Business Applications from Corporations for California (CBUSAPPWNSACA)
- Business Applications from Corporations (CBA): A subset of High-Propensity Business Applications (HBA) that contains all applications that come from a corporation or a personal service corporation.
symbol <-fredr_series_observations(series_id = "CBUSAPPWNSACA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
2790
|
789
|
2021-02-13
|
2930
|
790
|
2021-02-20
|
2450
|
791
|
2021-02-27
|
2930
|
792
|
2021-03-06
|
3470
|
793
|
2021-03-13
|
3380
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Corporate Business Applications for California",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Corporate Business Applications for California _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for the United States (BUSAPPWNSAUS)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAUS",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
122400
|
789
|
2021-02-13
|
118510
|
790
|
2021-02-20
|
101990
|
791
|
2021-02-27
|
115130
|
792
|
2021-03-06
|
119060
|
793
|
2021-03-13
|
120920
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for United States",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for United states _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for Oregon (BBUSAPPWNSAOR)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAOR",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
1200
|
789
|
2021-02-13
|
1080
|
790
|
2021-02-20
|
880
|
791
|
2021-02-27
|
1100
|
792
|
2021-03-06
|
1080
|
793
|
2021-03-13
|
1080
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for OREGON",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for OREGON _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for New York (BUSAPPWNSANY)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSANY",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
6460
|
789
|
2021-02-13
|
6550
|
790
|
2021-02-20
|
5650
|
791
|
2021-02-27
|
6250
|
792
|
2021-03-06
|
6860
|
793
|
2021-03-13
|
6910
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for New York State",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for New York State _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for Arizona (BUSAPPWNSAAZ)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAAZ",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
2360
|
789
|
2021-02-13
|
2440
|
790
|
2021-02-20
|
2120
|
791
|
2021-02-27
|
2320
|
792
|
2021-03-06
|
2390
|
793
|
2021-03-13
|
2280
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for ARIZONA",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for ARIZONA _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for TEXAS (BUSAPPWNSATX)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSATX",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
12190
|
789
|
2021-02-13
|
10890
|
790
|
2021-02-20
|
5760
|
791
|
2021-02-27
|
8980
|
792
|
2021-03-06
|
9890
|
793
|
2021-03-13
|
10670
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for TEXAS",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for TEXAS _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for FLORIDA (BUSAPPWNSAFL)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAFL",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
13320
|
789
|
2021-02-13
|
15320
|
790
|
2021-02-20
|
14630
|
791
|
2021-02-27
|
14960
|
792
|
2021-03-06
|
13980
|
793
|
2021-03-13
|
13820
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for FLORIDA",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for FLORIDA _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for OKLAHOMA (BUSAPPWNSAOK)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAOK",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
1440
|
789
|
2021-02-13
|
1190
|
790
|
2021-02-20
|
830
|
791
|
2021-02-27
|
1150
|
792
|
2021-03-06
|
1220
|
793
|
2021-03-13
|
1280
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for OKLAHOMA",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for OKLAHOMA _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for COLORADO (BUSAPPWNSACO)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSACO",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
2460
|
789
|
2021-02-13
|
2450
|
790
|
2021-02-20
|
2160
|
791
|
2021-02-27
|
2350
|
792
|
2021-03-06
|
2390
|
793
|
2021-03-13
|
2470
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for COLORADO",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for COLORADO _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for GEORGIA (BUSAPPWNSAGA)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAGA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
7940
|
789
|
2021-02-13
|
7110
|
790
|
2021-02-20
|
7220
|
791
|
2021-02-27
|
7630
|
792
|
2021-03-06
|
7750
|
793
|
2021-03-13
|
7340
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for GEORGIA",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for GEORGIA _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for ILLINOIS (BUSAPPWNSAIL)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAIL",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
788
|
2021-02-06
|
4860
|
789
|
2021-02-13
|
4500
|
790
|
2021-02-20
|
3860
|
791
|
2021-02-27
|
4570
|
792
|
2021-03-06
|
4840
|
793
|
2021-03-13
|
4730
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for ILLINOIS",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for ILLINOIS _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
theme_economist()
