## Warning: package 'quantmod' was built under R version 4.0.3
## Loading required package: xts
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.0.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
##
## This message is shown once per session and may be disabled by setting
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## [1] "DEXMXUS"
## Warning: package 'astsa' was built under R version 4.0.3
##
## Attaching package: 'astsa'
## The following object is masked from 'package:forecast':
##
## gas
## Warning in to.period(x, "months", indexAt = indexAt, name = name, ...): missing
## values removed from data
##
## Augmented Dickey-Fuller Test
##
## data: diff(log(mexrate.ts), lag = 12)
## Dickey-Fuller = -3.4591, Lag order = 0, p-value = 0.04695
## alternative hypothesis: stationary
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## ACF 0.93 0.84 0.76 0.67 0.60 0.53 0.46 0.40 0.32 0.24 0.15 0.06
## PACF 0.93 -0.13 -0.04 -0.10 0.11 -0.05 -0.04 -0.04 -0.14 -0.02 -0.19 0.03
## [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
## ACF 0.04 0.03 0.03 0.03 0.02 0.01 -0.01 -0.03 -0.04 -0.04 -0.04 -0.05
## PACF 0.38 -0.03 0.00 -0.09 0.03 -0.09 0.03 -0.05 -0.01 -0.03 -0.09 -0.02
model1 <- Arima(mexrate.ts, order = c(1,0,0),
seasonal = list(order=c(0,1,0),period=12),
include.constant = TRUE,
lambda = 0)
model1## Series: mexrate.ts
## ARIMA(1,0,0)(0,1,0)[12] with drift
## Box Cox transformation: lambda= 0
##
## Coefficients:
## ar1 drift
## 0.9298 0.0054
## s.e. 0.0202 0.0035
##
## sigma^2 estimated as 0.002954: log likelihood=473.38
## AIC=-940.75 AICc=-940.68 BIC=-929.48
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.9297921 0.0202014 46.0261 <2e-16 ***
## drift 0.0053892 0.0034740 1.5513 0.1208
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Interpretation
The annual % growth of the mexican peso exchange rate is positively and significantly related with the annual % growth of the last month. For each unit increased the previous month the current annual % growth of the rate would increase in about 0.9297921 units.
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## ACF 0.15 0.03 0.07 -0.13 0.02 0.02 -0.02 0.13 0.00 0.10 -0.04 -0.45 -0.08
## PACF 0.15 0.01 0.06 -0.15 0.06 0.01 0.00 0.11 -0.04 0.12 -0.11 -0.43 0.04
## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
## ACF -0.07 0.00 0.07 0.05 0.00 0.02 -0.06 -0.02 -0.05 0.03 0.00
## PACF -0.02 0.09 -0.06 0.10 -0.03 0.02 0.00 -0.01 0.07 0.01 -0.27
model2 <- Arima(mexrate.ts, order = c(1,0,1),
seasonal = list(order=c(0,1,0),period=12),
include.constant = TRUE,
lambda = 0)
coeftest(model2)##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.9054186 0.0254696 35.5489 < 2.2e-16 ***
## ma1 0.1920791 0.0646965 2.9689 0.002988 **
## drift 0.0052809 0.0030645 1.7232 0.084843 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The annual % growth of the mexican peso exchange rate is positively and significantly related with the annual % growth of the last month. For each unit increased the previous month the current annual % growth of the rate would increase in about 0.9054186 units.
The annual % growth of the mexican peso exchange rate is positively related to the shock of 1 month ago.The shock affects on 0.1920791 units for each unit in the current annual growth
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## ACF -0.01 0.04 0.11 -0.13 0.06 0.03 -0.04 0.15 -0.04 0.10 0.03 -0.45 0.01
## PACF -0.01 0.04 0.11 -0.13 0.05 0.03 -0.01 0.13 -0.03 0.11 0.00 -0.44 -0.02
## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
## ACF -0.07 0.00 0.07 0.03 0.00 0.03 -0.07 0.00 -0.06 0.05 -0.01
## PACF -0.02 0.11 -0.05 0.10 -0.01 0.01 0.01 -0.03 0.06 0.08 -0.26
model3 <- Arima(mexrate.ts, order = c(1,0,1),
seasonal = list(order=c(0,1,1),period=12),
include.constant = TRUE,
lambda = 0)
model3## Series: mexrate.ts
## ARIMA(1,0,1)(0,1,1)[12] with drift
## Box Cox transformation: lambda= 0
##
## Coefficients:
## ar1 ma1 sma1 drift
## 0.9901 0.1311 -0.9690 0.0053
## s.e. 0.0138 0.0586 0.1182 0.0016
##
## sigma^2 estimated as 0.001559: log likelihood=560.96
## AIC=-1111.92 AICc=-1111.72 BIC=-1093.12
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## ACF -0.01 0.01 0.08 -0.16 0.03 -0.03 -0.03 0.02 -0.01 0.14 0.05 0.03 -0.04
## PACF -0.01 0.01 0.08 -0.16 0.03 -0.03 -0.01 -0.01 0.01 0.14 0.05 0.03 -0.07
## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
## ACF -0.07 0.02 -0.01 0.04 -0.03 0.02 -0.05 0.03 0.06 0.06 0.02
## PACF -0.04 0.02 0.01 0.04 -0.05 0.03 -0.09 0.04 0.03 0.10 0.01
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.9900880 0.0137955 71.7691 < 2.2e-16 ***
## ma1 0.1311294 0.0585977 2.2378 0.0252348 *
## sma1 -0.9689740 0.1181553 -8.2009 2.387e-16 ***
## drift 0.0052959 0.0015637 3.3867 0.0007074 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] -1111.918
The annual % growth of the mexican peso exchange rate is positively and significantly related with the annual % growth of the last month. For each unit increased the previous month the current annual % growth of the rate would increase in about 0.9900880 units.
The annual % growth of the mexican peso exchange rate is positively related to the shock of 1 month ago.The shock affects on 0.1311294 units for each unit in the current annual growth
The annual % growth of the mexican peso exchange rate is negatively and significantly related with the annual % growth of 2 months ago, after considering the autocorrelation of lag 1 with the current annual % growth
We would keep with the Model 3