Business Applications for California (BUSAPPWNSACA)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSACA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 11670
789 2021-02-13 11650
790 2021-02-20 10180
791 2021-02-27 11610
792 2021-03-06 11760
793 2021-03-13 12560
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for California",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue1",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for California _ Short Term Trend",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")
    ) +
    theme_economist()

Business Applications from Corporations for California (CBUSAPPWNSACA)

symbol <-fredr_series_observations(series_id = "CBUSAPPWNSACA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 2790
789 2021-02-13 2930
790 2021-02-20 2450
791 2021-02-27 2930
792 2021-03-06 3470
793 2021-03-13 3380
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Corporate Business Applications for California",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Corporate Business Applications for California _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for the United States (BUSAPPWNSAUS)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAUS", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 122400
789 2021-02-13 118510
790 2021-02-20 101990
791 2021-02-27 115130
792 2021-03-06 119060
793 2021-03-13 120920
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for United States",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for United states _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for Oregon (BBUSAPPWNSAOR)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAOR", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 1200
789 2021-02-13 1080
790 2021-02-20 880
791 2021-02-27 1100
792 2021-03-06 1080
793 2021-03-13 1080
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for OREGON",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for OREGON _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for New York (BUSAPPWNSANY)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSANY", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 6460
789 2021-02-13 6550
790 2021-02-20 5650
791 2021-02-27 6250
792 2021-03-06 6860
793 2021-03-13 6910
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for New York State",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for New York State _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for Arizona (BUSAPPWNSAAZ)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAAZ", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 2360
789 2021-02-13 2440
790 2021-02-20 2120
791 2021-02-27 2320
792 2021-03-06 2390
793 2021-03-13 2280
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for ARIZONA",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for ARIZONA _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for TEXAS (BUSAPPWNSATX)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSATX", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 12190
789 2021-02-13 10890
790 2021-02-20 5760
791 2021-02-27 8980
792 2021-03-06 9890
793 2021-03-13 10670
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for TEXAS",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for TEXAS _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for FLORIDA (BUSAPPWNSAFL)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAFL", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 13320
789 2021-02-13 15320
790 2021-02-20 14630
791 2021-02-27 14960
792 2021-03-06 13980
793 2021-03-13 13820
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for FLORIDA",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for FLORIDA _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for OKLAHOMA (BUSAPPWNSAOK)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAOK", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 1440
789 2021-02-13 1190
790 2021-02-20 830
791 2021-02-27 1150
792 2021-03-06 1220
793 2021-03-13 1280
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for OKLAHOMA",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for OKLAHOMA _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for COLORADO (BUSAPPWNSACO)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSACO", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 2460
789 2021-02-13 2450
790 2021-02-20 2160
791 2021-02-27 2350
792 2021-03-06 2390
793 2021-03-13 2470
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for COLORADO",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for COLORADO _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for GEORGIA (BUSAPPWNSAGA)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAGA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 7940
789 2021-02-13 7110
790 2021-02-20 7220
791 2021-02-27 7630
792 2021-03-06 7750
793 2021-03-13 7340
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for GEORGIA",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for GEORGIA _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for ILLINOIS (BUSAPPWNSAIL)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAIL", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
788 2021-02-06 4860
789 2021-02-13 4500
790 2021-02-20 3860
791 2021-02-27 4570
792 2021-03-06 4840
793 2021-03-13 4730
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for ILLINOIS",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for ILLINOIS _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()