mod = glm(Good ~ Style, data = beer, family = binomial)
summary(mod)
## 
## Call:
## glm(formula = Good ~ Style, family = binomial, data = beer)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0302  -0.8067  -0.8067   1.3321   1.6006  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   -0.9555     0.5262  -1.816   0.0694 .
## StyleIPA       0.5988     0.7210   0.831   0.4062  
## StyleLager   -17.6106  2174.2129  -0.008   0.9935  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 51.564  on 43  degrees of freedom
## Residual deviance: 44.305  on 41  degrees of freedom
## AIC: 50.305
## 
## Number of Fisher Scoring iterations: 17
#log odds of the beer being good = -0.9555 + 0.5988I(IPA) - 17.6106I(lager)
  #IPA has better chance of being good than lager (coefficient for IPA is positive, coefficient for lager is negative)
  #Ale is built into the intercept
#log odds of being good for ale: -0.9555
  #for IPA: -0.9555 + 0.5988
  #for lager: -0.9555 - 17.6106

coef(mod)
## (Intercept)    StyleIPA  StyleLager 
##  -0.9555114   0.5988365 -17.6105571
ilogit(coef(mod)[1]) #ale's probability of being good
## (Intercept) 
##   0.2777778
ilogit(sum(coef(mod)[c(1,2)])) #IPA's probability of being good
## [1] 0.4117647
ilogit(sum(coef(mod)[c(1,3)])) #lager's probability of being good
## [1] 8.646869e-09
#the odds of an IPA being good are ??? times the odds of an ale being good
exp(coef(mod)[2])
## StyleIPA 
##     1.82
#the odds of an IPA being good are 1.82 times the odds of an ale being good

exp(coef(mod)[3])
##   StyleLager 
## 2.248186e-08
#the odds of a lager being good are 1.2*10^-8 times the odds of an ale being good
exp(-coef(mod)[3]) #flip it to make it easier to understand
## StyleLager 
##   44480305
#the odds of an ale being good are 44480305 times the odds of a lager being good

mod2 = glm(Good ~ 0+ Style, data = beer, family = binomial) #model without ale in intercept
summary(mod2)
## 
## Call:
## glm(formula = Good ~ 0 + Style, family = binomial, data = beer)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0302  -0.8067  -0.8067   1.3321   1.6006  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## StyleAle     -0.9555     0.5262  -1.816   0.0694 .
## StyleIPA     -0.3567     0.4928  -0.724   0.4692  
## StyleLager  -18.5661  2174.2129  -0.009   0.9932  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 60.997  on 44  degrees of freedom
## Residual deviance: 44.305  on 41  degrees of freedom
## AIC: 50.305
## 
## Number of Fisher Scoring iterations: 17
coef(mod2)[1] #log odds of ale being good
##   StyleAle 
## -0.9555114
coef(mod2)[2] #log odds of IPA being good
##   StyleIPA 
## -0.3566749
coef(mod2)[3] #log odds of lager being good
## StyleLager 
##  -18.56607
exp(coef(mod2)[2]) #odds of IPA being good
## StyleIPA 
##      0.7
exp(coef(mod2)[3]) #odds of lager being good
##   StyleLager 
## 8.646869e-09
exp(coef(mod2)[2]) / exp(coef(mod2)[3])
## StyleIPA 
## 80954155
#the odds of an IPA being good are 8 million times the odds of a lager being good

mod3 = glm(Good ~ Style + ABV, data = beer, family = binomial)
summary(mod3)
## 
## Call:
## glm(formula = Good ~ Style + ABV, family = binomial, data = beer)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7351  -0.8053  -0.3668   0.7564   1.8907  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   -9.8628     4.3839  -2.250   0.0245 *
## StyleIPA      -0.9435     1.0476  -0.901   0.3678  
## StyleLager   -16.7872  2105.6351  -0.008   0.9936  
## ABV            1.5882     0.7657   2.074   0.0381 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 51.564  on 43  degrees of freedom
## Residual deviance: 39.097  on 40  degrees of freedom
## AIC: 47.097
## 
## Number of Fisher Scoring iterations: 17
exp(coef(mod3)[2])
##  StyleIPA 
## 0.3892449
#after accounting for the ABV of the beer, the odds of an IPA being good are 0.3892 times the odds of an ale being good
exp(-coef(mod3)[2])
## StyleIPA 
## 2.569077
#after accounting for the ABV of the beer, the odds an ale being good are 2.5 times the odds of an IPA being good
#Interpretations
  #Binary: The mean number of complaints a doctor in residency receives is about -- times the mean number of complaints a non-residency doctor receives.
  #Male doctors receive on average 1.4 times as many complaints as female doctors.
  #lack of fit: model does/does not exhibit lack of fit
    #no such thing as evidence supporting the H0