The objective of this analysis is to estimate DALYs lost in New York City due to the following major categories of conditions (with about 100 conditions in total within these categories):
Disability-adjusted life years. The DALY is a year of life lived in perfect health and consists of two elements: YLLs and YLDs. The DALY is a measure of overall disease burden, expressed as the number of years lost due to ill-health, disability or early death. It was developed in the 1990s as a way of comparing the overall health and life expectancy of different countries.
\[ DALY = YLL + YLD \]
Years of life lost. Years of life lost is an estimate of the average years a person would have lived if he or she had not died prematurely.
\[ YLL = (Number\ of\ deaths) * (Standard\ life\ expectancy\ at\ age\ of\ death\ in\ years) \]
Years of life lost due to disability. This is the morbidity component of the DALY score. To estimate YLD for a particular cause in a particular time period, the number of incident cases in that period is multiplied by the average duration of the disease and a weight factor that reflects the severity of the disease on a scale from 0 (perfect health) to 1 (dead). The basic formula for YLD is the following:
\[ YLD = (number\ of\ incident\ cases) * (disability\ weight) * (average\ duration\ of\ disease) \]
The challenge with using NYCHANES and NSDUH data to estimate the prevalence of a condition is that the n may be too small. To increase their utility of these surveys, we will aggregate age groups into the following strata: childhood (0-14), late adolescence/early adulthood (15-24), adulthood (25-64), and later life (65+).
To estimate compute NYC YLLs, we will use NYC mortality counts stratified by age, sex, and race. In concodrance with the literature on DALY estimation, life expectancy estimates based on the life expectancy in Japan (82.5 years for women and 80.0 years for men) were used for the calculation of YLL. In order to remain consistent with the methodology of the 2010 Global Burden Disease Study, no age weighting or discounting was applied.
To compute NYC YLDs, we will use the two approaches described below:
In order to compare the magnitude of the DALY scores to the 2005 NYC DOHMH study, we will replicate the previous study’s methodology, which was based on Michaud CM, et al. The burden of disease and injury in the United States 1996. Population Health Metrics 2006,4:11.
“For NYC YLD, U.S. Census Bureau population estimates for New York City in 2005 by sex were used to calculate years lived with disability (YLD) by applying national YLD rates and ratios from the Michaud et al. study. If the national YLL:YLD ratio was less than 10, then the NYC YLD was equal to the national YLD:YLL ratio multiplied by NYC YLL. If the national YLD:YLL ratio was greater than or equal to 10 (producing unreliable City estimates), then NYC YLD was equal to the national YLD rate multiplied by the NYC population.”
Implementing the Michaud approach will thus require the following data elements:
In order to remain consistent with the demographic weighting approach used by NYC DOHMH for the 2013 NYCHANES data, NYC population estimates were obtained from the 2013 American Community Survey, which is available on the NYC Department of City Planning website. Since the data from the Michaud study are from 1996 and patterns of disease and disability have changed, we will update the approach using national YLD/YLL rates from the 2010 Global Burden of Disease Study.
Years lived with a disability (YLD) due to each disease can be calculated on the basis of either the incidence or the prevalence of the disease. The initial GBD studies estimated YLD on the basis of the incidence of each disease. Thus, in the 1990 study for example, the YLD estimates measured the future loss of health resulting from disease episodes that began in 1990. One advantage of this approach is that it is consistent with that used for mortality: YLL measure the future loss of life resulting from deaths in a particular year.
The 2010 GBD study adopted the alternative approach and calculated YLD based on the prevalence of the impairments resulting from each disease in the year for which the estimates are made. This approach has the advantage that it assigns YLD to the ages at which they are lived, rather than to the age at which the disease episode that produced them began.
Because prevalence is approximately incidence x duration, prevalence YLD for a condition (across all ages) is approximately the same as the no frills incidence YLD. As such, we can estimate YLDs using the following formula:
\[ YLD = (number\ of\ prevalent\ cases) * (disability\ weight) \]
We can estimate the number of prevalent cases for each condition using survey data from 2013 NYCHANES. Annual prevalence for drug use can be estimated using data from 2002-2008 NSDUH. Disability weights can be extracted from the 2010 Global Burden of Disease study.However, we should note that the prevalence YLD for a condition may be quite different in magnitude to the incidence-based YLD, depending on how age weighting and discounting are applied. As such, comparisons to previous NYC DALY studies should be done with caution.
Further information about estimating DALYs can be found from the Global Burden of Disease concept paper (WHO, 2006).
Since our goal is to communicate the burden of diseases in New York City, we will rank each condition in decreasing order of the DALY score. We will also test the stability of the rankings by comparing the results generated from the Michaud approach and the prevalence-based YLDs approach. Moreover, since the 2010 GBD study also provides 95% confidence intervals around point estimates for disability weights and national YLD/YLL rates, further stability checks can be conducted by reporting DALY estimations with their respective upper and lower bounds.
However, we should note that since the DALY estimations are not inclusive of all disease conditions, we will not be able to report our findings as the “top X conditions contributing to DALYs.” Instead, we can only report mental health DALYs in reference to other highly prevalent chronic diseases.
Prevalence estimates of substance use cannot be directly substituted for prevalence of drug dependence or abuse disorders. We make the following assumptions about the average proportion of dependence among users (National Addiction Centre, 2003):
First, we load our dependencies into the R environment.
library("plyr")
library("dplyr")
library("reshape2")
library("magrittr")
library("ggplot2")
library("grid")
library("scales")
dir.create("results")
dir.create("data")
Next, we define a set of functions that we will be using for our analysis. Details on the parameters and return values for each function can be found in the comment blocks below:
readData <- function(url) {
## Reads CSV data from input URL string
filename <- tail(unlist(strsplit(url, "/")), 1)
filepath <- paste("data", "/", filename, sep="")
if (!file.exists(filepath)) {
download.file(url, filename, method="curl")
}
data <- read.csv(filepath, stringsAsFactors=FALSE)
return(data)
}
assignAgeGroup <- function(ageVar) {
## logic for childhood, teenage, young adult, adult, and later-life age groups
if (ageVar %in% c("Under 5 years", "5-14 years")) {
return("00-14")
} else if (ageVar %in% c("15-19 years", "20-24 years")) {
return("15-24")
} else if (ageVar %in% c("25-29 years", "30-34 years", "35-39 years", "40-44 years")) {
return("25-44")
} else if (ageVar %in% c("45-49 years", "50-54 years", "55-59 years", "60-64 years")) {
return("45-64")
} else if (ageVar %in% c("65-69 years", "70+ years")) {
return("65+")
} else {
return("")
}
}
addAgeGroup <- function(data, ageVar="age_name") {
## replaces age grouping in current data.frame to childhood, teenage, YA, adult, later-life
## Args:
## data: data.frame object
## ageVar: string denoting the column of ages to be replaced
## Returns:
## data: data.frame object with new age groupings
ageGroup <- vector(length=nrow(data))
for (i in 1:nrow(data)) {
ageGroup[i] <- assignAgeGroup(as.vector(data[i, ageVar]))
}
data$ageGroup <- ageGroup
return(data)
}
preprocessGBD <- function(data) {
## extracts YLD and YLL rates from 2010 Global Burden of Disase data
## Args:
## data: GBD dataset downloaded from the web
## Returns:
## data: a pre-processed 2010 GBD dataset
data %<>%
## filter out unnecessary variables
select(-c(pc_mean, pc_upper, pc_lower)) %>%
filter(year == 2010) %>%
filter(sex %in% c("Females", "Males")) %>%
## extract only YLD and YLL rates
filter(measure %in% c("yll", "yld")) %>%
## create long-form dataset
melt(measure.vars=c("nm_mean", "nm_upper", "nm_lower", "rt_mean", "rt_upper", "rt_lower")) %>%
## create wide-form dataset with national YLD/YLL rates
dcast(cause_name + age_name + sex ~ measure + variable, value.var="value") %>%
## age group manipulations
addAgeGroup("age_name") %>%
filter(ageGroup != "") %>%
select(-age_name) %>%
## averaging YLD/YLL rates with respect to new age groupings
group_by(cause_name, sex, ageGroup) %>%
summarise_each(funs(mean))
return(data)
}
getDiseaseIndex <- function(diseaseName, data) {
## searches disease index and returns indices of the first match
## Args:
## diseaseName: string vector denoting diseases of interest
## data: data.frame to be searched
## Returns:
## indices of the first string match
index <- grep(diseaseName, data$cause_name)
pattern <- unique(data$cause_name[index])[1]
return(which(data$cause_name == pattern))
}
subsetDataByDisease <- function(diseaseName, data) {
## subsets data frame from first string match
index <- getDiseaseIndex(diseaseName, data)
return(data[index, ])
}
This function contains the logic from the Michaud, 2006 study.
calculateMichaudYLD <- function(checkRatio, yldyllRatio, nationalYLD, nycPop, nycYLL) {
## calculates YLDs based on the 2006 Michaud study
## Args:
## checkRatio: numeric. National YLD:YLL ratio to check if > 10 or < 10
## yldyllRatio: numeric. National YLD:YLL ratio to evaluate
## nationalYLD: numeric. National YLD rate
## nycPop: numeric. NYC Population
## nycYLL: numeric. NYC YLL
## Returns:
## nycYLD: New York City YLD estimate
nycYLDLogic <- (checkRatio >= 10 | is.na(checkRatio) | is.infinite(checkRatio) | is.na(nycYLL))
nycYLD <- ifelse(nycYLDLogic, nationalYLD * (nycPop / 100000), yldyllRatio * nycYLL)
return(nycYLD)
}
This function implements prevalence-based YLD estimates.
calculatePrevalenceYLD <- function(nycPrevalence) {
## calculates prevalence-based YLD estimates from 2010 GBD Study
## Args:
## nycPrevalence: data.frame. NYC prevalence data with associated disability weights
## Returns:
## nycYLD: data.frame. NYC YLD estimates.
nycYLD <- nycPrevalence %>%
mutate(yld = prevalence * dependence_rate * dw_estimate,
yld_upper = prevalence * dependence_rate * dw_upper,
yld_lower = prevalence * dependence_rate * dw_lower)
return(nycYLD)
}
calculateYLL <- function(mortalityData) {
## calculates YLLs from mortality data
nycYLL <- mortalityData %>%
mutate(le = sle - mean_age,
yll = mortality * (1 - exp((-0.03 * le))) / 0.03)
return(nycYLL)
}
calculatePrevalenceDALY <- function(diseaseName, nycYLL, nycYLD) {
## calculates DALYs using prevalence-based YLDs from the 2010 GBD study
## Args:
## diseaseName: chr. The disease of interest.
## nycYLL: data.frame. New York City YLL estimates
## nycYLD: data.frame. New York City YLD estimates
## Returns:
## dalys: data.frame. New York City DALY estimates
diseaseYLL <- subsetDataByDisease(diseaseName, nycYLL)
nycYLD <- subsetDataByDisease(diseaseName, nycYLD)
dalys <- diseaseYLL %>%
group_by(cause_name, sex) %>%
summarize(yll = sum(yll)) %>%
join(nycYLD, c("cause_name", "sex"), type = "right") %>%
ungroup() %>%
mutate(daly = ifelse(is.na(yll), 0 + yld, yll + yld),
daly_upper = ifelse(is.na(yll), 0 + yld_upper, yll + yld_upper),
daly_lower = ifelse(is.na(yll), 0 + yld_lower, yll + yld_lower))
return(dalys)
}
calculateDALY <- function(diseaseName, population, nycYLL, nycYLD=NULL, nationalRates=NULL) {
## workhorse function to calculate DALY scores for specified disease using either
## prevalence-based YLD estimates or the Michaud approach using national YLD/YLL rates
diseaseYLL <- subsetDataByDisease(diseaseName, nycYLL)
if (!is.null(nycYLD) & !is.null(nationalRates)) {
stop("You cannot provide values to both nycYLD and nationalRates parameters.")
} else if (!is.null(nycYLD)) {
nycYLD <- subsetDataByDisease(diseaseName, nycYLD)
dalys <- calculatePrevalenceDALY(diseaseName, nycYLL, nycYLD)
return(dalys)
} else if (!is.null(nationalRates)) {
## subset datasets for specified disease
diseaseRates <- subsetDataByDisease(diseaseName, nationalRates)
## if disease not found in gbdData, return YLL data as DALYs
if (nrow(diseaseRates) == 0) {
dalys <- diseaseYLL %>%
group_by(cause_name, sex) %>%
summarize(yll = sum(yll),
daly = sum(yll))
return(dalys)
}
## compute national YLD:YLL ratio and join to NYC YLL and population data by age, sex
dalys <- diseaseRates %>%
## compute national YLD:YLL ratio
mutate(yldyll_ratio_mean = yld_nm_mean / yll_nm_mean,
yldyll_ratio_upper = yld_nm_upper / yll_nm_mean,
yldyll_ratio_lower = yld_nm_lower / yll_nm_mean) %>%
# join tables
join(population, by=c("ageGroup", "sex")) %>%
join(diseaseYLL, by=c("cause_name", "ageGroup", "sex")) %>%
## estimate YLDs using Michaud logic
mutate(yld = calculateMichaudYLD(yldyll_ratio_mean, yldyll_ratio_mean, yld_rt_mean, population, yll),
yld_upper = calculateMichaudYLD(yldyll_ratio_mean, yldyll_ratio_upper, yld_rt_upper, population, yll),
yld_lower = calculateMichaudYLD(yldyll_ratio_mean, yldyll_ratio_lower, yld_rt_lower, population, yll)) %>%
## collapse age groups
group_by(cause_name, sex) %>%
summarise_each(funs(sum(., na.rm=TRUE)), -c(cause_name, sex, ageGroup)) %>%
## calculate DALY estimates with lower and upper bounds
mutate(daly = yll + yld,
daly_upper = yll + yld_upper,
daly_lower = yll + yld_lower) %>%
select(cause_name, sex, yll, yld, yld_upper, yld_lower, daly, daly_upper, daly_lower)
return(dalys)
}
}
segmentDALY <- function(dalyObj, strata) {
## helper function to subset DALY data
if (strata == "total") {
dalyObj %>% group_by(cause_name) %>% summarise_each(funs(sum), -c(sex)) %>% arrange(desc(daly)) %>% as.data.frame()
} else if (strata == "male") {
dalyObj %>% filter(sex == "Male") %>% arrange(desc(daly))
} else if (strata == "female") {
dalyObj %>% filter(sex == "Female") %>% arrange(desc(daly))
}
}
# Multiple plot function
#
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)
# - cols: Number of columns in layout
# - layout: A matrix specifying the layout. If present, 'cols' is ignored.
#
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# then plot 1 will go in the upper left, 2 will go in the upper right, and
# 3 will go all the way across the bottom.
#
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
library(grid)
# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)
numPlots = length(plots)
# If layout is NULL, then use 'cols' to determine layout
if (is.null(layout)) {
# Make the panel
# ncol: Number of columns of plots
# nrow: Number of rows needed, calculated from # of cols
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
ncol = cols, nrow = ceiling(numPlots/cols))
}
if (numPlots==1) {
print(plots[[1]])
} else {
# Set up the page
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
# Make each plot, in the correct location
for (i in 1:numPlots) {
# Get the i,j matrix positions of the regions that contain this subplot
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))
}
}
}
plotDALY <- function(data, title, stackedBar=FALSE) {
## plot function for DALY object
if (stackedBar) {
meltedData <- melt(data, id.vars="cause_name", measure.vars=c("yll", "yld"), value.name="daly")
ggplot(meltedData, aes(x=reorder(cause_name, daly, FUN=sum, na.rm=TRUE), y=daly, fill=variable)) +
geom_bar(stat="identity") +
ggtitle(title) +
ylab("Disability-Adjusted Life Years (DALYs)") + xlab("Causes") +
scale_y_continuous(breaks=seq(0, max(data$daly_upper, na.rm=TRUE), by=100000), labels=comma) +
scale_fill_brewer() +
coord_flip() +
theme_bw()
} else {
limits <- aes(ymin=daly_lower, ymax=daly_upper)
ggplot(data, aes(x=reorder(cause_name, daly), y=daly)) +
geom_pointrange(limits) +
ggtitle(title) +
ylab("Disability-Adjusted Life Years (DALYs)") + xlab("Causes") +
scale_y_continuous(breaks=seq(0, max(data$daly_upper, na.rm=TRUE), by=100000), labels=comma) +
coord_flip() +
theme_bw()
}
}
To make our analysis reproducible, we download the 2010 Global Burden of Disease data straight from the source using the readData() function.
url <- "http://ghdx.healthdata.org/sites/default/files/record-attached-files/IHME_USA_GBD_2010_RESULTS_1990_2010_BY_CAUSE_Y2013M08D29.CSV"
cause <- readData(url) %>%
preprocessGBD()
url <- "http://ghdx.healthdata.org/sites/default/files/record-attached-files/IHME_USA_GBD_2010_RESULTS_1990_2010_BY_RISK_UPDATED_Y2013M11D21.CSV"
risk <- readData(url) %>%
rename(cause_name = risk_name) %>%
preprocessGBD()
Next, we read in the mortality, population, and prevalence data provided by NYCDOHMH.
mortality <- read.csv("data/2013_nyc_mortality.csv", stringsAsFactors=FALSE)
population <- read.csv("data/2013_nyc_population.csv", stringsAsFactors=FALSE)
prevalence <- read.csv("data/2013_nyc_prevalence.csv", stringsAsFactors=FALSE)
We pre-process the national YLD/YLL rates by substituting values for cause_name in order to match the indices of the other datasets. This will allow us to merge datasets using cause_name as the key. We also write out the resulting dataset for inspection.
nationalRates <- rbind(cause, risk) %>%
ungroup() %>%
mutate(sex = ifelse(sex == "Females", "Female", "Male")) %>%
mutate(cause_name = ifelse(cause_name == "Road injury", "Motor vehicle accidents", cause_name),
cause_name = ifelse(cause_name == "Trachea, bronchus, and lung cancers", "Lung cancer", cause_name)) %>%
arrange(cause_name)
write.csv(nationalRates, "results/national_yldyll_rates.csv")
Next, we pre-process the NYC mortality and calculate the YLLs for each disease by age, sex, and race. For the analysis, we only use YLLs stratified by age and sex.
nycYLL <- calculateYLL(mortality)
write.csv(nycYLL, "results/nyc_yll_by_age_sex_race.csv")
nycYLL %<>%
group_by(cause_name, sex, ageGroup) %>%
summarize(yll = sum(yll))
write.csv(nycYLL, "results/nyc_yll_by_age_sex.csv")
We calculate YLDs for each condition using NYC prevalence data, which also contains the associated disability weights for each disease. To capture the level of uncertainty around disability weights, we include the upper and lower bounds of the resulting YLDs in the output.
nycYLD <- calculatePrevalenceYLD(prevalence)
write.csv(nycYLD, "results/nyc_yld_by_age_sex.csv")
nycYLD %<>%
group_by(cause_name, sex) %>%
summarize(yld = sum(yld, na.rm=TRUE),
yld_upper = sum(yld_upper, na.rm=TRUE),
yld_lower = sum(yld_lower, na.rm=TRUE))
write.csv(nycYLD, "results/nyc_yld_by_sex.csv")
This section contains an implementation of the Michaud approach described in the above methods section. We first create a search index containing all the disease conditions of interest.
## create a search index
disease <- unique(c(nycYLL$cause_name, nycYLD$cause_name))
drug <- c("Amphetamine", "Heroin", "Cocaine", "Cannabis")
mental <- c("Major depressive disorder", "Anxiety", "Bipolar")
index <- unique(c(disease, drug, mental))
This search index is then fed through the calculateDALY workhorse function to estimate DALYs for each disease condition. The result is a data.frame object containing the following columns: cause_name, sex, yll, yld, yld_upper, yld_lower, daly, daly_upper, daly_lower.
michaudDALY <- lapply(index, calculateDALY, population, nycYLL=nycYLL, nationalRates=nationalRates)
michaudDALY <- do.call(rbind.fill, michaudDALY)
write.csv(michaudDALY, "results/nyc_daly_michaud.csv")
Similar to the section, we implement the prevalence-based YLD approach here using the same search index.
prevalenceDALY <- lapply(index, calculateDALY, population, nycYLL=nycYLL, nycYLD=nycYLD)
prevalenceDALY <- do.call(rbind.fill, prevalenceDALY)
write.csv(prevalenceDALY, "results/nyc_daly_prevalence.csv")
Raw results for this approach can be found under the results directory under the filename nyc_daly_michaud.csv. The file can be opened in Excel and manipulated with a pivot table for aggregation and stratification purposes.
michaudTotal <- segmentDALY(michaudDALY, strata="total")
michaudTotal
## cause_name yll yld
## 1 Diabetes mellitus 89921.8593 75004.5038
## 2 Lung cancer 148291.6356 2242.9612
## 3 Hypertensive heart disease 136003.5344 4455.7610
## 4 Ischemic stroke 79787.1576 54618.9896
## 5 Chronic obstructive pulmonary disease 65616.6564 57924.3517
## 6 Ischemic heart disease 112699.3626 10745.5490
## 7 Alzheimer's disease and other dementias 68064.1642 46430.6034
## 8 Other musculoskeletal disorders 14183.9916 99856.4516
## 9 Lower respiratory infections 102769.2461 5474.2794
## 10 Asthma 14317.4262 80967.8293
## 11 Major depressive disorder 0.0000 83953.4440
## 12 Breast cancer 68867.0554 12738.7979
## 13 HIV/AIDS 65584.2354 13821.0196
## 14 Alcohol use disorders 23367.4429 55797.8826
## 15 Colon and rectum cancers 71883.4068 4926.7991
## 16 Poisonings 61951.4430 345.3933
## 17 Homicide 54727.1791 NA
## 18 Anxiety disorders 0.0000 52051.1850
## 19 Congenital anomalies 28760.0643 5247.0472
## 20 Motor vehicle accidents 26587.8134 6120.9172
## 21 Osteoarthritis 643.1706 26968.3798
## 22 High blood pressure 0.0000 23051.4893
## 23 Bipolar affective disorder 0.0000 16820.2498
## 24 Cannabis use disorders 0.0000 14302.9941
## 25 Cocaine use disorders 0.0000 13584.4544
## 26 Amphetamine use disorders 0.0000 5546.6613
## yld_upper yld_lower daly daly_upper daly_lower
## 1 108498.2802 49557.68891 164926.363 198420.140 139479.548
## 2 3954.0205 1054.45769 150534.597 152245.656 149346.093
## 3 7743.7734 2146.86933 140459.295 143747.308 138150.404
## 4 67602.9376 42427.48230 134406.147 147390.095 122214.640
## 5 90860.6617 32740.18649 123541.008 156477.318 98356.843
## 6 15616.1724 7032.87825 123444.912 128315.535 119732.241
## 7 61713.3788 32776.61067 114494.768 129777.543 100840.775
## 8 121723.6960 77041.06298 114040.443 135907.688 91225.055
## 9 8303.9475 3354.63057 108243.525 111073.194 106123.877
## 10 128691.7057 44033.85664 95285.256 143009.132 58351.283
## 11 121099.5658 55076.00007 83953.444 121099.566 55076.000
## 12 19278.9232 8233.44871 81605.853 88145.979 77100.504
## 13 22434.1402 7110.37787 79405.255 88018.376 72694.613
## 14 85682.7067 33915.45149 79165.325 109050.150 57282.894
## 15 8225.5483 2835.32887 76810.206 80108.955 74718.736
## 16 912.0096 48.92806 62296.836 62863.453 62000.371
## 17 NA NA 54727.179 NA NA
## 18 75104.5772 34951.04848 52051.185 75104.577 34951.048
## 19 8241.7517 3153.12659 34007.112 37001.816 31913.191
## 20 9229.5870 3914.37900 32708.731 35817.400 30502.192
## 21 41201.1994 16315.88023 27611.550 41844.370 16959.051
## 22 31082.1570 15615.43900 23051.489 31082.157 15615.439
## 23 25727.1579 10011.62505 16820.250 25727.158 10011.625
## 24 21780.4478 8642.25054 14302.994 21780.448 8642.251
## 25 24968.4984 6553.68863 13584.454 24968.498 6553.689
## 26 9689.3818 2694.25267 5546.661 9689.382 2694.253
plotDALY(michaudTotal, "Leading Causes of DALYs, NYC 2013")
plotDALY(michaudTotal, "Leading Causes of DALYs, NYC 2013", stackedBar=TRUE)
Diabetes mellitus is the leading cause of disease in 2013, but has a wide range of uncertaintyMajor depressive disorder just missed the top 10 cutoffmichaudMale <- segmentDALY(michaudDALY, strata="male")
michaudMale
## cause_name sex yll yld
## 1 Diabetes mellitus Male 44350.2597 34179.2699
## 2 Lung cancer Male 76727.5088 1073.4292
## 3 Hypertensive heart disease Male 66787.3957 1551.5667
## 4 Alcohol use disorders Male 18467.5988 43944.2346
## 5 Ischemic heart disease Male 55740.9066 4685.5329
## 6 Ischemic stroke Male 34381.1722 24933.7621
## 7 Chronic obstructive pulmonary disease Male 29087.5511 25436.1167
## 8 HIV/AIDS Male 42537.5495 9527.5167
## 9 Lower respiratory infections Male 48779.8376 2313.7384
## 10 Asthma Male 7320.0714 39768.0782
## 11 Homicide Male 45926.7164 NA
## 12 Poisonings Male 44405.4957 264.4099
## 13 Other musculoskeletal disorders Male 4854.9161 39516.5937
## 14 Colon and rectum cancers Male 35103.8723 2158.4156
## 15 Alzheimer's disease and other dementias Male 19116.5536 12644.7087
## 16 Major depressive disorder Male 0.0000 29121.7638
## 17 Motor vehicle accidents Male 19023.4258 4148.8107
## 18 Congenital anomalies Male 15210.3239 2684.3674
## 19 Anxiety disorders Male 0.0000 16888.1881
## 20 High blood pressure Male 0.0000 10871.5697
## 21 Osteoarthritis Male 307.6397 9383.8038
## 22 Bipolar affective disorder Male 0.0000 7448.7748
## 23 Cocaine use disorders Male 0.0000 4600.9626
## 24 Cocaine use disorders Male 0.0000 4600.9626
## 25 Cannabis use disorders Male 0.0000 4486.3505
## 26 Cannabis use disorders Male 0.0000 4486.3505
## 27 Amphetamine use disorders Male 0.0000 1711.4472
## 28 Amphetamine use disorders Male 0.0000 1711.4472
## yld_upper yld_lower daly daly_upper daly_lower
## 1 50092.6831 22339.66951 78529.530 94442.943 66689.9292
## 2 1835.5390 552.42866 77800.938 78563.048 77279.9374
## 3 2772.9602 726.84613 68338.962 69560.356 67514.2418
## 4 67319.8291 26869.84596 62411.833 85787.428 45337.4447
## 5 6813.3881 3052.60257 60426.439 62554.295 58793.5092
## 6 30985.2622 19269.71803 59314.934 65366.434 53650.8903
## 7 40347.4100 14170.01592 54523.668 69434.961 43257.5671
## 8 15020.5207 5179.74703 52065.066 57558.070 47717.2966
## 9 3550.9975 1397.14831 51093.576 52330.835 50176.9859
## 10 63336.0811 21549.29019 47088.150 70656.153 28869.3616
## 11 NA NA 45926.716 NA NA
## 12 670.9745 43.52524 44669.906 45076.470 44449.0209
## 13 51263.2757 27139.66096 44371.510 56118.192 31994.5771
## 14 3558.7848 1248.81817 37262.288 38662.657 36352.6905
## 15 16956.4678 8941.37768 31761.262 36073.021 28057.9313
## 16 42380.4459 19171.86261 29121.764 42380.446 19171.8626
## 17 6260.4445 2667.35247 23172.236 25283.870 21690.7782
## 18 4172.2215 1627.16383 17894.691 19382.545 16837.4878
## 19 24380.0577 11291.23403 16888.188 24380.058 11291.2340
## 20 14945.9569 7182.75016 10871.570 14945.957 7182.7502
## 21 14596.6142 5660.76344 9691.444 14904.254 5968.4032
## 22 11473.0601 4413.85914 7448.775 11473.060 4413.8591
## 23 8346.6274 2259.42317 4600.963 8346.627 2259.4232
## 24 8346.6274 2259.42317 4600.963 8346.627 2259.4232
## 25 6858.2744 2705.22634 4486.351 6858.274 2705.2263
## 26 6858.2744 2705.22634 4486.351 6858.274 2705.2263
## 27 2949.7666 839.42626 1711.447 2949.767 839.4263
## 28 2949.7666 839.42626 1711.447 2949.767 839.4263
plotDALY(michaudMale, "Leading Causes of DALYs in Males, NYC 2013")
plotDALY(michaudMale, "Leading Causes of DALYs in Males, NYC 2013", stackedBar=TRUE)
Alcohol use disorders rises to the #4 slotHomicide and accidental deaths such as poisonings and motor vehicle accidents rise in rankingsmichaudFemale <- segmentDALY(michaudDALY, strata="female")
michaudFemale
## cause_name sex yll yld
## 1 Diabetes mellitus Female 45571.5997 40825.23391
## 2 Alzheimer's disease and other dementias Female 48947.6106 33785.89475
## 3 Breast cancer Female 68867.0554 12738.79793
## 4 Ischemic stroke Female 45405.9854 29685.22751
## 5 Lung cancer Female 71564.1269 1169.53195
## 6 Hypertensive heart disease Female 69216.1387 2904.19435
## 7 Other musculoskeletal disorders Female 9329.0754 60339.85786
## 8 Chronic obstructive pulmonary disease Female 36529.1052 32488.23499
## 9 Ischemic heart disease Female 56958.4560 6060.01617
## 10 Lower respiratory infections Female 53989.4085 3160.54100
## 11 Major depressive disorder Female 0.0000 54831.68020
## 12 Asthma Female 6997.3548 41199.75113
## 13 Colon and rectum cancers Female 36779.5345 2768.38346
## 14 Anxiety disorders Female 0.0000 35162.99685
## 15 HIV/AIDS Female 23046.6859 4293.50298
## 16 Osteoarthritis Female 335.5308 17584.57596
## 17 Poisonings Female 17545.9474 80.98334
## 18 Alcohol use disorders Female 4899.8441 11853.64796
## 19 Congenital anomalies Female 13549.7404 2562.67983
## 20 High blood pressure Female 0.0000 12179.91963
## 21 Motor vehicle accidents Female 7564.3877 1972.10646
## 22 Bipolar affective disorder Female 0.0000 9371.47498
## 23 Homicide Female 8800.4627 NA
## 24 Cannabis use disorders Female 0.0000 2665.14650
## 25 Cannabis use disorders Female 0.0000 2665.14650
## 26 Cocaine use disorders Female 0.0000 2191.26455
## 27 Cocaine use disorders Female 0.0000 2191.26455
## 28 Amphetamine use disorders Female 0.0000 1061.88339
## 29 Amphetamine use disorders Female 0.0000 1061.88339
## yld_upper yld_lower daly daly_upper daly_lower
## 1 58405.5971 27218.019398 86396.834 103977.197 72789.6191
## 2 44756.9110 23835.232988 82733.505 93704.522 72782.8436
## 3 19278.9232 8233.448706 81605.853 88145.979 77100.5041
## 4 36617.6754 23157.764263 75091.213 82023.661 68563.7496
## 5 2118.4816 502.029026 72733.659 73682.608 72066.1559
## 6 4970.8132 1420.023201 72120.333 74186.952 70636.1619
## 7 70460.4202 49901.402016 69668.933 79789.496 59230.4774
## 8 50513.2517 18570.170568 69017.340 87042.357 55099.2758
## 9 8802.7843 3980.275681 63018.472 65761.240 60938.7317
## 10 4752.9500 1957.482259 57149.949 58742.358 55946.8907
## 11 78719.1199 35904.137465 54831.680 78719.120 35904.1375
## 12 65355.6246 22484.566452 48197.106 72352.979 29481.9213
## 13 4666.7635 1586.510706 39547.918 41446.298 38366.0452
## 14 50724.5194 23659.814445 35162.997 50724.519 23659.8144
## 15 7413.6195 1930.630841 27340.189 30460.305 24977.3167
## 16 26604.5852 10655.116785 17920.107 26940.116 10990.6476
## 17 241.0352 5.402819 17626.931 17786.983 17551.3502
## 18 18362.8776 7045.605530 16753.492 23262.722 11945.4497
## 19 4069.5302 1525.962762 16112.420 17619.271 15075.7031
## 20 16136.2000 8432.688834 12179.920 16136.200 8432.6888
## 21 2969.1424 1247.026528 9536.494 10533.530 8811.4142
## 22 14254.0978 5597.765905 9371.475 14254.098 5597.7659
## 23 NA NA 8800.463 NA NA
## 24 4031.9495 1615.898924 2665.147 4031.950 1615.8989
## 25 4031.9495 1615.898924 2665.147 4031.950 1615.8989
## 26 4137.6218 1017.421149 2191.265 4137.622 1017.4211
## 27 4137.6218 1017.421149 2191.265 4137.622 1017.4211
## 28 1894.9243 507.700071 1061.883 1894.924 507.7001
## 29 1894.9243 507.700071 1061.883 1894.924 507.7001
plotDALY(michaudFemale, "Leading Causes of DALYs in Females, NYC 2013")
plotDALY(michaudFemale, "Leading Causes of DALYs in Females, NYC 2013", stackedBar=TRUE)
Breast cancer makes the top 3Alzheimer's disease and other dementias ranks very highRaw results for this approach can be found under the results directory under the filename nyc_daly_prevalence.csv. The file can be opened in Excel and manipulated with a pivot table for aggregation and stratification purposes.
prevalenceTotal <- segmentDALY(prevalenceDALY, strata="total")
prevalenceTotal
## cause_name yll yld yld_upper
## 1 Major depressive disorder NA 391052.610 534646.723
## 2 Alcohol use disorders 23367.44 203982.931 278110.749
## 3 Other arthritis NA 226917.872 318617.560
## 4 Lung cancer 148321.18 4937.436 6902.334
## 5 Arthritis NA 147503.216 207110.680
## 6 Ischemic heart disease 112699.36 30185.820 34498.080
## 7 Chronic obstructive pulmonary disease 65616.66 64252.608 90689.879
## 8 Diabetes mellitus 89921.86 10119.135 12142.962
## 9 Breast cancer 69366.71 24768.618 34625.517
## 10 Ischemic stroke 79787.16 1819.986 3206.642
## 11 Colon and rectum cancers 71913.23 4471.446 6250.899
## 12 Cocaine use NA 44665.457 65691.483
## 13 Heroin use NA 36138.504 45271.793
## 14 Asthma 14317.43 20058.084 33430.140
## 15 Anxiety NA 30752.130 49203.408
## 16 Cannabis use NA 24990.840 34561.800
## 17 Amphetamine use NA 8049.876 11972.195
## 18 Stimulant use NA 2548.660 3790.500
## 19 High blood pressure NA 0.000 0.000
## 20 Sedative use NA 0.000 0.000
## 21 Tranquilizer use NA 0.000 0.000
## yld_lower daly daly_upper daly_lower
## 1 265843.756 391052.610 534646.72 265843.756
## 2 137741.051 227350.374 301478.19 161108.494
## 3 153091.852 226917.872 318617.56 153091.852
## 4 3342.006 153258.618 155223.52 151663.188
## 5 99514.156 147503.216 207110.68 99514.156
## 6 24196.570 142885.183 147197.44 136895.933
## 7 43169.721 129869.264 156306.54 108786.377
## 8 8095.308 100040.994 102064.82 98017.167
## 9 16765.153 94135.331 103992.23 86131.866
## 10 953.326 81607.144 82993.80 80740.484
## 11 3026.591 76384.673 78164.13 74939.818
## 12 27915.910 44665.457 65691.48 27915.910
## 13 25877.650 36138.504 45271.79 25877.650
## 14 11143.380 34375.510 47747.57 25460.806
## 15 17426.207 30752.130 49203.41 17426.207
## 16 16939.080 24990.840 34561.80 16939.080
## 17 4902.899 8049.876 11972.19 4902.899
## 18 1552.300 2548.660 3790.50 1552.300
## 19 0.000 0.000 0.00 0.000
## 20 0.000 0.000 0.00 0.000
## 21 0.000 0.000 0.00 0.000
Major depressive disorder ranks number one, beating out the number two slot by almost twice the number of DALYs However, DALY estimates appear to be unstable, taking a wide range of possible values.sedative use, stimulant use, tranquilizer use.plotDALY(prevalenceTotal, "Leading Causes of DALYs, NYC 2013")
plotDALY(prevalenceTotal, "Leading Causes of DALYs, NYC 2013", stackedBar=TRUE)
prevalenceMale <- segmentDALY(prevalenceDALY, strata="male")
prevalenceMale
## cause_name sex yll yld
## 1 Major depressive disorder Male NA 146547.662
## 2 Alcohol use disorders Male 18467.5988 109295.729
## 3 Other arthritis Male NA 79497.292
## 4 Lung cancer Male 76757.0552 1925.994
## 5 Ischemic heart disease Male 55740.9066 13079.052
## 6 Chronic obstructive pulmonary disease Male 29087.5511 32495.040
## 7 Diabetes mellitus Male 44350.2597 4769.880
## 8 Arthritis Male NA 47958.372
## 9 Colon and rectum cancers Male 35103.8723 1835.148
## 10 Ischemic stroke Male 34381.1722 607.635
## 11 Asthma Male 7320.0714 7268.832
## 12 Cocaine use Male NA 12568.070
## 13 Cocaine use Male NA 12568.070
## 14 Anxiety Male NA 11398.980
## 15 Heroin use Male NA 9979.689
## 16 Heroin use Male NA 9979.689
## 17 Cannabis use Male NA 8053.920
## 18 Cannabis use Male NA 8053.920
## 19 Amphetamine use Male NA 2514.454
## 20 Amphetamine use Male NA 2514.454
## 21 Stimulant use Male NA 1609.680
## 22 Breast cancer Male 499.6573 0.000
## 23 High blood pressure Male NA 0.000
## 24 Sedative use Male NA 0.000
## 25 Tranquilizer use Male NA 0.000
## yld_upper yld_lower daly daly_upper daly_lower
## 1 201639.650 99306.914 146547.6620 201639.6500 99306.9140
## 2 149014.023 73802.786 127763.3281 167481.6215 92270.3850
## 3 111622.910 53633.447 79497.2920 111622.9100 53633.4470
## 4 2692.461 1303.649 78683.0492 79449.5162 78060.7042
## 5 14947.488 10484.002 68819.9586 70688.3946 66224.9086
## 6 45865.395 21832.605 61582.5911 74952.9461 50920.1561
## 7 5723.856 3815.904 49120.1397 50074.1157 48166.1637
## 8 67338.810 32355.477 47958.3720 67338.8100 32355.4770
## 9 2565.462 1242.158 36939.0203 37669.3343 36346.0303
## 10 1070.595 318.285 34988.8072 35451.7672 34699.4572
## 11 12114.720 4038.240 14588.9034 19434.7914 11358.3114
## 12 18484.422 7855.044 12568.0700 18484.4221 7855.0437
## 13 18484.422 7855.044 12568.0700 18484.4221 7855.0437
## 14 18238.368 6459.422 11398.9800 18238.3680 6459.4220
## 15 12501.857 7146.143 9979.6893 12501.8572 7146.1425
## 16 12501.857 7146.143 9979.6893 12501.8572 7146.1425
## 17 11138.400 5459.040 8053.9200 11138.4000 5459.0400
## 18 11138.400 5459.040 8053.9200 11138.4000 5459.0400
## 19 3739.628 1531.466 2514.4543 3739.6275 1531.4665
## 20 3739.628 1531.466 2514.4543 3739.6275 1531.4665
## 21 2394.000 980.400 1609.6800 2394.0000 980.4000
## 22 0.000 0.000 499.6573 499.6573 499.6573
## 23 0.000 0.000 0.0000 0.0000 0.0000
## 24 0.000 0.000 0.0000 0.0000 0.0000
## 25 0.000 0.000 0.0000 0.0000 0.0000
plotDALY(prevalenceMale, "Leading Causes of DALYs in Males, NYC 2013")
plotDALY(prevalenceMale, "Leading Causes of DALYs in Males, NYC 2013", stackedBar=TRUE)
Alcohol use disorders rises in proportion to major depressive disorderprevalenceFemale <- segmentDALY(prevalenceDALY, strata="female")
prevalenceFemale
## cause_name sex yll yld
## 1 Major depressive disorder Female NA 244504.948
## 2 Other arthritis Female NA 147420.580
## 3 Alcohol use disorders Female 4899.844 94687.202
## 4 Arthritis Female NA 99544.844
## 5 Breast cancer Female 68867.055 24768.618
## 6 Lung cancer Female 71564.127 3011.442
## 7 Ischemic heart disease Female 56958.456 17106.768
## 8 Chronic obstructive pulmonary disease Female 36529.105 31757.568
## 9 Diabetes mellitus Female 45571.600 5349.255
## 10 Ischemic stroke Female 45405.985 1212.351
## 11 Colon and rectum cancers Female 36809.355 2636.298
## 12 Asthma Female 6997.355 12789.252
## 13 Anxiety Female NA 19353.150
## 14 Cocaine use Female NA 9764.658
## 15 Cocaine use Female NA 9764.658
## 16 Heroin use Female NA 8089.563
## 17 Heroin use Female NA 8089.563
## 18 Cannabis use Female NA 4441.500
## 19 Cannabis use Female NA 4441.500
## 20 Amphetamine use Female NA 1510.483
## 21 Amphetamine use Female NA 1510.483
## 22 Stimulant use Female NA 938.980
## 23 High blood pressure Female NA 0.000
## 24 Sedative use Female NA 0.000
## 25 Tranquilizer use Female NA 0.000
## yld_upper yld_lower daly daly_upper daly_lower
## 1 333007.073 166536.8420 244504.948 333007.07 166536.8420
## 2 206994.650 99458.4050 147420.580 206994.65 99458.4050
## 3 129096.726 63938.2652 99587.046 133996.57 68838.1093
## 4 139771.870 67158.6790 99544.844 139771.87 67158.6790
## 5 34625.517 16765.1530 93635.673 103492.57 85632.2084
## 6 4209.873 2038.3570 74575.569 75774.00 73602.4839
## 7 19550.592 13712.5680 74065.224 76509.05 70671.0240
## 8 44824.484 21337.1160 68286.673 81353.59 57866.2212
## 9 6419.106 4279.4040 50920.855 51990.71 49851.0037
## 10 2136.047 635.0410 46618.336 47542.03 46041.0264
## 11 3685.437 1784.4330 39445.653 40494.79 38593.7875
## 12 21315.420 7105.1400 19786.607 28312.77 14102.4948
## 13 30965.040 10966.7850 19353.150 30965.04 10966.7850
## 14 14361.319 6102.9115 9764.658 14361.32 6102.9115
## 15 14361.319 6102.9115 9764.658 14361.32 6102.9115
## 16 10134.039 5792.6824 8089.563 10134.04 5792.6824
## 17 10134.039 5792.6824 8089.563 10134.04 5792.6824
## 18 6142.500 3010.5000 4441.500 6142.50 3010.5000
## 19 6142.500 3010.5000 4441.500 6142.50 3010.5000
## 20 2246.470 919.9828 1510.483 2246.47 919.9828
## 21 2246.470 919.9828 1510.483 2246.47 919.9828
## 22 1396.500 571.9000 938.980 1396.50 571.9000
## 23 0.000 0.0000 0.000 0.00 0.0000
## 24 0.000 0.0000 0.000 0.00 0.0000
## 25 0.000 0.0000 0.000 0.00 0.0000
plotDALY(prevalenceFemale, "Leading Causes of DALYs in Females, NYC 2013")
plotDALY(prevalenceFemale, "Leading Causes of DALYs in Females, NYC 2013", stackedBar=TRUE)
multiplot(plotDALY(michaudTotal, "Michaud YLDs"), plotDALY(prevalenceTotal, "Prevalence-Based YLDs"))
multiplot(plotDALY(michaudMale, "Michaud YLDs"), plotDALY(prevalenceMale, "Prevalence-Based YLDs"))
multiplot(plotDALY(michaudFemale, "Michaud YLDs"), plotDALY(prevalenceFemale, "Prevalence-Based YLDs"))
prevalence[prevalence$small_sample == "yes", c("cause_name", "sequlae", "sex", "age")]
## cause_name sequlae sex age
## 25 Breast cancer Breast cancer Male 20-39
## 26 Breast cancer Breast cancer Male 40-59
## 27 Breast cancer Breast cancer Male 60+
## 28 Breast cancer Breast cancer Female 20-39
## 36 Cocaine use Cocaine use Female 60+
## 37 Colon and rectum cancers Colon and rectum cancers Male 20-39
## 38 Colon and rectum cancers Colon and rectum cancers Male 40-59
## 39 Colon and rectum cancers Colon and rectum cancers Male 60+
## 40 Colon and rectum cancers Colon and rectum cancers Female 20-39
## 41 Colon and rectum cancers Colon and rectum cancers Female 40-59
## 42 Colon and rectum cancers Colon and rectum cancers Female 60+
## 55 Heroin use Heroin use Male 20-39
## 56 Heroin use Heroin use Male 40-59
## 57 Heroin use Heroin use Male 60+
## 58 Heroin use Heroin use Female 20-39
## 59 Heroin use Heroin use Female 40-59
## 60 Heroin use Heroin use Female 60+
## 67 Ischemic heart disease Ischemic heart disease Male 20-39
## 70 Ischemic heart disease Ischemic heart disease Female 20-39
## 73 Lung cancer Lung Male 20-39
## 74 Lung cancer Lung Male 40-59
## 75 Lung cancer Lung Male 60+
## 76 Lung cancer Lung Female 20-39
## 77 Lung cancer Lung Female 40-59
## 78 Lung cancer Lung Female 60+
## 87 Amphetamine use Methamphetamine use Male 20-39
## 88 Amphetamine use Methamphetamine use Male 40-59
## 89 Amphetamine use Methamphetamine use Male 60+
## 90 Amphetamine use Methamphetamine use Female 20-39
## 91 Amphetamine use Methamphetamine use Female 40-59
## 92 Amphetamine use Methamphetamine use Female 60+
## 101 Major depressive disorder moderate depression Male 60+
## 105 Major depressive disorder moderately severe depression Male 20-39
## 106 Major depressive disorder moderately severe depression Male 40-59
## 107 Major depressive disorder moderately severe depression Male 60+
## 111 Other arthritis Other arthritis Male 20-39
## 125 Major depressive disorder severe depression Male 20-39
## 126 Major depressive disorder severe depression Male 40-59
## 127 Major depressive disorder severe depression Male 60+
## 128 Major depressive disorder severe depression Female 20-39
## 130 Major depressive disorder severe depression Female 60+
## 139 Ischemic stroke Ischemic stroke Male 20-39
## 140 Ischemic stroke Ischemic stroke Male 40-59
## 141 Ischemic stroke Ischemic stroke Male 60+
## 142 Ischemic stroke Ischemic stroke Female 20-39
There are key limitations to this analysis. First and foremost, the magnitude of the DALY scores should be interpreted and reported with caution. Due to the small sample size of NYC prevalence estimates and the uncertainty around disability weights and national YLL/YLD rates for some conditions, DALY estimates can assume a wide range of values, changing how one condition ranks against the others (for example, alcohol use disorders and diabetes mellitus). For this reason, DALY magnitudes obtained via Michaud approach and the Prevalence-based YLDs cannot be directly compared.
Moreover, the accuracy of DALY estimations suffers from potential biases introduced in the data collection and computation processes. For example, comorbidities with respect to chronic diseases means that DALY estimates based on Vital Statistics mortality counts are overestimating the contribution of YLLs. Summation of prevalence YLDs across all causes can result in overestimation of the total average severity-weighted health state prevalence because of comorbidity between conditions (Mathers, 2006). Over-reporting of some conditions due to misclassification (e.g. where symptoms such as joint pain are labeled as osteoarthritis or occasional wheezing as asthma), under-reporting of undiagnosed conditions (e.g. most mental health problems), and lack of information on condition severity (resulting in high prevalences due to inclusion of very minor conditions or minor symptoms) may also contribute to biased DALY estimates.
In order to convey the uncertainty around our estimates, we visualize the range of values that NYC DALY estimates can take for each condition.
Jiang, Yongwen, and Jana Earl Hesser. “Using Disability-Adjusted Life Years to Assess the Burden of Disease and Injury in Rhode Island.” Public Health Reports 127, no. 3 (2012): 293–303.
Lozano, Rafael, Mohsen Naghavi, Kyle Foreman, Stephen Lim, Kenji Shibuya, Victor Aboyans, Jerry Abraham, et al. “Global and Regional Mortality from 235 Causes of Death for 20 Age Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010.” The Lancet 380, no. 9859 (December 15, 2012): 2095–2128. doi:10.1016/S0140-6736(12)61728-0.
Michaud, Catherine M, Matthew T McKenna, Stephen Begg, Niels Tomijima, Meghna Majmudar, Maria T Bulzacchelli, Shahul Ebrahim, et al. “The Burden of Disease and Injury in the United States 1996.” Population Health Metrics 4 (October 18, 2006): 11. doi:10.1186/1478-7954-4-11.
Schroeder, S Andrew. “Incidence, Prevalence, and Hybrid Approaches to Calculating Disability-Adjusted Life Years.” Population Health Metrics 10 (September 12, 2012): 19. doi:10.1186/1478-7954-10-19.
U.S. Department of Health and Human Services, Substance Abuse and Mental Health Services Administration, and Center for Behavioral Health Statistics and Quality. “Results from the 2012 NSDUH: Summary of National Findings, SAMHSA, CBHSQ.” Accessed April 18, 2015. http://archive.samhsa.gov/data/NSDUH/2012SummNatFindDetTables/NationalFindings/NSDUHresults2012.htm. Üstün, T. B., J. L. Ayuso-Mateos, S. Chatterji, C. Mathers, and C. J. L. Murray. “Global Burden of Depressive Disorders in the Year 2000.” The British Journal of Psychiatry 184, no. 5 (May 1, 2004): 386–92. doi:10.1192/bjp.184.5.386.