Total combined dataset with both Docket cases and OSS search. Of docket 397 cases were reviewed; of these 176 were included.

In total we analyzed 767 cases. This includes the Westlaw and Lexis OSS.

library(readxl)
JD <- read_excel("C:/Users/telsabawi/Dropbox/1-Research/1- GW BOP White Paper/Datasets/combined_Jail_deaths_data_3.20.21.xlsx", 
    na = "NA")
########################Formatting All Variables
JD$OFC_SUE<-factor(JD$OFC_SUE,
                labels = c(`0` = "No", `1` = "Yes"))

JD$HEA_SUE<-factor(JD$HEA_SUE,
                labels = c(`0` = "No", `1` = "Yes"))

JD$PHYS<-factor(JD$PHYS,
                labels = c(`0` = "No", `1` = "Yes"))

JD$CRT<-factor(JD$CRT,labels = c(`1` = "Federal", `2` = "State"))

JD$City_Sue <-factor(JD$City_Sue,
                     labels = c(`0` = "No", `1` = "Yes"))

JD$Jail_Sue <-factor(JD$Jail_Sue, 
                     labels = c(`0` = "No", `1` = "Yes"))

JD$Officer_Sue <-factor(JD$Officer_Sue, labels = c(`0` = "No", `1` = "Yes"))
  
JD$OUTCOME<-as.factor(JD$OUTCOME)

JD$STATE<-as.factor(JD$STATE)

JD$COUNTY_CIT<-as.factor(JD$COUNTY_CIT)

JD$PREX<-as.factor(JD$PREX)

JD$MENTAL <- factor(JD$MENTAL,labels = c(`0` = "No", `1` = "Yes"))

JD$SU <- factor(JD$SU,labels = c(`0` = "No", `1` = "Yes"))

JD$PHYS <- factor(JD$PHYS,labels = c(`0` = "No", `1` = "Yes"))

JD$COD_CAT<-as.factor(JD$COD_CAT)

JD$Withdraw <- factor(JD$Withdraw,labels = c(`0` = "No", `1` = "Yes"))

JD$AGE <- as.numeric(JD$AGE)

JD$TTL <- as.numeric(JD$TTL)

#loop via lapply multiple variables to factor

#names <- c(19:33)
#JD[,names] <- lapply(JD[,names] , factor)


JD$Suic_Idea<-factor(JD$Suic_Idea, labels = c(`0` = "No", `1` = "Yes"))
library(knitr)
library(kableExtra)

Court

kable(summary(JD$CRT), align = "ll", col.names = "No. of Cases", caption = "Federal or State Court")
Federal or State Court
No. of Cases
Federal 315
State 57
NA’s 2
A<-table(JD$CRT)
A
## 
## Federal   State 
##     315      57

Percentages:

round(100*prop.table(A),digits=0)
## 
## Federal   State 
##      85      15

Law Enforcement Officials in Official Capacity

kable(summary(JD$OFC_SUE), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Law enforcement Officials as Defendants")
No. of Cases That Listed Law enforcement Officials as Defendants
No. of Cases
No 158
Yes 211
NA’s 5
B<-table(JD$OFC_SUE)

Percentages:

round(100*prop.table(B),digits=0)
## 
##  No Yes 
##  43  57

Law Enforcement Officers Personally

kable(summary(JD$Officer_Sue), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Law Enforcement Officers Personally")
No. of Cases That Listed Law Enforcement Officers Personally
No. of Cases
No 43
Yes 149
NA’s 182
D<-table(JD$Officer_Sue)

Percentages:

round(100*prop.table(D),digits=0)
## 
##  No Yes 
##  22  78

Jails

kable(summary(JD$Jail_Sue), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Law Enforcement Officers Personally")
No. of Cases That Listed Law Enforcement Officers Personally
No. of Cases
No 93
Yes 99
NA’s 182
E<-table(JD$Jail_Sue)

Percentages:

round(100*prop.table(E),digits=0)
## 
##  No Yes 
##  48  52

Counties or Cities

kable(summary(JD$City_Sue), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Law Enforcement Officers Personally")
No. of Cases That Listed Law Enforcement Officers Personally
No. of Cases
No 49
Yes 143
NA’s 182
F<-table(JD$City_Sue)

Percentages:

round(100*prop.table(F),digits=0)
## 
##  No Yes 
##  26  74

Healthcare

kable(summary(JD$HEA_SUE), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Healthcare Professionals (Or Facilities) as Defendants")
No. of Cases That Listed Healthcare Professionals (Or Facilities) as Defendants
No. of Cases
No 170
Yes 198
NA’s 6
C<-table(JD$HEA_SUE)

Percentages:

round(100*prop.table(C),digits=0)
## 
##  No Yes 
##  46  54

Outcomes

kable(summary(JD$OUTCOME), col.names = "No. of Cases", align = "ll", caption = "Case Outcomes.")
Case Outcomes.
No. of Cases
Defense Judgment 40
Defense Verdict 33
Plaintiff Verdict 22
Settlement 211
NA’s 68
V<-table(JD$OUTCOME)

Percentages:

round(100*prop.table(V),digits=0)
## 
##  Defense Judgment   Defense Verdict Plaintiff Verdict        Settlement 
##                13                11                 7                69

Settlement and Plaintiff Verdicts Summaries

tapply(JD$TTL, JD$OUTCOME, summary)
## $`Defense Judgment`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##       0       0       0       0       0       0       2 
## 
## $`Defense Verdict`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## 
## $`Plaintiff Verdict`
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
##   119000   859914  1600000  3570482  5195000 11857344        3 
## 
## $Settlement
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
##     4000   175000   500000  1348717  1100000 12850000       82

Number of Cases by State and City

library(kableExtra)
kable(summary(JD$STATE), col.names = "State of Incarceration", align = "ll")
State of Incarceration
Alabama 6
Alaska 5
Arizona 4
Arkansas 1
California 34
Colorado 10
Florida 11
Georgia 8
Hawaii 1
Idaho 3
Illinois 41
Indiana 20
Iowa 2
Kansas 1
Kentucky 7
Louisiana 3
Maine 2
Maryland 1
Massachusetts 2
Michigan 14
Mississippi 9
Missouri 10
Nebraska 2
Nevada 1
New Jersey 9
New Mexico 6
New York 28
North Carolina 4
North Dakota 1
NV 1
Ohio 19
Oklahoma 14
Oregon 10
Pennsylvania 23
South Carolina 8
Tennessee 1
Texas 23
Virginia 11
Washington 7
Wisconsin 9
NA’s 2
kable(summary(JD$COUNTY_CIT), col.names = "City or County of Incarceration", align = "ll")
City or County of Incarceration
Cook County 15
Los Angeles County 9
Lake County 7
Allegheny County 6
Monroe County 6
Queens County 6
Franklin County 5
Monterey County 5
Nassau County 5
Anchorage County 4
Butler County 4
Cumberland County 4
Orange County 4
Alameda County 3
Bronx County 3
Creek County 3
Delaware County 3
Jefferson County 3
Lancaster County 3
Maricopa County 3
Oklahoma County 3
Schenectady County 3
York County 3
Adams County 2
Albany County 2
Bowie County 2
Bucks County 2
City of Chicago 2
City of Cottage Grove 2
City of Los Angeles 2
City of Portsmouth County 2
Clark County 2
Cobb County 2
Columbia County 2
Cuyahoga County 2
DeKalb County 2
Hamilton County 2
Harris County 2
Lane County 2
Lehigh County 2
Lincoln County 2
Macomb County 2
Madison County 2
Marion County 2
Milwaukee County 2
Montgomery County 2
Morgan County 2
Not Applicable 2
Ocean County 2
Richmond County 2
San Diego County 2
Santa Cruz County 2
Santa Fe County 2
Spartanburg County 2
St. Clair County 2
Tulsa County 2
Union County 2
Warren County 2
Washington County 2
Wayne County 2
Whiteside County 2
Albemarle County 1
Arapahoe County 1
Benton County 1
Bernalillo County 1
Bexar County 1
Boundary County 1
Bradley County 1
Brazoria County 1
Broome County 1
Brown County 1
Caddo County 1
Calhoun County 1
Canyon County 1
Carbon County 1
Carter County 1
Cass County 1
Chatham County 1
City and County of Honolulu 1
City of Arlington 1
City of Baton Rouge 1
City of Bell 1
City of Cedar Rapids 1
City of El Centro 1
City of Eupora 1
City of Eureka; Humboldt County 1
City of Harvey 1
City of Indianola 1
City of La Habra 1
City of Newark 1
City of Tallahassee 1
City of Toledo 1
City of Tulsa 1
Cochise County 1
Conecuh County 1
Cook 1
Crawford County 1
Dawes County 1
(Other) 121
NA’s 30
tapply(JD$TTL ~ JD$STATE, JD$OUTCOME, sum)

TOTAL AMOUNT OF SETTLEMENTS AND PLAINTIFFS VERDICTS

z <-sum(JD$TTL, na.rm = TRUE)
prettyNum(z, big.mark=",")
## [1] "256,823,674"

Decendent Demographics:

Age

JD$AGE <- as.numeric(JD$AGE)
mean(JD$AGE, na.rm=TRUE)
## [1] 37.21839

Prexisting Conditions

summary(JD$PREX)

Evidence of Mental Illiness Present

COUNT

summary(JD$MENTAL)
##   No  Yes NA's 
##  195  135   44
Y<-table(JD$MENTAL)

PERCENTAGES

round(100*prop.table(Y),digits=0)
## 
##  No Yes 
##  59  41

Evidence of Substance Use Issue Present

COUNT

summary(JD$SU)
##   No  Yes NA's 
##  223  103   48
G <-table(JD$SU)

PERCENTAGE

round(100*prop.table(G),digits=0)
## 
##  No Yes 
##  68  32

Table

table(JD$COD_CAT, JD$SU)
##                  
##                   No Yes
##   INM Force        9   0
##   Lack Treat Phys 91   8
##   OFC Force       21  10
##   Overdose         0  17
##   Suicide         90  21
##   Withdraw         8  46

Evidence of Physical Health Issue Present

count

summary(JD$PHYS)
##   No  Yes NA's 
##  213  115   46
H <- table(JD$PHYS)

PERCENTAGE

round(100*prop.table(H),digits=0)
## 
##  No Yes 
##  65  35

Causes of Death

COUNT

summary(JD$COD_CAT)
##       INM Force Lack Treat Phys       OFC Force        Overdose         Suicide 
##               9             102              33              17             129 
##        Withdraw            NA's 
##              54              30
K <- table (JD$COD_CAT)

PERCENTAGE

round(100*prop.table(K),digits=0)
## 
##       INM Force Lack Treat Phys       OFC Force        Overdose         Suicide 
##               3              30              10               5              38 
##        Withdraw 
##              16

AVERAGE SETTLEMENT/VERDICT AMOUNT BY CAUSE OF DEATH

kable(tapply(JD$TTL, JD$COD_CAT, mean, na.rm=TRUE), digits = 2, format.args = list(big.mark = ",", scientific = FALSE))
x
INM Force 403,839.3
Lack Treat Phys 1,168,581.5
OFC Force 1,817,971.7
Overdose 843,928.6
Suicide 995,756.1
Withdraw 1,671,339.1

Number of Days from Incarceration to Death

summary(JD$DAYS)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    1.00    1.25    5.00   45.60   20.75 1569.00     112

DAYS TO DEATH BY COD

tapply(JD$DAYS, JD$COD_CAT, mean, na.rm=TRUE)
##       INM Force Lack Treat Phys       OFC Force        Overdose         Suicide 
##      138.000000       80.759494       82.230769        5.615385       23.781609 
##        Withdraw 
##        9.039216
tapply(JD$DAYS, JD$COD_CAT, median, na.rm=TRUE)
##       INM Force Lack Treat Phys       OFC Force        Overdose         Suicide 
##             158              15               3               1               4 
##        Withdraw 
##               3
tapply(JD$DAYS, JD$COD_CAT, range, na.rm=TRUE)
## $`INM Force`
## [1]  16 220
## 
## $`Lack Treat Phys`
## [1]   1 583
## 
## $`OFC Force`
## [1]    1 1569
## 
## $Overdose
## [1]  1 60
## 
## $Suicide
## [1]   1 332
## 
## $Withdraw
## [1]   1 209

Deaths within 24 hours

Days1 <-JD[ which(JD$DAYS==1), ] #subset data where day to death is 1 or less
#COD
kk <- table(Days1$COD_CAT)

PERCENTAGES

round(100*prop.table(kk),digits=0)
## 
##       INM Force Lack Treat Phys       OFC Force        Overdose         Suicide 
##               0              14              14              17              33 
##        Withdraw 
##              23
table(JD$COD_CAT, JD$MENTAL)
##                  
##                   No Yes
##   INM Force        7   2
##   Lack Treat Phys 86  14
##   OFC Force       20  11
##   Overdose        11   5
##   Suicide         24  92
##   Withdraw        46   6

relationship between COD

SU and MENTAL HEALTH

table(JD$MENTAL, JD$SU)
##      
##        No Yes
##   No  126  69
##   Yes  97  30

Doesn’t appear to be a relationship worth exploring here.

EVIDENCE OF SUBSTANCE USE AND COD

table(JD$COD_CAT, JD$SU)
##                  
##                   No Yes
##   INM Force        9   0
##   Lack Treat Phys 91   8
##   OFC Force       21  10
##   Overdose         0  17
##   Suicide         90  21
##   Withdraw         8  46

EVIDENCE OF MENT HEALTH ISSUES AND COD

table(JD$COD_CAT, JD$MENTAL)
##                  
##                   No Yes
##   INM Force        7   2
##   Lack Treat Phys 86  14
##   OFC Force       20  11
##   Overdose        11   5
##   Suicide         24  92
##   Withdraw        46   6

WITHDRAWAL SYMPTOMS AND COD

table(JD$COD_CAT, JD$Withdraw)
##                  
##                   No Yes
##   INM Force        9   0
##   Lack Treat Phys 95   4
##   OFC Force       24   7
##   Overdose        16   1
##   Suicide         88  24
##   Withdraw         1  53

withdrawal and suicide may have a there there.

Average Award by State

kable(tapply(JD$TTL, JD$STATE, mean, na.rm=TRUE), digits = 2, format.args = list(big.mark = ",", scientific = FALSE))
x
Alabama 0.00
Alaska 400,000.00
Arizona 602,009.00
Arkansas 350,000.00
California 1,579,216.17
Colorado 1,978,571.43
Florida 68,333.33
Georgia 248,750.00
Hawaii 0.00
Idaho 31,666.67
Illinois 249,785.71
Indiana 867,243.00
Iowa 0.00
Kansas 75,000.00
Kentucky 3,768,750.00
Louisiana 81,500.00
Maine 1,000,000.00
Maryland NaN
Massachusetts NaN
Michigan 232,500.00
Mississippi 2,500,000.00
Missouri 481,474.12
Nebraska 0.00
Nevada NaN
New Jersey 1,066,666.67
New Mexico 241,887.50
New York 1,959,071.43
North Carolina 1,325,000.00
North Dakota NaN
NV 15,000.00
Ohio 625,714.29
Oklahoma 3,242,857.14
Oregon 2,288,888.89
Pennsylvania 4,202,669.71
South Carolina 272,812.50
Tennessee NaN
Texas 488,887.50
Virginia 2,337,500.00
Washington 2,027,000.00
Wisconsin 1,153,928.57

Max Award by state

kable(tapply(JD$TTL, JD$STATE, max, na.rm=TRUE), digits = 2, format.args = list(big.mark = ",", scientific = FALSE))
x
Alabama 0
Alaska 400,000
Arizona 2,000,000
Arkansas 350,000
California 9,300,000
Colorado 4,650,000
Florida 206,000
Georgia 995,000
Hawaii 0
Idaho 95,000
Illinois 1,700,000
Indiana 2,750,000
Iowa 0
Kansas 75,000
Kentucky 15,000,000
Louisiana 163,000
Maine 2,000,000
Maryland -Inf
Massachusetts -Inf
Michigan 950,000
Mississippi 10,000,000
Missouri 1,311,793
Nebraska 0
Nevada -Inf
New Jersey 1,550,000
New Mexico 800,000
New York 7,890,000
North Carolina 2,000,000
North Dakota -Inf
NV 15,000
Ohio 4,000,000
Oklahoma 12,500,000
Oregon 10,000,000
Pennsylvania 11,857,344
South Carolina 750,000
Tennessee -Inf
Texas 2,421,650
Virginia 12,850,000
Washington 8,000,000
Wisconsin 6,750,000

COD by State

table(JD$STATE, JD$COD_CAT)
##                 
##                  INM Force Lack Treat Phys OFC Force Overdose Suicide Withdraw
##   Alabama                0               1         1        0       3        0
##   Alaska                 1               0         0        0       2        2
##   Arizona                3               0         0        0       1        0
##   Arkansas               0               0         0        0       0        1
##   California             0               7         5        5      11        5
##   Colorado               0               2         0        1       1        4
##   Florida                1               3         0        0       5        1
##   Georgia                0               6         1        0       0        0
##   Hawaii                 0               0         1        0       0        0
##   Idaho                  0               3         0        0       0        0
##   Illinois               0              15         1        1      17        5
##   Indiana                1               5         2        0       8        4
##   Iowa                   0               0         1        0       0        0
##   Kansas                 0               0         0        0       0        1
##   Kentucky               0               1         0        0       1        4
##   Louisiana              0               0         1        0       1        1
##   Maine                  0               0         1        0       1        0
##   Maryland               0               1         0        0       0        0
##   Massachusetts          0               0         0        0       2        0
##   Michigan               0               2         2        0       7        1
##   Mississippi            0               2         1        1       3        0
##   Missouri               0               3         1        0       5        0
##   Nebraska               0               2         0        0       0        0
##   Nevada                 0               1         0        0       0        0
##   New Jersey             0               0         0        0       8        0
##   New Mexico             0               1         0        1       0        4
##   New York               0              11         0        0      12        2
##   North Carolina         0               0         0        1       2        0
##   North Dakota           0               1         0        0       0        0
##   NV                     1               0         0        0       0        0
##   Ohio                   1               4         4        2       4        4
##   Oklahoma               1               1         5        1       5        1
##   Oregon                 0               3         1        0       3        3
##   Pennsylvania           0               8         0        1       8        5
##   South Carolina         0               1         2        0       4        0
##   Tennessee              0               0         0        0       1        0
##   Texas                  0               6         1        1       8        3
##   Virginia               0               7         1        0       1        1
##   Washington             0               2         1        0       2        2
##   Wisconsin              0               3         0        2       3        0
library('MASS')
n_model<- glm.nb(DAYS ~ COD_CAT, data=JD)
summary(n_model)
## 
## Call:
## glm.nb(formula = DAYS ~ COD_CAT, data = JD, init.theta = 0.4366961016, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6809  -1.1351  -0.8253  -0.2458   4.0181  
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              4.9273     0.7578   6.502 7.93e-11 ***
## COD_CATLack Treat Phys  -0.5358     0.7768  -0.690 0.490373    
## COD_CATOFC Force        -0.5177     0.8141  -0.636 0.524835    
## COD_CATOverdose         -3.2017     0.8742  -3.663 0.000250 ***
## COD_CATSuicide          -1.7583     0.7753  -2.268 0.023333 *  
## COD_CATWithdraw         -2.7257     0.7883  -3.458 0.000545 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(0.4367) family taken to be 1)
## 
##     Null deviance: 399.29  on 259  degrees of freedom
## Residual deviance: 315.52  on 254  degrees of freedom
##   (114 observations deleted due to missingness)
## AIC: 2181
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  0.4367 
##           Std. Err.:  0.0326 
## 
##  2 x log-likelihood:  -2167.0330