIGxvYWQtcGFja2FnZXMsIG1lc3NhZ2U9RkFMU0V9DQpgYGANCg0KDQpgYGB7ciBsb2FkLXBhY2thZ2VzLCBtZXNzYWdlPUZBTFNFfQ0KDQpsaWJyYXJ5KHBseXIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkob3BlbmludHJvKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShsYXR0aWNlKQ0KI2xpYnJhcnkocmVzaGFwZSkNCiNsaWJyYXJ5KHJlc2hhcGUyKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDYuNS4yDQoNCg0KYi4gIFVzaW5nIHRoZSBjbGFzc2VzIFsxNSwyMCwgMjAsMjUpIGFuZCBzbyBvbiwgY29uc3RydWN0IGEgaGlzdG9ncmFtIG9mIHRoZSBkYXRhLiAgRG9lcyB0aGUgc2hhcGUgb2YgdGhlIGRpc3RyaWJ1dGlvbiBzdXBwb3J0IHRoZSBjcml0aWNpc20geW91IG1hZGUgaW4gcGFydCAoYSk/ICBJZiBzbywgZXhwbGFpbi4NCg0KKipBbnN3ZXJzKioNCkkgYW0gbm90IHN1cmUgaG93IHRvIGdyb3VwIGluICJjbGFzc2VzLCIgc28gSSBjcmVhdGVkIGEgaGlzdG9ncmFtIGluIFIgYXMgc2VlbiBiZWxvdy4gIFRoZSBzaGFwZSBvZiB0aGUgaGlzdG9ncmFtIGlzIGEgYml0IHJpZ2h0IHNrZXdlZCwgc28gaXQgd291bGQgYmUgbm9uLW5vcm1hbCBhbmQgc3VwcG9ydCB0aGUgY3JpdGljaXNtIGluIHBhcnQgYS4gIA0KDQoNCg0KYGBge3J9DQojIENyZWF0ZSB0aGUgQ2VsbCBkYXRhIGZyYW1lLg0KY2VsbC5kYXRhIDwtIGRhdGEuZnJhbWUoDQogIGNlbGxfaWQgPSBjICgxOjM2KSwNCiAgY2VsbF9jb3VudCA9IGMoIjM4IiwiNDIiLCIyNSIsIjM1IiwiMzUiLCIzMyIsIjQ4IiwiNTMiLCIxNyIsIjI0IiwiMjYiLCIyNiIsIjQ3IiwiMjgiLCIyNCIsIjM1IiwiMzgiLCIyNiIsIjM4IiwiMjkiLCI0OSIsIjI2IiwiNDEiLCIyNiIsIjM1IiwiMzgiLCI0NCIsIjI1IiwiNDUiLCIyOCIsIjMxIiwiNDYiLCIzMiIsIjM5IiwiNTkiLCI1MyIpKQ0KDQpjZWxsLmRhdGENCg0KDQoNCmBgYA0KYGBge3J9DQojIENyZWF0ZSBmcmVxdWVuY3kgdGFibGUgZnJvbSBkYXRhIGZyYW1lDQpzZXQuc2VlZCgwKQ0KI3RhYmxlKGRmJGNlbGxfY291bnQpDQpjZWxsLmRhdGEgJT4lIGNvdW50KGNlbGxfY291bnQpDQoNCg0KDQpgYGANCmBgYHtyfQ0KDQpzYW1wIDwtIGMoMzgsNDIsMjUsMzUsMzUsMzMsNDgsNTMsMTcsMjQsMjYsMjYsNDcsMjgsMjQsMzUsMzgsMjYsMzgsMjksNDksMjYsNDEsMjYsMzUsMzgsNDQsMjUsNDUsMjgsMzEsNDYsMzIsMzksNTksNTMpDQpzYW1wbGVfbWVhbiA8LSBtZWFuKHNhbXApDQpzYW1wbGVfbWVhbg0KDQpzZSA8LSBzZChzYW1wKSAvIHNxcnQoMzYpDQpzZQ0KDQoNCmxvd2VyIDwtIHNhbXBsZV9tZWFuIC0gMi4wNDIgKiBzZQ0KdXBwZXIgPC0gc2FtcGxlX21lYW4gKyAyLjA0MiAqIHNlDQpjKGxvd2VyLCB1cHBlcikNCg0KDQoNCmBgYA0KYGBge3J9DQoNCiNjcmVhdGUgYSBoaXN0b2dyYW0gZnJvbSBhIGZyZXF1ZW5jeSB0YWJsZQ0KDQpoaXN0KHNhbXAsDQptYWluID0iSGlzdG9ncmFtIC0gTnVtYmVyIG9mIERlbmRyaXRpYyBCcmFuY2hlcyIsDQpiaW5zIDwtIHNlcSgxNSw2MCxieT01KSwNCmJvcmRlciA9ICJHcmVlbiIsDQpjb2wgPSAiT3JhbmdlIiAsDQpzdW1tYXJ5KHNhbXApKQ0Kc2FtcA0KDQoNCmBgYA0KDQo=