library(readxl)
contaminantesF <- read_excel("contaminantesF.xlsx")
o3 <- contaminantesF$O3
no2 <- contaminantesF$NO2
plot(o3)
plot(no2)
o3.ts = ts(o3, start = c(03,1),frequency = 30)
no2.ts = ts(no2, start = c(03,1),frequency = 30)
print (o3.ts)
## Time Series:
## Start = c(3, 1)
## End = c(5, 1)
## Frequency = 30
## [1] 37.57 26.82 43.66 51.18 42.09 42.33 40.90 24.36 32.78 26.72 26.79 15.07
## [13] 31.49 41.35 45.26 47.73 33.99 23.44 35.70 52.41 43.58 52.07 43.99 46.06
## [25] 66.66 41.47 45.42 56.88 49.16 53.18 56.61 47.06 45.99 40.64 48.36 45.05
## [37] 41.96 39.14 36.21 54.03 45.88 40.95 52.05 42.89 58.54 53.35 51.26 45.56
## [49] 44.45 52.58 55.12 45.66 56.07 64.34 52.89 58.13 45.06 41.07 47.34 47.85
## [61] 47.71
print (no2.ts)
## Time Series:
## Start = c(3, 1)
## End = c(5, 1)
## Frequency = 30
## [1] -0.13 -0.13 -0.17 -0.15 -0.20 -0.17 -0.20 -0.33 -0.36 -0.39 -0.31 -0.39
## [13] -0.39 -0.34 -0.29 -0.27 -0.22 -0.22 -0.22 -0.22 -0.20 -0.19 -0.20 -0.11
## [25] -0.15 -0.12 -0.15 0.00 0.00 0.02 0.27 -0.11 -0.05 -0.03 -0.18 -0.12
## [37] -0.09 -0.14 -0.21 -0.17 -0.18 -0.18 -0.14 -0.15 -0.16 -0.14 -0.12 -0.10
## [49] -0.10 -0.04 -0.14 -0.11 -0.18 -0.15 -0.12 -0.07 -0.10 -0.12 0.24 -0.05
## [61] -0.12
ahora que el objeto ‘gas’ es una serie de tiempo, podemos graficarlo como tal.
plot.ts(o3)
plot.ts(no2)
Si este análisis lo hacemos me scon mes usando un gráfico de caja y bigote
boxplot(o3.ts ~ cycle(o3.ts))
boxplot(no2.ts ~ cycle(no2.ts))
Define la serie temporal y represéntala. ¿Cuál es el valor de la serie para el tercer trimestre de 1980? ¿Cuáñes son las principales características(tendencia, estacionalidad) de esta serie?
o3.ts.desc=decompose(o3.ts)
plot(o3.ts.desc,xlab="Año")
no2.ts.desc=decompose(no2.ts)
plot(no2.ts.desc,xlab="Año")