Total combined dataset with both Docket cases and OSS search. Of docket 397 cases were reviewed; of these 176 were included.
In total we analyzed 767 cases. This includes the Westlaw and Lexis OSS.
library(readxl)
JD <- read_excel("C:/Users/telsabawi/Dropbox/1-Research/1- GW BOP White Paper/Datasets/combined_Jail_deaths_data_3.20.21.xlsx",
na = "NA")
########################Formatting All Variables
JD$OFC_SUE<-factor(JD$OFC_SUE,
labels = c(`0` = "No", `1` = "Yes"))
JD$HEA_SUE<-factor(JD$HEA_SUE,
labels = c(`0` = "No", `1` = "Yes"))
JD$PHYS<-factor(JD$PHYS,
labels = c(`0` = "No", `1` = "Yes"))
JD$CRT<-factor(JD$CRT,labels = c(`1` = "Federal", `2` = "State"))
JD$City_Sue <-factor(JD$City_Sue,
labels = c(`0` = "No", `1` = "Yes"))
JD$Jail_Sue <-factor(JD$Jail_Sue,
labels = c(`0` = "No", `1` = "Yes"))
JD$Officer_Sue <-factor(JD$Officer_Sue, labels = c(`0` = "No", `1` = "Yes"))
JD$OUTCOME<-as.factor(JD$OUTCOME)
JD$STATE<-as.factor(JD$STATE)
JD$COUNTY_CIT<-as.factor(JD$COUNTY_CIT)
JD$PREX<-as.factor(JD$PREX)
JD$MENTAL <- factor(JD$MENTAL,labels = c(`0` = "No", `1` = "Yes"))
JD$SU <- factor(JD$SU,labels = c(`0` = "No", `1` = "Yes"))
JD$PHYS <- factor(JD$PHYS,labels = c(`0` = "No", `1` = "Yes"))
JD$COD_CAT<-as.factor(JD$COD_CAT)
JD$Withdraw <- factor(JD$Withdraw,labels = c(`0` = "No", `1` = "Yes"))
JD$AGE <- as.numeric(JD$AGE)
JD$TTL <- as.numeric(JD$TTL)
#loop via lapply multiple variables to factor
#names <- c(19:33)
#JD[,names] <- lapply(JD[,names] , factor)
JD$Suic_Idea<-factor(JD$Suic_Idea, labels = c(`0` = "No", `1` = "Yes"))
library(knitr)
library(kableExtra)
kable(summary(JD$CRT), align = "ll", col.names = "No. of Cases", caption = "Federal or State Court")
No. of Cases | |
---|---|
Federal | 315 |
State | 57 |
NA’s | 2 |
A<-table(JD$CRT)
A
##
## Federal State
## 315 57
Percentages:
round(100*prop.table(A),digits=0)
##
## Federal State
## 85 15
kable(summary(JD$OFC_SUE), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Law enforcement Officials as Defendants")
No. of Cases | |
---|---|
No | 158 |
Yes | 211 |
NA’s | 5 |
B<-table(JD$OFC_SUE)
Percentages:
round(100*prop.table(B),digits=0)
##
## No Yes
## 43 57
kable(summary(JD$Officer_Sue), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Law Enforcement Officers Personally")
No. of Cases | |
---|---|
No | 43 |
Yes | 149 |
NA’s | 182 |
D<-table(JD$Officer_Sue)
Percentages:
round(100*prop.table(D),digits=0)
##
## No Yes
## 22 78
kable(summary(JD$Jail_Sue), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Law Enforcement Officers Personally")
No. of Cases | |
---|---|
No | 93 |
Yes | 99 |
NA’s | 182 |
E<-table(JD$Jail_Sue)
Percentages:
round(100*prop.table(E),digits=0)
##
## No Yes
## 48 52
kable(summary(JD$City_Sue), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Law Enforcement Officers Personally")
No. of Cases | |
---|---|
No | 49 |
Yes | 143 |
NA’s | 182 |
F<-table(JD$City_Sue)
Percentages:
round(100*prop.table(F),digits=0)
##
## No Yes
## 26 74
kable(summary(JD$HEA_SUE), align = "ll", col.names = "No. of Cases", caption = "No. of Cases That Listed Healthcare Professionals (Or Facilities) as Defendants")
No. of Cases | |
---|---|
No | 170 |
Yes | 198 |
NA’s | 6 |
C<-table(JD$HEA_SUE)
Percentages:
round(100*prop.table(C),digits=0)
##
## No Yes
## 46 54
kable(summary(JD$OUTCOME), col.names = "No. of Cases", align = "ll", caption = "Case Outcomes.")
No. of Cases | |
---|---|
Defense Judgment | 40 |
Defense Verdict | 33 |
Plaintiff Verdict | 22 |
Settlement | 211 |
NA’s | 68 |
V<-table(JD$OUTCOME)
Percentages:
round(100*prop.table(V),digits=0)
##
## Defense Judgment Defense Verdict Plaintiff Verdict Settlement
## 13 11 7 69
tapply(JD$TTL, JD$OUTCOME, summary)
## $`Defense Judgment`
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0 0 0 0 0 0 2
##
## $`Defense Verdict`
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 0 0 0 0 0
##
## $`Plaintiff Verdict`
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 119000 859914 1600000 3570482 5195000 11857344 3
##
## $Settlement
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4000 175000 500000 1348717 1100000 12850000 82
library(kableExtra)
kable(summary(JD$STATE), col.names = "State of Incarceration", align = "ll")
State of Incarceration | |
---|---|
Alabama | 6 |
Alaska | 5 |
Arizona | 4 |
Arkansas | 1 |
California | 34 |
Colorado | 10 |
Florida | 11 |
Georgia | 8 |
Hawaii | 1 |
Idaho | 3 |
Illinois | 41 |
Indiana | 20 |
Iowa | 2 |
Kansas | 1 |
Kentucky | 7 |
Louisiana | 3 |
Maine | 2 |
Maryland | 1 |
Massachusetts | 2 |
Michigan | 14 |
Mississippi | 9 |
Missouri | 10 |
Nebraska | 2 |
Nevada | 1 |
New Jersey | 9 |
New Mexico | 6 |
New York | 28 |
North Carolina | 4 |
North Dakota | 1 |
NV | 1 |
Ohio | 19 |
Oklahoma | 14 |
Oregon | 10 |
Pennsylvania | 23 |
South Carolina | 8 |
Tennessee | 1 |
Texas | 23 |
Virginia | 11 |
Washington | 7 |
Wisconsin | 9 |
NA’s | 2 |
kable(summary(JD$COUNTY_CIT), col.names = "City or County of Incarceration", align = "ll")
City or County of Incarceration | |
---|---|
Cook County | 15 |
Los Angeles County | 9 |
Lake County | 7 |
Allegheny County | 6 |
Monroe County | 6 |
Queens County | 6 |
Franklin County | 5 |
Monterey County | 5 |
Nassau County | 5 |
Anchorage County | 4 |
Butler County | 4 |
Cumberland County | 4 |
Orange County | 4 |
Alameda County | 3 |
Bronx County | 3 |
Creek County | 3 |
Delaware County | 3 |
Jefferson County | 3 |
Lancaster County | 3 |
Maricopa County | 3 |
Oklahoma County | 3 |
Schenectady County | 3 |
York County | 3 |
Adams County | 2 |
Albany County | 2 |
Bowie County | 2 |
Bucks County | 2 |
City of Chicago | 2 |
City of Cottage Grove | 2 |
City of Los Angeles | 2 |
City of Portsmouth County | 2 |
Clark County | 2 |
Cobb County | 2 |
Columbia County | 2 |
Cuyahoga County | 2 |
DeKalb County | 2 |
Hamilton County | 2 |
Harris County | 2 |
Lane County | 2 |
Lehigh County | 2 |
Lincoln County | 2 |
Macomb County | 2 |
Madison County | 2 |
Marion County | 2 |
Milwaukee County | 2 |
Montgomery County | 2 |
Morgan County | 2 |
Not Applicable | 2 |
Ocean County | 2 |
Richmond County | 2 |
San Diego County | 2 |
Santa Cruz County | 2 |
Santa Fe County | 2 |
Spartanburg County | 2 |
St. Clair County | 2 |
Tulsa County | 2 |
Union County | 2 |
Warren County | 2 |
Washington County | 2 |
Wayne County | 2 |
Whiteside County | 2 |
Albemarle County | 1 |
Arapahoe County | 1 |
Benton County | 1 |
Bernalillo County | 1 |
Bexar County | 1 |
Boundary County | 1 |
Bradley County | 1 |
Brazoria County | 1 |
Broome County | 1 |
Brown County | 1 |
Caddo County | 1 |
Calhoun County | 1 |
Canyon County | 1 |
Carbon County | 1 |
Carter County | 1 |
Cass County | 1 |
Chatham County | 1 |
City and County of Honolulu | 1 |
City of Arlington | 1 |
City of Baton Rouge | 1 |
City of Bell | 1 |
City of Cedar Rapids | 1 |
City of El Centro | 1 |
City of Eupora | 1 |
City of Eureka; Humboldt County | 1 |
City of Harvey | 1 |
City of Indianola | 1 |
City of La Habra | 1 |
City of Newark | 1 |
City of Tallahassee | 1 |
City of Toledo | 1 |
City of Tulsa | 1 |
Cochise County | 1 |
Conecuh County | 1 |
Cook | 1 |
Crawford County | 1 |
Dawes County | 1 |
(Other) | 121 |
NA’s | 30 |
tapply(JD$TTL ~ JD$STATE, JD$OUTCOME, sum)
TOTAL AMOUNT OF SETTLEMENTS AND PLAINTIFFS VERDICTS
z <-sum(JD$TTL, na.rm = TRUE)
prettyNum(z, big.mark=",")
## [1] "256,823,674"
Age
JD$AGE <- as.numeric(JD$AGE)
mean(JD$AGE, na.rm=TRUE)
## [1] 37.21839
summary(JD$PREX)
COUNT
summary(JD$MENTAL)
## No Yes NA's
## 195 135 44
Y<-table(JD$MENTAL)
PERCENTAGES
round(100*prop.table(Y),digits=0)
##
## No Yes
## 59 41
COUNT
summary(JD$SU)
## No Yes NA's
## 223 103 48
G <-table(JD$SU)
PERCENTAGE
round(100*prop.table(G),digits=0)
##
## No Yes
## 68 32
Table
table(JD$COD_CAT, JD$SU)
##
## No Yes
## INM Force 9 0
## Lack Treat Phys 91 8
## OFC Force 21 10
## Overdose 0 17
## Suicide 90 21
## Withdraw 8 46
count
summary(JD$PHYS)
## No Yes NA's
## 213 115 46
H <- table(JD$PHYS)
PERCENTAGE
round(100*prop.table(H),digits=0)
##
## No Yes
## 65 35
COUNT
summary(JD$COD_CAT)
## INM Force Lack Treat Phys OFC Force Overdose Suicide
## 9 102 33 17 129
## Withdraw NA's
## 54 30
K <- table (JD$COD_CAT)
PERCENTAGE
round(100*prop.table(K),digits=0)
##
## INM Force Lack Treat Phys OFC Force Overdose Suicide
## 3 30 10 5 38
## Withdraw
## 16
AVERAGE SETTLEMENT/VERDICT AMOUNT BY CAUSE OF DEATH
kable(tapply(JD$TTL, JD$COD_CAT, mean, na.rm=TRUE), digits = 2, format.args = list(big.mark = ",", scientific = FALSE))
x | |
---|---|
INM Force | 403,839.3 |
Lack Treat Phys | 1,168,581.5 |
OFC Force | 1,817,971.7 |
Overdose | 843,928.6 |
Suicide | 995,756.1 |
Withdraw | 1,671,339.1 |
summary(JD$DAYS)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.00 1.25 5.00 45.60 20.75 1569.00 112
DAYS TO DEATH BY COD
tapply(JD$DAYS, JD$COD_CAT, mean, na.rm=TRUE)
## INM Force Lack Treat Phys OFC Force Overdose Suicide
## 138.000000 80.759494 82.230769 5.615385 23.781609
## Withdraw
## 9.039216
tapply(JD$DAYS, JD$COD_CAT, median, na.rm=TRUE)
## INM Force Lack Treat Phys OFC Force Overdose Suicide
## 158 15 3 1 4
## Withdraw
## 3
tapply(JD$DAYS, JD$COD_CAT, range, na.rm=TRUE)
## $`INM Force`
## [1] 16 220
##
## $`Lack Treat Phys`
## [1] 1 583
##
## $`OFC Force`
## [1] 1 1569
##
## $Overdose
## [1] 1 60
##
## $Suicide
## [1] 1 332
##
## $Withdraw
## [1] 1 209
Deaths within 24 hours
Days1 <-JD[ which(JD$DAYS==1), ] #subset data where day to death is 1 or less
#COD
kk <- table(Days1$COD_CAT)
PERCENTAGES
round(100*prop.table(kk),digits=0)
##
## INM Force Lack Treat Phys OFC Force Overdose Suicide
## 0 14 14 17 33
## Withdraw
## 23
table(JD$COD_CAT, JD$MENTAL)
##
## No Yes
## INM Force 7 2
## Lack Treat Phys 86 14
## OFC Force 20 11
## Overdose 11 5
## Suicide 24 92
## Withdraw 46 6
SU and MENTAL HEALTH
table(JD$MENTAL, JD$SU)
##
## No Yes
## No 126 69
## Yes 97 30
Doesn’t appear to be a relationship worth exploring here.
EVIDENCE OF SUBSTANCE USE AND COD
table(JD$COD_CAT, JD$SU)
##
## No Yes
## INM Force 9 0
## Lack Treat Phys 91 8
## OFC Force 21 10
## Overdose 0 17
## Suicide 90 21
## Withdraw 8 46
EVIDENCE OF MENT HEALTH ISSUES AND COD
table(JD$COD_CAT, JD$MENTAL)
##
## No Yes
## INM Force 7 2
## Lack Treat Phys 86 14
## OFC Force 20 11
## Overdose 11 5
## Suicide 24 92
## Withdraw 46 6
WITHDRAWAL SYMPTOMS AND COD
table(JD$COD_CAT, JD$Withdraw)
##
## No Yes
## INM Force 9 0
## Lack Treat Phys 95 4
## OFC Force 24 7
## Overdose 16 1
## Suicide 88 24
## Withdraw 1 53
withdrawal and suicide may have a there there.
kable(tapply(JD$TTL, JD$STATE, mean, na.rm=TRUE), digits = 2, format.args = list(big.mark = ",", scientific = FALSE))
x | |
---|---|
Alabama | 0.00 |
Alaska | 400,000.00 |
Arizona | 602,009.00 |
Arkansas | 350,000.00 |
California | 1,579,216.17 |
Colorado | 1,978,571.43 |
Florida | 68,333.33 |
Georgia | 248,750.00 |
Hawaii | 0.00 |
Idaho | 31,666.67 |
Illinois | 249,785.71 |
Indiana | 867,243.00 |
Iowa | 0.00 |
Kansas | 75,000.00 |
Kentucky | 3,768,750.00 |
Louisiana | 81,500.00 |
Maine | 1,000,000.00 |
Maryland | NaN |
Massachusetts | NaN |
Michigan | 232,500.00 |
Mississippi | 2,500,000.00 |
Missouri | 481,474.12 |
Nebraska | 0.00 |
Nevada | NaN |
New Jersey | 1,066,666.67 |
New Mexico | 241,887.50 |
New York | 1,959,071.43 |
North Carolina | 1,325,000.00 |
North Dakota | NaN |
NV | 15,000.00 |
Ohio | 625,714.29 |
Oklahoma | 3,242,857.14 |
Oregon | 2,288,888.89 |
Pennsylvania | 4,202,669.71 |
South Carolina | 272,812.50 |
Tennessee | NaN |
Texas | 488,887.50 |
Virginia | 2,337,500.00 |
Washington | 2,027,000.00 |
Wisconsin | 1,153,928.57 |
kable(tapply(JD$TTL, JD$STATE, max, na.rm=TRUE), digits = 2, format.args = list(big.mark = ",", scientific = FALSE))
x | |
---|---|
Alabama | 0 |
Alaska | 400,000 |
Arizona | 2,000,000 |
Arkansas | 350,000 |
California | 9,300,000 |
Colorado | 4,650,000 |
Florida | 206,000 |
Georgia | 995,000 |
Hawaii | 0 |
Idaho | 95,000 |
Illinois | 1,700,000 |
Indiana | 2,750,000 |
Iowa | 0 |
Kansas | 75,000 |
Kentucky | 15,000,000 |
Louisiana | 163,000 |
Maine | 2,000,000 |
Maryland | -Inf |
Massachusetts | -Inf |
Michigan | 950,000 |
Mississippi | 10,000,000 |
Missouri | 1,311,793 |
Nebraska | 0 |
Nevada | -Inf |
New Jersey | 1,550,000 |
New Mexico | 800,000 |
New York | 7,890,000 |
North Carolina | 2,000,000 |
North Dakota | -Inf |
NV | 15,000 |
Ohio | 4,000,000 |
Oklahoma | 12,500,000 |
Oregon | 10,000,000 |
Pennsylvania | 11,857,344 |
South Carolina | 750,000 |
Tennessee | -Inf |
Texas | 2,421,650 |
Virginia | 12,850,000 |
Washington | 8,000,000 |
Wisconsin | 6,750,000 |
table(JD$STATE, JD$COD_CAT)
##
## INM Force Lack Treat Phys OFC Force Overdose Suicide Withdraw
## Alabama 0 1 1 0 3 0
## Alaska 1 0 0 0 2 2
## Arizona 3 0 0 0 1 0
## Arkansas 0 0 0 0 0 1
## California 0 7 5 5 11 5
## Colorado 0 2 0 1 1 4
## Florida 1 3 0 0 5 1
## Georgia 0 6 1 0 0 0
## Hawaii 0 0 1 0 0 0
## Idaho 0 3 0 0 0 0
## Illinois 0 15 1 1 17 5
## Indiana 1 5 2 0 8 4
## Iowa 0 0 1 0 0 0
## Kansas 0 0 0 0 0 1
## Kentucky 0 1 0 0 1 4
## Louisiana 0 0 1 0 1 1
## Maine 0 0 1 0 1 0
## Maryland 0 1 0 0 0 0
## Massachusetts 0 0 0 0 2 0
## Michigan 0 2 2 0 7 1
## Mississippi 0 2 1 1 3 0
## Missouri 0 3 1 0 5 0
## Nebraska 0 2 0 0 0 0
## Nevada 0 1 0 0 0 0
## New Jersey 0 0 0 0 8 0
## New Mexico 0 1 0 1 0 4
## New York 0 11 0 0 12 2
## North Carolina 0 0 0 1 2 0
## North Dakota 0 1 0 0 0 0
## NV 1 0 0 0 0 0
## Ohio 1 4 4 2 4 4
## Oklahoma 1 1 5 1 5 1
## Oregon 0 3 1 0 3 3
## Pennsylvania 0 8 0 1 8 5
## South Carolina 0 1 2 0 4 0
## Tennessee 0 0 0 0 1 0
## Texas 0 6 1 1 8 3
## Virginia 0 7 1 0 1 1
## Washington 0 2 1 0 2 2
## Wisconsin 0 3 0 2 3 0
library('MASS')
n_model<- glm.nb(DAYS ~ COD_CAT, data=JD)
summary(n_model)
##
## Call:
## glm.nb(formula = DAYS ~ COD_CAT, data = JD, init.theta = 0.4366961016,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6809 -1.1351 -0.8253 -0.2458 4.0181
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.9273 0.7578 6.502 7.93e-11 ***
## COD_CATLack Treat Phys -0.5358 0.7768 -0.690 0.490373
## COD_CATOFC Force -0.5177 0.8141 -0.636 0.524835
## COD_CATOverdose -3.2017 0.8742 -3.663 0.000250 ***
## COD_CATSuicide -1.7583 0.7753 -2.268 0.023333 *
## COD_CATWithdraw -2.7257 0.7883 -3.458 0.000545 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(0.4367) family taken to be 1)
##
## Null deviance: 399.29 on 259 degrees of freedom
## Residual deviance: 315.52 on 254 degrees of freedom
## (114 observations deleted due to missingness)
## AIC: 2181
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 0.4367
## Std. Err.: 0.0326
##
## 2 x log-likelihood: -2167.0330